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 2

Abstract 24 

Hyperuricemia is associated with several cardiometabolic and renal diseases, such as gout 25 

and chronic kidney disease. Previous studies have examined the shared genetic basis of chronic 26 

kidney disease and hyperuricemia either using single-variant tests or estimating whole-genome 27 

genetic correlations between the traits. Individual variants typically explain a small fraction of 28 

the genetic correlation between traits, thus reducing the power to map pleiotropic loci. 29 

Alternatively, genome-wide estimates of genetic correlation, while useful, do not shed light on 30 

what regions may be implicated in the shared genetic basis of traits. Therefore, to fill the gap 31 

between these two approaches, we used local Bayesian regressions to estimate the genetic 32 

covariance between markers for chronic kidney disease and hyperuricemia in specific genomic 33 

regions. We identified 267 linkage disequilibrium segments with statistically significant 34 

covariance estimates, 17 of which had a positive directionality and 250 negative, the latter being 35 

consistent with the directionality of the overall genetic covariance. These 267 significant 36 

segments implicated 188 genetically distinct shared loci. Many of these loci validate previously 37 

identified shared loci with consistent directionality, including 22 loci previously identified as 38 

shared. Numerous novel shared loci were also identified, such as THBS3/MTX1/GBAP1, 39 

LINC01101, SLC7A9/CEP89, CYP24A1, KCNS3, CHD9, ARL15, PAX8, and IGF1R. Finally, to 40 

examine potential biological mechanisms for these shared loci, we have implicated a subset of 41 

the genomic segments that are associated with gene expression using colocalization analyses. In 42 

particular, five genes (FGF5, ARL6IP5, TRIM6, BCL2L1, and NTRK1) expressed in the kidney 43 

are causal candidates potentially contributing to pleiotropic pathways between chronic kidney 44 

disease and hyperuricemia. The regions identified by our local Bayesian regression approach 45 
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may help untangle and explain the association between chronic kidney disease and 46 

hyperuricemia. 47 

 48 

Author Summary 49 

 Chronic kidney disease is of increased prevalence among people with hyperuricemia, 50 

suggesting a shared genetic etiology. Since markers for chronic kidney disease and 51 

hyperuricemia have an overall non-zero genetic correlation, there appears to be genetic basis to 52 

the shared etiology. However, genome-wide genetic correlation estimates do not elucidate the 53 

specific genomic regions contributing to both traits, particularly regions that contribute to the 54 

traits with opposite directionality to the overall directionality. We have implemented local 55 

Bayesian regressions to identify small genomic segments contributing to the overall genetic 56 

correlation. Our method is applicable to any pair of traits that have a shared genetic relationship. 57 

We have found numerous novel shared loci, validated previously reported loci, and identified 58 

new shared pathways simultaneously contributing to the markers between chronic kidney disease 59 

and hyperuricemia. These loci all merit detailed investigation as they may involve underlying 60 

biological mechanisms with the potential to explain the common pathogenesis of hyperuricemia 61 

and chronic kidney disease. 62 

  63 
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Introduction 64 

 Chronic kidney disease (CKD) carries a significant global health and economic burden 65 

[1,2]. In the United States alone, it is estimated that 37 million adults (~15%) have CKD and 66 

kidney diseases are the ninth leading cause of death [3]. CKD stages 3-5 manifest as decreased 67 

renal function and are defined by elevated serum creatinine (sCr) or estimated glomerular 68 

filtration rate (eGFR) <60 mL/min/1.73m2. CKD can lead to lower quality of life, increased risk 69 

of cardiovascular morbidity, and premature mortality [2]. Hyperuricemia is defined by serum 70 

urate (sU) concentration >6.8 mg/dL and is contributed to by deteriorating renal function [3]. 71 

Hyperuricemia has several comorbidities associated with it, including CKD [4], and can result in 72 

monosodium urate crystal deposits in joints and tendons, which leads to the development of gout. 73 

In the United States, an estimated 9.2 million people have gout (~ 4%), which is also associated 74 

with substantial cardiovascular morbidity and all-cause mortality [5–8]. Among people with 75 

hyperuricemia there is a higher prevalence of CKD, and among patients with CKD, sU 76 

concentrations are higher [9,10].  77 

Genome-wide analyses have demonstrated that the association observed between eGFR 78 

and serum urate has a genetic basis. Tin et al. carried out a large-sample trans-ethnic genome-79 

wide association study (GWAS) of sU and, through cross-trait linkage disequilibrium (LD) score 80 

regression, obtained an estimate of overall genetic correlation between eGFR and sU of -0.26 81 

(standard error of 0.04) [11]. This was one of the largest negative correlations with sU out of 748 82 

traits analysed [11]. Reynolds et al., using two large family-based datasets and Bayesian whole-83 

genome regressions, obtained global genetic correlations between sCr (which has a direct inverse 84 

relationship to eGFR, hence the directionality difference between the estimates) and sU of 0.20 85 

(95% confidence interval (CI): 0.07, 0.33) in one dataset and 0.25 (95% CI: 0.07, 0.41) in the 86 
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other [12]. However, the pleiotropic regions of the genome and biological mechanisms 87 

underlying the genetic relationship are unclear without identifying local genetic covariances [13]. 88 

 GWAS of sU and eGFR have identified numerous loci associated with each phenotype 89 

separately. A recent study comparing large GWAS of the markers identified 35 shared loci [14]. 90 

However, the GWAS methods used to detect the shared signals used single-marker regressions 91 

or tests, which are based on the marginal association of individual single-nucleotide 92 

polymorphisms (SNPs) with phenotypes and thus do not account for LD between SNPs. Our 93 

method improves over post-analysis of GWAS summary statistics by estimating neighbouring 94 

SNP effects concomitantly. Incorporating local LD to estimate genetic effects in a tightly 95 

segregating chromosomal segment has been previously suggested [15–17]. 96 

In this study, we mapped the shared genetic basis of eGFR and sU using local Bayesian 97 

regressions (LBR) that estimate local genetic variances and covariances and capture LD patterns 98 

[17]. Our aim was to characterize the common genetic basis for CKD (eGFR) and hyperuricemia 99 

(serum urate levels) to disentangle the relationship through the identification and preliminary 100 

examination of pleiotropic genomic regions. We estimated local genetic covariances between sU 101 

and eGFR genome wide. We identified numerous local genetic regions as significant for local 102 

genetic covariance, including previously implicated shared loci and novel shared loci. 103 
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Results 104 

 The study was based on the UK Biobank dataset and included 333,542 distantly related 105 

white participants, of whom 53.7% were female with an average age of 56.9 ± 8.0 years old. The 106 

average sCr level was 0.8 ± 0.2 mg/dL (the average ± standard error), eGFR was 144.2 ± 56.0 107 

ml/min/1.73 m2, and the average sU level was 5.2 ± 1.3 mg/dL. Two (2.0) percent of the 108 

individuals had an ICD10 diagnosis or self-diagnosis of gout, 12.4% had hyperuricemia, 0.5% 109 

had CKD, and 0.3% had hyperuricemia and CKD. Our genetic analyses utilized directly 110 

genotyped autosomal SNPs from the UK Biobank AxiomTM Array by Affymetrix. After applying 111 

filters for minor-allele frequency  ≥1% and for a missing call rate ≥5%, a total of 607,490 SNPs 112 

were used. 113 

We identified 511,828 overlapping LD segments (small, non-independent chromosomal 114 

segments). Following Funkhouser et al. [17], we analysed the markers using a sequence of LBR, 115 

where each marker is regressed on contiguous SNPs in a large chromosomal segment plus 116 

overlapping flanking buffers (represented in S1 Fig). We collected the samples from the 117 

posterior distribution of effects for each LBR and used these samples to estimate the local 118 

variances for each marker (Fig 1) and the local covariances between the markers (Fig 2). 119 

Variances and covariances were computed within 511,828 LD segments identified. The LBRs 120 

were implemented using the BGLR R package [18], and had a variable selection prior 121 

distribution for the SNP effects with a point of mass at zero. A detailed description is provided in 122 

the Materials and Methods section. 123 

Using a bootstrap resampling method, we obtained standard error estimates of the local 124 

genetic covariance estimates and found 267 LD segments where the covariance estimates had a 125 

95% CI that did not include zero (Fig 2; S1 Table). Due to the computational burden of 126 
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bootstrapping with a very large sample size, we preselected large genomic regions for 127 

bootstrapping if at least one SNP from a single-marker regression was significant for either sU or 128 

for a CKD marker (see methods for details and S2 Table for GWAS results). The number of 129 

SNPs in the significant LD segments ranged from one to 17, averaging 4.1 per segment (about 130 

0.02 MB, excluding the 87 single SNP segments). Interestingly, 17 of the 267 significant 131 

segments showed positive genetic covariance estimate directionality, and the remaining 250 were 132 

negative estimates. After a conservative Bonferroni correction for multiple testing (see materials 133 

and methods section), 18 segments were still significant (S1 Table). 134 

The 267 significant LD segments often included the same variants and map to identical 135 

GWAS loci, so we collapsed these 267 segments to 188 unique loci that possess genetic 136 

covariance signal between eGFR and sU (S3 Table). The top distinct loci implicated by the 137 

significant segments in terms of covariance magnitude are listed in Table 1. A graphical 138 

representation of some of the top significant loci, i.e., the top covariance magnitudes in 139 

significant distinct loci, is presented in Fig 3. 140 

  141 
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Table 1. The top magnitude genomic segments significant for covariance between sU and eGFR 142 

with their chromosome, annotated name, effect size [95% CI], and colocalized eQTL. 143 

Chr Annotated 
Name 

Segment Size 

(min-max SNPs) 

Effect Size 

[LCL, UCL]* 

Colocalized eQTL 

11 DCDC1 10  
rs963837-rs10767873 

-0.786 
[-0.918, -0.669]** 

 

7 UNCX 13  
rs6950388-rs1880301 

-0.536 
[-0.676, -0.402]** 

 

7 PRKAG2 10  
rs10224002-rs11771445 

-0.440 
[-0.607, -0.264]** 

 

6 VEGFA 1  
rs881858 

-0.368 
[-0.488, -0.215]** 

 

8 STC1 6  
rs62502212-rs1705690 

-0.366 
[-0.494, -0.233]** 

 

11 OVOL1 
 

7  
rs4014195-rs36008241 
 

-0.316 
[-0.460, -0.167] 

PCNX3, MAP3K11, 
SCYL1, RP-11-770G2.2, 
OVOL1, KRT8P26 

12 R3HDM2/INH
BC 

7  
rs73115999-rs507562 

-0.296 
[-0.429, -0.126] 

R3HDM2 

1 THBS3/MTX1/
GBAP1 

5  
rs35154152-rs2049805 

-0.276 
[-0.491, -0.072] 

 

2 HOXD10 5  
rs847153-rs711818 

-0.234 
[-0.329, -0.145]** 

 

2 LINC01101 7  
rs11122800-rs35932591 

-0.211 
[-0.299, -0.117] 

 

16 LOC10537125
7 

1  
rs12927956 

-0.168 
[-0.244, -0.094] 

 

2 KCNS3 3  
rs9789415-rs4567937 

-0.165 
[-0.220, -0.108]** 

 

20 CYP24A1 4  
rs4809954-rs2616278 

-0.163 
[-0.249, -0.070] 

 

2 PAX8 10  
rs4849176-rs72831838 

-0.155 
[-0.247, -0.073] 

 

5 ARL15 17  
rs67199213-rs11739045 

-0.155 
[-0.292, -0.022] 

 

16 CHD9 10  
rs8049859-rs1984470 

-0.155 
[-0.792, -0.012] 

 

15 IGF1R 4  
rs907808-rs12437561 

-0.149 
[-0.244, -0.034] 

IGF1R, NRCAM, 
TRAPPC10 

2 DDX1 7  
rs807628-rs876718 

-0.148 
[-0.237, -0.076] 

DDX1 

7 LOC730338 5  
rs700752-rs12537178 

-0.140 
[-0.224, -0.016] 

 

15 NRG4 1  
rs8024155 

-0.136 
[-0.245, -0.048] 

 

3 SLC15A2/ILD
R1 

9  
rs2049330-rs6438689 

-0.129 
[-0.220, -0.023] 

SLC15A2, CD86 
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*Effect sizes and CIs were scaled by 1e4 for readability. 144 

**Also significant with normality-based, conservative multiple testing correction. 145 

15 SCAPER 5  
rs4886825-rs4442773 

-0.129 
[-0.512, -0.005] 

 

2 MBD5 4  
rs11896010-rs10174206 

-0.127 
[-0.781, -0.00004] 

ACVR2A, MBD5, 
AC009480.3 

9 PIP5K1B 2  
rs80095931- rs4744712 

0.141 
[0.013, 0.308] 

BAG1, PIP5K1B, RP11-
203L2.3 

10 A1CF 7  
rs12413118-rs61856594 

0.267 
[0.101, 0.466] 

A1CF 

19 SLC7A9/CEP8
9 

16  
rs78676942-rs11668957 

0.321 
[0.012, 0.608] 

SLC7A9  

2 LRP2 6  
rs41268683-rs2075252 

0.391 
[0.093, 0.636] 

 

2 CPS1 1  
rs1047891 

0.391 
[0.217, 0.585] 

 

2 NRBP1/IFT17
2/FNDC4/GC
KR 

16  
Affx-19857019-rs1260333 

0.586 
[0.301, 0.890] 
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Gene expression/eQTL analysis 146 

We used COLOC [19] and expression data from The Genotype Tissue Expression 147 

(GTEx) project (v8) [20] to identify candidate causal genes at significant local genetic 148 

covariance segments between sU and eGFR. Forty-one of the 188 distinct significant shared loci 149 

(21.8%) are shown to modify the expression of 90 candidate causal genes colocalized with the 150 

covariance signals (S4 Table). Of note are 5 genes with covariance signals and colocalized eQTL 151 

that are expressed in the kidney: FGF5, ARL6IP5, TRIM6, BCL2L14 in cis, and NTRK1 in trans. 152 

 153 

Validation 154 

We performed a validation analysis with the Atherosclerosis Risk in Communities Study 155 

(ARIC) utilizing 8,752 distantly related white subjects with 739,587 genotyped SNPs after 156 

standard quality controls on the phenotypes and genotypes. Some of the largest magnitude 157 

covariance estimates (e.g., SHROOM3, SLC15A2, and SLC2A9) were validated in terms of effect 158 

size, though they were not necessarily loci significant for local genetic covariance, likely due to 159 

the substantially smaller sample size in ARIC compared to the UK Biobank. Similar to the 160 

covariance estimates, the variance estimates were validated only in the largest effect size loci, 161 

such as SHROOM3 and GATM for eGFR variance, and SLC2A9 and ABCG2 for sU. 162 

 163 

  164 
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Discussion 165 

 The goal of this study was to infer the shared genetic architecture of sU (causal for gout), 166 

and eGFR (causal for CKD). Our results highlight genes that may be involved in the observed 167 

relationship between the traits. In this study, we utilized the large-scale UK Biobank and formal 168 

statistical inference from local Bayesian regression models to estimate local genetic covariances 169 

to identify shared loci. Our results demonstrated that genetic covariance between eGFR and sU 170 

was widespread across the genome. Our method identified 188 distinct LD segments with shared 171 

genetic effects between eGFR and sU, the majority of which agree with the global negative 172 

correlation directionality [11,12]. Many of the loci identified were previously only known to be 173 

associated with one of the two traits, demonstrating that the set of loci contributing to both traits 174 

is substantially larger than previously thought. 175 

Out of the significant shared loci, almost all showed negative local genetic covariance 176 

estimates. This is consistent with the overall genetic covariance directionality [11,12], indicating 177 

that they either contribute to worsening kidney function (decreasing eGFR or higher sCr) and 178 

increasing sU, or vice versa. Interestingly, there were 10 significant shared loci with positive 179 

local genetic covariance estimates: NRBP1/IFT172/FNDC4/GCKR, CPS1, SLC7A9/CEP89, 180 

A1CF, PIP5K1B, BCAS3, B4GALT1, OR52H1/HBG2, and LRP2, which had 2 distinct positive 181 

covariance loci. Positive covariance indicates that the genomic region either contributes to 182 

increasing sU and improved kidney function, or decreasing sU and worsening kidney function. 183 

Two of the 10 loci with a positive signal, GCKR and CPS1, are mainly expressed in the liver and 184 

one, LRP2, is mainly expressed in the kidney [20]. Segments that have directionality opposite of 185 

the overall genetic correlation are masked by the overall correlation estimate, but our local 186 

method can distinguish them. 187 
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Segments encompassing the SLC2A9 locus had some of the largest local genetic 188 

covariance estimates and showed both positive and negative estimates. Urate transporters 189 

SLC2A9 and ABCG2 have the largest GWAS effect sizes for sU, accounting for a 4-5% of 190 

variance in sU [11,21–24]. However, only one small magnitude segment in SLC2A9 was 191 

significant for covariance. Interestingly, one SNP in that segment is rs16890979, which is a 192 

missense variant that has been identified in numerous sU GWAS [25–27]. ABCG2 also had LD 193 

segments with both positive and negative estimates of large magnitude, but no segments from the 194 

ABCG2 locus were significant for covariance. Our results demonstrate that, with the exception of 195 

one segment, segments in both SLC2A9 and ABCG2 loci are associated with just sU levels, but 196 

are not pleiotropic regions for sU and eGFR. A similar phenomenon is observed with the largest 197 

magnitude eGFR gene, SHROOM3. That is, none of the segments found in SHROOM3 were 198 

significant for local genetic covariance. This exemplifies that the loci driving the genetic 199 

correlation between these two traits are not necessarily the loci found from analysing the traits 200 

individually. 201 

Previous research investigating pleiotropic genetic loci between serum urate and eGFR 202 

has implicated loci as shared if signals of association obtained from marginal single-marker 203 

regressions (e.g., GWAS) for both traits are colocalized based [14]. Leask et al. [14] recently 204 

compared overlapping loci between two large GWAS, one of sU and the other kidney function 205 

[11,28], and found 35 independent colocalized loci. Our results validate 25 of these 35 loci, and 206 

all but 3 loci (DACH1, CPS1, and INS-IGF2) had covariance directionality that matched the 207 

directionality of effects found by Leask et al. [14]. The LBR method we utilized also identified 208 

numerous novel loci with significant local genetic covariance for sU and eGFR, including 209 

LINC01101, KCNS3, CYP24A1, PAX8, ARL15, CHD9, IGF1R, PIP5K1B, and SLC7A9/CEP89. 210 
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Our covariance approach has direct implications for assessing causal relationships 211 

between exposures using Mendelian randomization (MR). Pleiotropic genetic variants violate 212 

assumptions of univariate MR, however, they are useful in multivariable MR that can 213 

simultaneously assess the causal effects of multiple risk factors on an outcome [29]. For 214 

example, genetic variants from SLC2A9 and ABCG2 may be valid instrumental variables to use 215 

in MR to test for a causal effect of sU on CKD, however, the loci listed in Table 1 and S1 Table 216 

would not. In fact, SLC22A11 has previously been identified as a pleiotropic variant that may 217 

improve kidney function through its activity in raising urate levels [23]. MR has previously been 218 

used to show that serum urate is not causal of CKD [30], however, Jordan et al. noted significant 219 

pleiotropy in the genetic variants used in their study, which they attempted to counter using MR 220 

techniques robust to pleiotropy. Of the 26 SNPs used by Jordan et al., two were identified by us 221 

as shared (gene indicated next to the SNP), and six imputed variants were located within one of 222 

our significant pleiotropic regions (these SNPs were not in our genotyping platform), between sU 223 

and eGFR: rs1260326 (GCKR), rs17050272 (LINC01101), rs729761, rs10480300, rs10821905, 224 

rs3741414, rs1394125, and rs6598541. 225 

Our eQTL analysis of the segments significant for local genetic covariance uncovered 226 

numerous genes of interest, such as SLC7A9, which encodes a solute transporter largely 227 

expressed in the small intestine, A1CF, which encodes a protein involved in apolipoprotein B 228 

synthesis in the liver, and TRIM6, which encodes an E3 ubiquitin ligase involved in interferon 229 

gamma signalling and innate immune response with high expression levels in the kidney [20]. 230 

The genes uncovered from the eQTL analysis will be particularly interesting for future study, as 231 

they will likely aid our understanding of the relationship between kidney function and sU. 232 
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This study had several strengths. Through our novel statistical approach of obtaining 233 

genetic covariance estimates from conditional LBR models in very large datasets, we have 234 

uncovered numerous novel genomic regions that can be defined as shared genetic regions for sU 235 

and eGFR. The approach presented in this paper was applied in the context of sU and eGFR, but 236 

it could be applied to any pair of continuous traits. While local genetic correlation estimates can 237 

theoretically be obtained from fitting local multivariate mixed models that utilize genetic and 238 

phenotypic information on sU and kidney function, a limitation is that with increasingly large 239 

datasets this is computationally challenging. Our method  overcomes this limitation by enabling 240 

us to obtain local genetic covariance point estimates genome wide while still utilizing the large 241 

size of the UK Biobank. 242 

The local shared genomic regions we have uncovered in this study can provide insight 243 

into the relationship between hyperuricemia and CKD, elucidating the biological mechanisms 244 

underlying the traits. This will help to further understanding of the genetic basis of 245 

hyperuricemia and CKD. 246 

  247 
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Materials and Methods 248 

This study used 333,542 Caucasian unrelated subjects from the UK Biobank. Subjects 249 

missing phenotypes of interest for both of their two visits were excluded from the analysis. The 250 

UK Biobank used the custom UK Biobank AxiomTM Array by Affymetrix to genotype study 251 

participants [31]. Quality control involved removing SNPs that had a minor allele frequency less 252 

than 1% or a missing call rate greater than 5%, resulting in 607,490 autosomal chromosome (1-253 

22) SNPs [32]. 254 

 255 

Identification of unrelated samples 256 

We used the R package BGData [33] to compute the expected proportion of allele sharing 257 

among UK Biobank individuals with the additive genomic relationship matrix G,  258 

� �
���

�������/�
 , where Z is a matrix of centered genotypes. That is, Zij = xij - 2pj where xij is the 259 

number of copies of the reference allele at the jth loci of the ith individual and pj is the frequency 260 

of the reference allele of the jth loci. In a homogeneous sample, gij (where i ≠ j) can be considered 261 

as an estimate of the relatedness between subjects i and j. If gij ≥ 0.1 they were excluded from the 262 

sample. 263 

 264 

Phenotypes 265 

sU and sCr data was obtained from the first visit. For the small number of participants 266 

(0.28%) that did not have phenotype data of interest collected at the first visit, we retrieved data 267 

from the second visit. 268 

 eGFR is an indicator of renal function and used to ascertain CKD. In this study, we 269 

defined eGFR using the abbreviated Modification of Diet in Renal Disease (MDRD) equation, 270 
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which uses fewer variables than others yet performs just as well [34], with a modification to 271 

include a calibration factor to correct for the variability of sCr measures across laboratories and 272 

time [35]: eGFR = 186.3 × (sCr – 0.24) -1.154 × Age -0.203 × (0.742 if Female). 273 

For both eGFR and sU, we took a log transformation to normalize their distributions and 274 

preadjusted by age, sex, and the first 5 SNP-derived principal components using ordinary least 275 

squares. 276 

 277 

LBR model specification 278 

Following Funkhouser et al. [17], we fit a series of LBR models based on a core chunk of 279 

10,000 contiguous SNPs, and an overlapping flanking buffer of 500 SNPs taking the form of 280 

�� � ∑ ��	�	 � ��



	��  for p=11,000 (core SNPs plus two flanking buffers). This method will be a 281 

robust substitute for a single whole-genome regression since LD spans over relatively short 282 

regions of SNPs in the UK Biobank AxiomTM Array and a homogeneous unstructured sample 283 

like the one used here [17]. Each LBR utilizes the BGLR R package [18] with a BayesC prior for 284 

the SNP effects, which has a point mass at zero and Gaussian slab. This prior performs variable 285 

selection to zero-out some SNPs and reduce the number of SNPs entering the model [36]. The 286 

Markov chain Monte Carlo algorithm for BayesC involves a Gibbs-sampler sequence of steps 287 

with the full-conditional posterior distributions [36]. The Markov chain Monte Carlo runs had 288 

long chains of 75,000 iterations, with a burn-in of 2,000 samples and thin of 5 that were 289 

discarded.  290 

 291 

LBR implementation 292 
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 The LBR had the following phenotypes as the response variable: sU (y1), eGFR (y2), and 293 

sU + eGFR (y3). For each of these three response models, we ran the LBR models across the 294 

genome, and obtained genetic variance estimates within each LD segment. That is, for each yi 295 

model, we estimated the genetic variance for each LD segment as 	

� �

������

���
, using only the 296 

SNPs within each LD segment. This allows us to then obtain a point estimate for the genetic 297 

covariance within each LD segment, we leveraged the fact that 298 


��
�1, �2� �
��������������������������

�
. 299 

Since each variance component comes from a separate series of LBR models, even 300 

though we have interval estimates for each of the three variance components, we cannot directly 301 

obtain an interval estimate for the covariance between sU and eGFR since there is not a closed 302 

form solution for the standard error estimates for the genetic covariance estimates. Therefore, we 303 

obtained interval estimates for select LD segments with a resampling method (described below). 304 

A visual summary of the local covariance pipeline can be found in S1 Fig. 305 

 306 

Defining local, LD-based segments 307 

 Local genetic covariance inference from an individual SNP is problematic due to 308 

underlying LD structures, so we identified SNP regions in strong LD, and obtained variance 309 

estimates based on these LD segments of SNPs rather than using single individual SNPs [17]. 310 

We used an overlapping sliding technique to obtain these local LD segments [16,17]. For each 311 

seed SNP xj, we sequentially identify SNPs in both directions (xj*) surrounding the seed SNP and 312 

include them in segment j if Corr(xj, xj*) ≥ 0.1. In a simplified example, if SNP xj has adequate 313 

pairwise correlation with 2 SNPs to the left, and 1 SNP to the right, the segment for that SNP 314 

would be defined as the set of SNPs: {xj-2, xj-1, xj, xj+1}. That is, Corr(xj, xj-1) ≥ 0.1 and Corr(xj, 315 
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xj-2) ≥ 0.1 and Corr(xj, xj+1) ≥ 0.1. However, our algorithm also involved an allowance for one 316 

SNP in the sequential process to not meet this correlation criterion, to allow for a brief loss of 317 

LD or minor mapping errors, and the SNP was still included in the LD segment. Continuing with 318 

the previous example, even if Corr(xj, xj-1) < 0.1, if Corr(xj, xj-2) ≥ 0.1, then the set would still 319 

include both xj-2 and xj-1. The LD block ends when two SNPs sequentially did not meet the 320 

criteria described above. 321 

 322 

Confidence interval estimates of the local covariances 323 

We estimated CIs for the most interesting LD regions based on bootstrapping methods. 324 

Because of the computational demands required by bootstrap resampling techniques with very 325 

large sample sizes, we preselected peaks to limit the CI estimates only to regions of interests. We 326 

considered GWAS significant variants for sU and CKD markers (sCr and eGFR) as indicators of 327 

loci considered regions of interest, so we applied a 100-SNP buffer to each side of each GWAS 328 

locus. All LBR regions of the SNPs of interest plus contiguous flanking SNPs were included in 329 

the model. The LBR models were identical to the description above (LBR model specification). 330 

We ran 200 bootstrap replicates using a sample of size n=333,542 with replacement for each 331 

response model and averaged the iterations to obtain bootstrap covariance estimates. We 332 

obtained the 2.5% and 97.5% quantiles from the iterations to obtain 95% CIs for the bootstrap 333 

covariance estimates (Table 1 and S1 Table). 334 

 335 

Multiple testing adjustment 336 

Statistical significance was also conservatively estimated based on a Bonferroni multiple 337 

testing correction. We obtained normality-based p-values from a T-statistic from our 338 
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bootstrapped covariance estimates and divided that by the standard error estimates obtained from 339 

the standard deviation of the bootstrap iterations. This value was then compared to the standard 340 

normal distribution. We performed this on 14,802 LD regions, which determined the 341 

conservative Bonferroni multiple testing adjustment. 342 

 343 

Genome-Wide Association Studies 344 

 GWAS were performed to identify SNPs significantly associated with sU and sCr using 345 

single marker linear regression models in the UK Biobank sample. Each GWAS was performed 346 

for k=607,490 SNPs that passed quality control (described above). The sU GWAS used a sample 347 

size of n=288,831 unrelated, white participants. Participants were excluded from the sU GWAS 348 

if they were missing the sU phenotype, if they were not between the ages of 40 and 69 years old, 349 

if their genotypes did not pass quality control, and if they had a primary or secondary diagnosis 350 

of kidney disease. The sCr GWAS used a sample size of n=301,594 distantly related, white 351 

participants. Participants were excluded from the sCr GWAS if they were missing the sCr 352 

phenotype. Both GWAS were performed using the following model for each SNP variant j={1, 353 

… , k}: y = µ + Xβ +Wisi + ε, where y=(y1, …, yn)' is the vector of phenotypic observations for 354 

sU, eGFR, or sCr, µ is a vector of the overall mean, and X is a design matrix connecting the 355 

fixed effect levels to the observations. The fixed effects included sex, age, and the first 5 SNP-356 

derived principal components. Additionally, β is a vector with the corresponding effects, Wi is a 357 

vector with the jth SNP, si is the additive genetic effect of the jth SNP, and ε=(ε1, …, εn)' is the 358 

vector of the residuals. A variant was considered significant if it had a p-value < 5e-8. The 359 

GWAS summary statistics can be found in S2 Table.  360 

 361 
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Gene expression/eQTL analysis 362 

A colocalization analysis was performed between GWAS significant markers for sU and 363 

sCr and the publicly available eQTL data from GTEx v8 [19]. The R package COLOC was used, 364 

which implements a Bayesian test that analyses a single genomic region and identifies LD 365 

patterns in that locus using SNP summary statistics and the associated minor allele frequencies. 366 

The lead variant for both sCr and sU was used at each significant covariance segment with a 367 

surrounding 500 kb buffer in the GTEx database. The Contextualizing Developmental SNPs 368 

using 3D Information algorithm [37,38] was modified to identify long-distance regulatory 369 

relationships for the lead sU and sCr variants at each significant covariance segment within a 500 370 

kb window. eQTL data for variants +/- 500 kb of the lead variant were also extracted from GTEx 371 

and then COLOC was used to assess if the significant cis- and trans-eQTL identified were 372 

colocalized with sCr and sU signals. The eQTL was required to have a posterior probability of 373 

causality (PPC) of at least 0.5 for both traits, along with a PPC of at least 0.8 for one of the two 374 

traits. 375 

  376 
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B. 378 

 379 

Fig 1. The variance estimates of LD segments in the unrelated white cohort of the UK Biobank 380 

for sU concentrations (A) and eGFR (B).  381 

22
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 382 

Fig 2. Covariance estimates of LD segments in UK Biobank, selectively annotated with the gene 383 

name of the mid-point SNP of that segment and the segment size. Segments that contained SNPs 384 

in loci associated with known eGFR genes are highlighted in dark green, segments that contained385 

SNPs in genes associated with sU are highlighted in blue, and segments that contained SNPs in 386 

genes associated with both sU and eGFR (from comparing separate GWAS, Johnson et al. [21]) 387 

are highlighted in lime green. Segments significant for genetic covariance are highlighted in red. 388 
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389 

Fig 3.  Figure of top 29 implicated significant shared loci (the distinct loci derived from the top 390 

50 results) and their effects with corresponding 95% confidence intervals. The figure contains 391 

results from LD genomic regions with confidence intervals band not including 0. Segment size 392 

indicates the number of SNPs in the implicated loci segment selected (largest segment if overlaps393 

existed).  394 
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Supporting information captions 395 

 396 

S1 Fig. A visual summary of our methodology to obtain covariance estimates between sU and 397 

eGFR. 398 

 399 

S1 Table. The effect sizes with corresponding confidence intervals, significance, the 400 

directionality of the association, and validations for all significant covariance regions. 401 

 402 

S2 Table. The results from a UK Biobank GWAS in sU and sCr. 403 

 404 

S3 Table. The 188 distinct loci implicated by the LD segments significant for genetic 405 

covariance, with eQTLs. 406 

 407 

S4 Table. The eQTLs that colocalized with the sU and eGFR covariance signals. 408 

  409 
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