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Abstract 

Studies examining factors responsible for COVID-19 incidence have mostly focused at 

the national or sub-national level. Here we undertake an analysis of COVID-19 cases at the 

global scale to identify key factors associated with disease incidence. A regression modeling 

framework was used to identify key variables associated with COVID-19 incidence, and to 

assess longitudinal trends in reported incidence at the country-level. New COVID-19 case 

dynamics in response to lockdowns was characterized via cluster analysis. Eleven variables were 

found to be independently associated with COVID-19 infections (p<1e-05) and a 4-variable 

model adequately explained global variations in COVID-19 cases (p<0.01). COVID-19 case 

trajectories for most countries followed the log-logistic curve. Six predominant country clusters 

summarized the differences in individual country’s response to lockdowns. Globally, economic 

and meteorological factors are important determinants of COVID-19 incidence. Analysis of 

longitudinal trends and lockdown effects on COVID-19 caseloads further highlights important 
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nuances in country-specific responses to the pandemic. These findings on the first six months of 

the pandemic has important implications for additional phases of the disease currently underway 

in many countries. 

 

Introduction 

It has been almost 16 months since the first reports of the current COVID-19 pandemic 

was reported from mainland China in late 2019(1). First manifesting as an acute respiratory 

illness from infection with a zoonotically derived novel coronavirus SARS-CoV-2, COVID-19 

rapidly spread to over 200 countries worldwide, and currently infects over 72 million people 

with devastating impacts on public health and global economic activity(2). COVID-19is also 

associated with significant morbidity and mortality, resulting in over1.6 million reported deaths 

worldwide (as of Dec 15, 2020).  

Large data collection efforts are underway for understanding the etiology of COVID-19, 

both for identifying biological predictors of susceptibility and outcome, as well as understanding 

the disease mechanisms impacted by viral infection. Insights into the epidemiological landscape 

of disease transmission, and effects of public policy interventions are equally important to help 

authorities respond more effectively to the epidemic and identify the most vulnerable 

communities. Along these lines, some important findings have already been reported with 

respect to the effects of contact tracing and travel restrictions on COVID-19 spread(3, 4), as well 

as the evolving epidemiology and transmission dynamics of disease(4, 5). Together, research 

into the biology, pathophysiology and epidemiology of SARS-CoV2 and COVID-19 disease has 

exploded in the recent scientific literature resulting in a large amount of new information. 
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However, important gaps in our understanding with respect to the nature and scope of 

interactions between the virus and its environments still remain(6). 

The global response to COVID-19 has evolved over its time course, with several 

countries imposing, and often re-imposing restrictions (lockdowns) in response to infection 

burden and economic pressure. The impact from early contributing factors has also possibly 

changed over the course of the pandemic, with secondary factors (e.g. lockdown sequelae) 

becoming more important later. In this paper, we have restricted our examination to the 

association of potential early factors of COVID-19 transmission, and also investigated the global 

response to the pandemic over the first six months  ending June 20, 2020. A large body of pre-

existing literature makes it clear that virus transmission is the result of an interaction among 

several factors, including host behavior and defense mechanisms, virus infectivity, population 

density and environmental determinants(7). Previous studies on respiratory disorders have also 

emphasized the prevalent role of meteorological parameters on virus transmission and infectivity 

(8, 9). On the other hand, a retrospective analysis of government responses to epidemics and 

pandemics over the last century suggests that governments vary considerably in their adoption of 

non-pharmaceutical interventions such as quarantine, social distancing and contact tracing to 

stem the tide of public health burdens (10). Continuing along the lines of these prior reports, we 

have investigated the possible roles that selected, pre-existing demographic, health, geographic 

and economic factors may have played in determining the burden of COVID-19 infection 

globally, by examining their impact in countries with reliable COVID-19 infection data. 

Additionally, we have characterized country-specific time-courses of confirmed COVID-

19caseload trajectories, and explored the diversity of infection trajectories via optimal model fits. 

Lastly, we have explored patterns in the differential influence of government-imposed 
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lockdowns on the trajectories of new cases observed in those countries. While the first part of 

our investigation focuses on global factors influencing SARS-Cov-2 transmission, the later 

investigations seek to characterize country-level variations, both in the time course of COVID-19 

transmission and in viral caseload dynamics surrounding the lockdown periods.  

 

Methods 

Data collection: Data for COVID-19 confirmed cases was obtained from 

https://ourworldindata.org/coronavirus-source-data, which is updated daily and based on data on 

confirmed cases and deaths from Johns Hopkins University. Data on additional demographic, 

geographic health or economic variables were downloaded from a variety of sources listed in 

Table 1. For each variable, we utilized the latest possible data with the most country coverage in 

our analysis. Variables were categorized as belonging to Demographic, Geographic, Health or 

Economic domains. 

 

Statistical Analysis: We  assessed longitudinal trends in the rise in COVID-19 cases in 

each country by considering them as growth curves and fitting the number of confirmed COVID-

19 infections (expressed as a fraction of daily cases to the maximum number of cases) using 

linear (quadratic) and nonlinear (exponential, logistic, log-logistic, and Gompertz) regression 

models. The modeling equations are given as below: 

Logistic: 𝑓(𝑥) =  𝛼 +  
𝛽−𝛼

1+(𝑥|𝛾)𝛿   ,  where ,,,and  are 4 estimable parameters 

representing the maximum asymptote (), minimum asymptote (), S-curve inflection point () 

and Hill coefficient (), respectively.. 
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Log-logistic:  𝑓(𝑥) =  𝛼 +  
𝛽−𝛼

1 + (ln 𝑥| ln 𝛾)
𝛿 , where all four parameters have 

the same meaning as for logistic regression. 

Gompertz: 𝑓(𝑥) =  𝛽 +  (𝛼 − 𝛽)𝑒𝑥𝑝 (−𝑒𝑥𝑝(𝛾(𝑥 − 𝛿))), where  is the 

lower asymptote,  is the upper asymptote,  is the growth-rate coefficient and  is the time at 

inflection. 

Exponential: 𝑓(𝑥) =  𝛼 +  (𝛽 − 𝛼)𝑒𝑥𝑝(−𝑥|𝛾), a 3-parameter model where  is 

the lower asymptote,  is the upper asymptote and  is the steepness of the decay curve 

Quadratic: 𝑓(𝑥) =  𝛼 + 𝛽1𝑥 + 𝛽2𝑥2, where  is the value of f(x) at x=0, and  and 

 are the polynomial regression coefficients. 

A 4-parameter model was found to be optimum for logistic, log-logistic, and Gompertz 

fitted data. For each country, non-nested models were compared using the AIC criterion, with the 

model with the lowest AIC being selected for that country. These analyses were conducted via 

the drc(12), aomisc (https://rdrr.io/github/OnofriAndreaPG/aomisc/) or tidyverse packages in R. 

The drc and aomisc packages were used for their advantage of employing self-starter functions 

for calculating initial values for nonlinear regression models, based on numerical optimization 

algorithms (13). As we generated models on all countries simultaneously, it was considered 

judicious to use the data-guided self-starter functions in these packages rather than having the 

user guess the initial parameters for each model for each country separately. 

To identify the effect of the ‘lockdown’ period on new COVID-19 case trajectories in a 

country-specific manner, we obtained data on lockdown dates from https://auravision.ai/COVID-

19-lockdown-tracker/, as well as internet-based reports from individual searches 
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(Supplementary Table 1), considering data until June 30, 2020. Countries that had either not 

imposed, or imposed but not withdrawn their lockdown by June 30 were excluded from the 

analysis (e.g. PER, BLR, NPL, etc.), resulting in a final list of 106 countries with documented 

lockdown start and end dates. For countries with multiple lockdown dates (e.g. USA, China), the 

most common value (mode) of the lockdown start and end dates was taken to be representative 

for that country. The beginning and end of lockdown period was then overlaid on plots showing 

the number of daily new confirmed COVID-19 cases versus time. Countries were characterized 

on a custom five-point metric including percent changes in daily COVID-19 cases at the 

beginning, end and during lockdown, as well at early (5 days) and later (14 days) timepoints 

post-lockdown. 

Bivariate linear regression analysis was conducted by examining the association of each 

demographic, geographic, health or economic variable (independent variable) to the total number 

of confirmed COVID-19 cases (dependent variable, log10 transformed). A subset of the 

independent variables was log transformed. Regression modeling was performed via the 

tidyverse package in R (www.tidyverse.org). 

In addition to the bivariate analysis, we carried out variable subset selection in order to 

identify a parsimonious set of predictors forCOVID-19 incidence. Models including all variables 

were first compared and optimal sub-models, containing a combination of selected variables, 

were identified based on the Akaike Information Criterion (AIC) . These analyses were 

conducted using the ‘lmSubsets’ package in R(11), based on newly developed theoretical 

strategies for the ‘all-subset regression’ problem.  The variables selected in the optimized models 

were then included in a multivariable linear regression model to assess their relative 

contributions to COVID-19 cases. 
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Results 

Longitudinal trends in COVID-19 associations by country: We analyzed the temporal 

patterns of increases in confirmed COVID-19 cases at the country level. For each country, daily 

COVID-19 case data was obtained from the day of the first reported infection (Day 1 in the 

plots) until June 10, 2020. As the number of total COVID-19 cases varied widely between 

countries, we expressed the country-level increases in COVID-19 infections on a particular day 

as a proportion of the total number of cases on that day to the maximum number of cases 

observed for that country (June 10 data), essentially scaling the data between 0-1 for each 

country. Out of a total of 210 countries with available data, 38 countries with a maximum 

COVID-19 case load of less than 100 were excluded from the analysis. We further excluded 

Benin (BEN) because of an anomaly in its cumulative daily reported COVID-19 data which 

increased and then decreased over time. This resulted in a final list of 171 countries for 

longitudinal analysis of confirmed COVID-19 case patterns. For each country, the trajectory of 

total COVID-19 cases over time was examined via regression analysis, including both linear and 

non-linear regression models. The fits obtained with the various models were then compared 

using  the AIC criterion and the model with the lowest AIC was selected as optimal for that 

country (Supplementary Table 2). The longitudinal trends results show that the selected model 

fits the data for individual country well.  

From the 5 models considered, the COVID-19 trajectory for the majority of countries was 

best explained by the log-logistic model (70 countries), followed by logistic (44 countries) and 

Gompertz models (41 countries), whereas fewer countries were optimally explained by the 

quadratic (9 countries) and exponential models (6 countries). Figure 1 shows representative 
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countries with optimal fits from the 5 modeling approaches (optimal model fits for all countries 

shown in Supplementary Figure 1).    

Association of individual variables to COVID-19 cases: Linear regression modeling of 

the logarithm of confirmed total COVID-19 reported cases for each country (normalized to per 

million population) against selected demographic, geographic, economic and health related 

indicators identified several variables as being significantly associated to the COVID-19 cases. 

To test the robustness of these findings, we analyzed data representing total COVID-19 

infections at 3 different time points approximately 1 month apart (April 10, May 11 and June 

10).Table 2 shows the results of bivariate analysis for all 24 variables tested across the 3 time 

points. A total of 11 variables including employments in the agriculture, service and industrial 

sectors, percent population residing in urban areas, ages between 15-64 years and over 65 years, 

number of visitors, and temperatures in the months of Jan-Apr were found to be significant 

across all 3 time points tested (p<1e-05), with the coefficient of determination ranging from 0.2-

0.49 for these regressors (May 11 data). Regression plots of the top 6 most significantly 

associated variables are shown for the May 11 data in Figure 2(plots for all 24 variables 

available in Supplementary Figure 2).  

Multivariable regression modeling of COVID-19 association: We used multivariable 

linear regression to identify a parsimonious subset of variables that can jointly explain the 

variation in the number of confirmed COVID-19 cases across countries. An all-subsets 

regression analysis was undertaken using variables with p<0.01 in their respective bivariate 

analyses (15 variables), resulting in a series of sub-modelsconsisting of different subsets of the 

variables included in the analysis. Data from 131 countries was finally available for modeling, 

after removing missing data. From these models, the model with the lowest AIC score was 
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selected to be the most parsimonious. This analysis identified a model with 5 variables (percent 

urban population, percent employed in agriculture, population density, percent population aged 

between 15-64 yrs,and temperature in March) as the most parsimonious (p<0.05) with respect to 

the global incidence of confirmed COVID-19 cases (p<0.01) for May 11 data (adj r2=0.68) 

(Figure 3a,b). In this figure, a total of 15 submodels were generated containing between 2-16 

regressors (including intercept). Variables consistently appearing in sub-models of multiple sizes 

are weighted more than less frequently appearing variables. Notably, the population age related 

variable was not significant after adjusting for other variables (Table 3). 

Effect of lockdown on new COVID-19 cases: As the majority of the countries adopted 

some measure of restriction (lockdown) to reduce the incidence of COVID-19 infection, and also 

removed such restriction (partially or entirely) after a certain periodof time, we were interested in 

determining the patterns by which the daily new cases of COVID-19 infections were affected 

due to the lockdown. Countries which had imposed and relaxed lockdowns by June 10, 2020 

were considered, whereas data on total COVID-19 cases were considered until June 30, 2020 to 

identify post-lockdown trends.We considered 5 different criteria to characterize a country’s 

response to the lockdown - (a) percent change in the number of daily cases at the beginning and 

end of lockdown, (b) the presence of a peak in the number of daily cases within the lockdown 

period, (c) percent change in the number of daily cases 5 days after lifting of lockdown (early 

post-lockdown effects), (d) percent change in the number of daily cases 14 days after lifting of 

lockdown (later post-lockdown effects), and (e) percent change between day 5 and day 14 post-

lockdown. The percent change values were then thresholded as follows: For (a), a >20% change 

was indicated as 1, a <-20% change was indicated as -1 and a change between -20% to 20% was 

indicated as 0. For (c, d, e), changes >10% were indicated by 1, changes <-10% were indicated 
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by -1 and changes between -10% to 10% were indicated by 0 (Supplementary Table 3). The 

thresholded dataset was then subjected to Euclidean hierarchical clustering and the results 

visualized on a dendrogram (Fig 4). The dendrogram was colored by cutting the tree at 6 

branches. Representative plots for each of the six major clusters are shown alongside the 

dendrogram (lockdown plots for all countries are shown in Supplementary Figure 3). 

 

Discussion 

Despite a large body of research, uncertainties remain regarding the importance of 

environmental factors and their roles in COVID-19 transmission(14). On the one hand, 

epidemiological and laboratory studies have identified ambient temperature to be a critical factor 

in the survival and transmission of other coronaviruses such as MERS-CoV and SARS-Cov-1 

(15), and  climate components including temperature, rainfall and wind speed have been 

postulated as biological catalysts for human-COVID-19 interactions in independent studies from 

several locations worldwide(9, 16, 17). However, results obtained from these studies have not 

conclusively resolved whether weather condition plays a key role in SARS-CoV-2 transmission 

(18). More specifically, results are conflicting regarding the association between COVID-19 

infection and the effect of temperature(19). For example, Shi et al. (20) reported a slightly lower 

epidemic intensity of COVID-19 in the Jan-Feb 2020 timeframe in China following higher 

temperature days with a relative risk of 0.96 (95% CI: 0.93, 0.99). In contrast,  Xie and Zhu(21) 

reported mean temperatures in Jan-Feb 2020 to have a positive linear relationship with COVID-

19 cases in China with a 3°C threshold, and no further reduction of COVID-19 case countsat 

warmer temperatures.Another study (22) involving COVID-19 cases in Japan observed a 

positive association between low February temperatures and increased risk of COVID-19 
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infection. A study between March-April 2020 in Spain reported a daily incidence rate reduction 

by 7.5% for every 1oC increase in maximum temperature (18), whereas another study conducted 

between Feb-March 2020 in the Iberian peninsula failed to find a relationship between 

temperature and daily incidence of COVID-19(23). Several factors can contribute to the 

observed discrepancies, including differences in outcome measures (counts of confirmed cases, 

new cases, or total cases or cumulative incidence rate), or weak correlations between temperature 

and COVID-19 propagation (19).  These conflicting reports highlight the need for further 

investigations of COVID-19's weather dependency in different regions or countries or cities to 

refine our current understanding about its transmission. Compared to these published reports that 

focus on limited geographic regions, we examined global trends between confirmed COVID-19 

cases and temperatures, by considering country-specific confirmed COVID-19 cases against 

their recorded monthly temperatures. In order to maximize temperature information for as many 

countries as possible, we relied on the most recent data available (2016). Our results from both 

bivariate and multivariable analysis generally agree with a negative association of confirmed 

COVID-19 cases with temperatures, especially in the months of March and April.   

In addition to the effects of temperature, our analysis of global COVID-19 incidence also 

indicates a significant negative correlation with markers of increased economic activity (e.g. 

percent urban population, employment in industrial and service sectors), possibly reflecting the  

consequences of increased congregation and socialization in the population (24). This finding 

agrees with similar associations observed during the spread of other viral outbreaks with 

economic booms and trade expansions (25), such as an increased incidence of influenza 

associated with increases in employment (26). These findings feed into the larger observation of 

the relationships between economic activity and population healthmediated byincreased 
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interactions between populations not otherwise exposed to each other’s disease ecology (e.g. 

business and leisure visitors), and also dense permanent settlements around areas of high 

industrialization. Historically, both of these relationships have been found to negatively impact 

health of the populations exposed (27). Overall, our analysis supports this trend. Multivariable 

regression modeling with variable subset selection further affirmed that a mixture of economic, 

demographic and geographic variables was adequate for explaining the variation in total COVID 

cases at a global level.  

The analysis of time course trajectories of COVID-19 incidence showed important 

differences among the countries examined. While the log-logistic and logistic models were 

adequate in modeling the COVID-19 trajectories for the majority of countries, there were nations 

whose SARS-Cov-2incidence patterns were better modeled by exponential or quadratic fits. 

Such country-specific differences are probably the result of a combination of factors including 

natural elements (e.g. meteorology), socioeconomic regulators (e.g. urbanization), as well as 

governmental interventions (e.g. quarantines). Finally, we investigated the viral spread 

trajectories in additional detail by overlaying information on government-induced restrictions 

(“lockdown”) on the time course curves and estimating their effects on new COVID-19 

caseincidence. In the absence of vaccines or effective pharmaceuticals, the majority of 

governments necessarily adopted some policy interventions to mitigate the spread of the disease. 

Generally, two fundamental mitigation strategies have been advanced for COVID-19, one 

focused on reducing, if not necessarily preventing, the virus spread (majority of Western 

countries), and the other enforcing more drastic measures to suppress and contain virus spread 

(e.g. China, Singapore, South Korea). However, as COVID-19 assumed pandemic proportions, 

mitigating strategies by necessity had to become more stringent in order to flatten the curve of 
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virus transmission. Contact suppression through lockdown and enhanced social distancing 

measures emerged as the foremost administrative defense strategy in countering COVID-19 

spread in almost all countries as a way to reduce mortality, preserve health-care service capacity, 

and buy time to develop a pandemic control responsesystem post-lockdown.However, 

socioeconomic pressures also necessitate that lockdowns be relaxed or lifted, if temporarily, to 

prevent economic collapse. How such imposition and lifting of mandatory lockdowns affects 

COVID-19 caseloads is important for understanding the effectiveness of large-scale quarantine 

efforts. Effectively administered lockdowns are expected to successfully reduce the virus 

reproduction number, but premature emergence from a lockdown may lead to epidemic 

rebounding in still susceptible populations(28). Our analysis of the country-level COVID-19 

incidence around lockdown imposition and relaxation periods, displayed a wide divergence in 

viral incidence patterns. Hierarchical clustering allowed us to classify the responses into six main 

clusters depending on how the COVID-19 case numbers fluctuated before, during, and 

immediately after lockdowns. We found that countries such as Australia used lockdowns 

effectively to bring down the viral case-load to near zero levels well within the lockdown period, 

and kept it low post-lockdown, whereas another cluster represented by France for example, 

achieved near zero case-loads only as the lockdown was lifted. In contrast, countries such as 

India continued to see a steady rise in case numbers during, as well as after lockdown relaxation, 

probably due to premature timing of lockdown initiation. The timing of a lockdown relative to 

the stage of the pandemic appears to be an important factor in SARS-CoV-2 transmission 

patterns, as also reported elsewhere (29).  Overall, our results provide empirical data on a global 

level that are consistent with some of the published modeling assumptions regarding the effects 

of lockdown on virus spread (30), and should prove useful for future policymaking. We should 
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also note that our analysis was restricted only to the first lockdown imposed by each country 

until June 20, 2020, and some countries have gone into multiple waves of lockdowns since. 

Our analysis contributes to the existing literature in three aspects. First, we examine key 

economic, meteorological, geographic and health determinants of the spread of COVID-19 at a 

global level. Second, our study models the trajectory of SARS-CoV-2 spread at a country level 

and specifies important differences in the time-course of virus transmission around the world. 

Third, our study contributes to the assessments of public health measures such as lockdowns 

aiming at reducing virus transmissions and mortality, and also demonstrates salient differences in 

countries’ experiences with new virus infections around such restrictions. These findings assume 

importance especially in the context of second or later waves of COVID 19 infection across 

many countries. 
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Table 1: Sources for demographic, geographic, health and economic data utilized in the current 

analysis 

Variable Domain Data_Y

ear 

Source 

D_Age_15_64y_2018 Demographic 2018 data.worldbank.org 

D_Pop_over65_2018 Demographic 2018 data.worldbank.org 

D_Popden2018 Demographic 2018 Calculated from total population and land 

area 

E_Employ_agri_male_2019 Economic 2019 data.worldbank.org 

E_Employ_ind_male_2019 Economic 2019 data.worldbank.org 

E_Employ_serv_male_2019 Economic 2019 data.worldbank.org 

E_Total_visitors2018 Economic 2018 data.worldbank.org 

E_Urban_pct2018 Economic 2018 data.worldbank.org 

G_Land_area_sqkm Geographic 2016 data.worldbank.org 

G_Rain_mm_Apr2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Rain_mm_Dec2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Rain_mm_Feb2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Rain_mm_Jan2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Rain_mm_Mar2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Temp_C_Apr2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Temp_C_Feb2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Temp_C_Jan2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

G_Temp_C_Mar2016 Geographic 2016 https://climateknowledgeportal.worldbank.or

g/download-data 

H_covid_duration_9Apr Health 2020 calculated 

H_DALY_CVD_70yrs Health 2017 https://www.who.int/healthinfo/global_burde

n_disease/estimates/en/index2.html 

H_DALY_CVD_all Health 2017 https://www.who.int/healthinfo/global_burde

n_disease/estimates/en/index3.html 

H_DALY_resp_70yrs Health 2017 https://www.who.int/healthinfo/global_burde

n_disease/estimates/en/index5.html 

H_DALY_resp_all Health 2017 https://www.who.int/healthinfo/global_burde

n_disease/estimates/en/index6.html 

H_Diabetes2019 Health 2019 data.worldbank.org 

H_Total_COVID_cases Health Daily https://covid19.who.int/ 
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Table 2: Results of bivariate regression analysis of demographic, geographic, health and 

economic determinants of COVID-19 incidence, tested across 3 time points. 

 
Variable R2 p-value 

 Apr May Jun Apr May Jun 

Employ_ind 0.24 0.2 0.15 1.10E-11 7.70E-10 1.00E-07 

Age_15_64_y 0.33 0.28 0.24 2.20E-16 3.50E-14 4.70E-12 

Employ_agri 0.61 0.49 0.36 2.20E-16 2.20E-16 2.20E-16 

Employ_serv 0.57 0.45 0.33 2.20E-16 2.20E-16 2.20E-16 

Over_65_yrs 0.5 0.35 0.21 2.20E-16 2.20E-16 2.70E-10 

Temp_Apr 0.32 0.24 0.18 2.20E-16 3.70E-12 3.60E-09 

Temp_Feb 0.27 0.22 0.17 1.30E-13 6.00E-11 1.30E-08 

Temp_Jan 0.24 0.2 0.15 3.50E-12 3.80E-10 5.00E-08 

Temp_Mar 0.32 0.25 0.19 2.20E-16 1.60E-12 1.80E-09 

Urban_pct 0.38 0.36 0.35 2.20E-16 2.20E-16 2.20E-16 

Visitors 0.49 0.37 0.24 2.20E-16 2.20E-16 6.10E-11 

Land_area 0.22 0.15 0.081 1.40E-12 1.00E-08 4.30E-05 

Covid_duration 0.097 0.087 0.07 6.70E-06 2.20E-05 0.00015 

Rain_Feb 0.13 0.063 0.028 9.70E-07 8.20E-04 2.60E-02 

DALY_CVD_70yrs 1.00E-05 0.0019 0.0045 9.70E-01 0.57 0.39 

DALY_CVD_all 0.019 0.0014 0.00027 7.40E-02 0.39 0.83 

DALY_resp_70yrs 0.00011 0.00073 0.0021 8.90E-01 0.73 0.55 

DALY_resp_all 0.033 0.013 0.004 1.90E-02 0.14 0.41 

Diabetes 0.012 0.0051 0.0044 1.40E-01 0.33 0.36 

Rain_Apr 0.0036 0.00036 0.002 4.30E-01 8.00E-01 5.50E-01 

Rain_Jan 0.098 0.024 0.0013 2.60E-05 4.00E-02 6.40E-01 

Rain_Mar 0.028 0.0062 2.30E-05 2.80E-02 3.00E-01 9.50E-01 

Pop_density 0.048 0.058 0.034 2.50E-03 9.20E-04 0.012 
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Table 3: Statistical summary of multivariable regression analysis. Statistical estimates of top 

variables after subset selection and minimization of the AIC are reported 

 
Variable Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.25828 0.665479 1.891 0.06097 . 

G_Temp_C_Mar2016 -0.02075 0.004482 -4.63 9.04E-06 *** 

E_Urban_pct2018 0.009165 0.002912 3.148 0.00206 ** 

E_Employ2018_agri_pct_tot_emp -0.021051 0.003676 -5.726 7.22E-08 *** 

log_D_Popden2018 0.175727 0.087111 2.017 0.04581 * 

D_Age_15_64y_2018 0.014129 0.009234 1.53 0.12854  

Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 

Residual standard error: 0.4992 on 125 degrees of freedom 

Multiple R-squared: 0.6928; Adjusted R-squared: 0.6805 

F-statistic: 56.39 on 5 and 125 degrees of freedom, p-value < 2.20E-16 

 
 
 

Figure 1: Association of selected variables with total COVID-19 cases in May 2020. Each plot 

show the change in total COVID-19 cases per million population (expressed in log10 units) on 

the y-axis and the relevant variables on the x-axis. The line of best fit is shown along with its 

equation, the coefficient of determination (R2) and the associated significance of the regression 

analysis. Some selected countries with very high or very low COVID-19 cases are annotated by 

their ISO codes  
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Figure 2: Multivariable regression analysis of variables associated with COVID-19 cases. (a) 

results from all-subsets regression analysis to identify the best sub-model with a smaller list of 

variables, based on minimization of the AIC. Selected variables are highlighted in red (in 

addition to the intercept). The y-axis refers to the size (number of variables) in each sub-model, 

and x-axis lists all the variables tested. (b) change in AIC scores depending on the number of 

variables. 
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Fig 3: Analysis of the time-course of increase in COVID-19 total cases by country, using 

different growth-curve models. For each plot, the actual number of COVID-19 cases are shown 

as open circles and the fitted curve is shown in red. The y-axis refers to the proportion of daily 

total cases to the maximum total cases recorded in the time interval studied (0-1 scaling), and the 

x-axis refers to the time-course in days. The best growth-curve model for each country was 

determined by minimization of the AIC. Two exemplar countries for each model-type are shown 

with model names listed at the top. Countries are indicated by their ISO codes. 
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Figure 4: Characterization of new COVID-19 cases at the beginning and close of lockdowns. 

Countries were characterized on a five-point heuristic based on new COVID-19 cases prior to, 

during, at the end of, and 5-days and 14-days post lockdown, and subjected to hierarchical 

clustering. Dendrogram and associated heatmap shows six major clusters. Time-courses of new 

COVID-19 cases are shown for an exemplar country from each cluster, with the lockdown start 

and end days indicated by the two vertical bars in each plot. Heatmap is color-coded by the 

assigned values of the five-point criteria (-1=skyblue, 0=ivory, 1=coral). 
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