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Abstract

The innate and adaptive immune response are regulated by biological clocks, and circulating

lymphocytes are lowest at sunrise.  Accordingly, severity of disease in mouse models is highly

dependent on the time of day of viral infection. Here, we explore whether circadian immunity

contributes significantly to seasonality of respiratory viruses, including influenza and

SARS-CoV-2.  Susceptibility-Infection-Recovery-Susceptibility (SIRS) models of influenza and

SIRS-derived models of COVID-19 suggest that local sunrise time is a better predictor of the

basic reproductive number (R0) than climate, even when day length is taken into account.

Moreover, these models predict a window of susceptibility when local sunrise time corresponds

to the morning commute and contact rate is expected to be high. Counterfactual modeling

suggests that retaining daylight savings time in the fall would reduce the length of this window,

and substantially reduce seasonal waves of respiratory infections.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the

ongoing COVID-19 pandemic. Coronavirus and other respiratory disease outbreaks are often

seasonal1,2, and the first wave of COVID-19 in the Northern Hemisphere occurred in the spring

of 2020, followed by an even more severe second wave in the fall and winter, and an emerging

third wave in the spring of 2021.  These waves are usually attributed to lower outdoor

temperature and humidity during winter which impact survival of free viral particles1,3, even

though most infections occur indoors2.  However, seasonal models based on

climate-dependence of other coronaviruses and of influenza fail to predict SARS-CoV-2

infection rates, suggesting instead that the supply of susceptibility is the driving factor during the

pandemic phase1,4.

The 24-hour light-dark cycle entrains “biological clocks” in animals and plants to keep

track of circadian time (L. circa diem or around one day), and to perform diurnal (daily) activities,

such as photosynthesis in plants or sleep in mammals. However, day length varies by latitude

and by season, so that circadian rhythms must be frequently reset by dark-light transitions.  In

this way, expression of “morning genes” can accurately anticipate sunrise the following day

(which always occurs at ZT0 in Zeitgeber Time: G. zeit geber, or time giver).  In plants, circadian

clocks measure day length by illumination of the leaves, and accurately predict the season for

flowering. In humans, circadian rhythms are entrained by retinal exposure and innervation of the

suprachiasmatic nucleus (SCN) in the hypothalamus5. In both cases, light is detected by the

conserved cryptochrome blue-light receptor.

In mammals, some of the most prominent targets of clock-encoded regulators are

involved in the innate and adaptive immune response5, with a nadir in circulating leukocyte

counts at sunrise (ZT0)5,6. Target genes include many components of the innate immunity

system used in viral defence, including toll-like receptors (TLR), interferon receptors, and
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interleukin-6, all of which have important roles in the SARS-CoV-2 response5.  Consistently,

studies have shown that shift-workers are more susceptible to respiratory viral infections and

cardiovascular complications7. Mice, on the other hand, are nocturnal, and in a recent study,

intranasal infections of mice with influenza virus resulted in 80% survival when infections were

performed at ZT23, but only 30% survival at ZT11, the beginning of their active phase8. In

contrast, mutants in the key clock gene Bmal1 had similar survival rates when infected at ZT23

and ZT118. Furthermore, in a recent study of free-running circadian monocytes infected with

SARS-CoV-2 in culture, both phagocytosis and interleukin activity were massively increased

when infection occurred at ZT6 relative to ZT17, relative to clock gene expression maxima9.

It has previously been suggested that influenza and many coronaviruses thrive during

the winter months because of seasonal variation in innate immunity7,10. However, in a recent

survey of haematological data from the UK Biobank, circulating monocyte, lymphocyte and

neutrophil counts varied 5-10 times more during a single day than they did in spring and winter6,

with a 25-44% drop when measured at 9am relative to afternoon and evening5,6. Regardless of

the precise mechanism, we hypothesized that added vulnerability at sunrise could increase the

basic reproductive number (R0) and symptomatic severity of infectious diseases such as

influenza and COVID-19.  In particular, we hypothesized that R0 would be elevated when sunrise

coincided with high contact rate, which occurs during the morning commute.

Results

Application to influenza data

To determine whether the publicly available data for influenza support this hypothesis,

we devised several variants of a Susceptibility-Infection-Recovery-Susceptibility (SIRS)

model1,11,12 and fitted them to a decade’s worth of weekly epidemiological data (ranging from
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2010–11 to 2019–20) for individual US states from the US CDC's FluView report

(www.cdc.gov/flu/weekly; see Supplementary Materials). Similar to other SIRS models, our

model partitions each state’s population into compartments of “susceptible” (S), “infected” (I),

and “recovered” (R) individuals, and permits the sizes of these compartments to change over

time according to a system of differential equations (see Supplementary Materials,

Supplementary Fig. S2A).  These equations are parameterized by the mean infection period,

D, the duration of immunity, L, and the time-varying basic reproductive number, R0(t).

We defined R0(t), in turn, to be a function of one or more time- and location-varying

covariates that could plausibly drive seasonal cycles of influenza.  Following previous

studies1,13,14, we included (absolute) specific humidity (h) as a potential climatological covariate

and assumed that R0(t) exponentially decays as h(t) increases. Notably, specific humidity is

closely correlated with temperature, relative humidity, solar radiation, and other climatological

variables but has been shown to be a major, and likely the predominant, determinant of

influenza seasonality13.  In addition, we included potential covariates for the day length (d) and

local sunrise time (s) associated with each location and time-point in our data set, taking

population-weighted averages of these values across states (see Supplementary Materials).

We assumed Gaussian relationships between R0(t) and d(t), and between R0(t) and s(t), with

maxima defined by free parameters d0 and s0, respectively (Fig. 1A).  We chose to fix the mean

infection period to D=5 days and the duration of immunity to L=40 weeks, based on previously

estimated values for flu (see Supplementary Materials); thus, the time-varying dynamics of the

SIRS model were entirely determined by the weekly estimates of R0(t), and the only free

parameters to be estimated from the data were those that define the relationship between R0(t)

and the covariates (α1, α2, α3, d0, and s0; see Fig. 1A)

To enable formal comparisons of goodness-of-fit among model variants, we extended

the basic SIRS model to not only predict infection rates, but additionally provide a full likelihood

for the observed time-series data (Supplementary Fig. S1).  Briefly, we compute the probability
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of the reported flu cases under a binomial sampling model, with the sampling probability given

by a function of the SIRS-derived infection rate at each time point.  To accommodate differences

between the general population considered by the SIRS model and the symptomatic

subpopulation on which flu tests were performed, we introduced a scaling parameter that is

estimated from the data using a penalized likelihood strategy.  In this way, we obtained a full

generative model for the data and were able to estimate all free parameters by maximum

likelihood (ML), with the exception of a single tuning parameter, λ, that controls the strength of

the penalty for a truncated sampling probability. We find that the results of our analysis are

qualitatively similar for a wide range of choices of λ (Supplementary Materials).  To verify that

the model was implemented appropriately, we compared the version with humidity as the only

covariate to a previously published SIRS model for influenza13 and found that it performed

similarly, modulo some differences in data sets and implementation details (see Supplementary

Materials).

We evaluated the relative importance of the humidity, day length, and local-sunrise-time

covariates by comparing several alternative versions of the model, measuring goodness-of-fit

using the Bayesian Information Criterion (BIC) to account for differences in numbers of free

parameters.  We fitted each version of the model jointly to the 10-year time series of weekly

infections for 40 US states, excluding 10 states for which data were limited (AK, FL, ID, ME, NJ,

NH, NV, RI, VT, and WY; see Supplementary Materials). In each case, the observed covariate

values differed among states, but their relationship to R0(t) was defined by free parameters

shared across all states.  For comparison, we also considered a baseline model that allowed for

seasonal variation in R0(t) through a simple sinusoidal function, independent of any

environmental covariates.

We found that adding day length as a covariate substantially improved the fit of the

baseline model, and adding local sunrise time improved it further by a smaller, but clearly

significant, margin (Fig. 1B).  Interestingly, however, humidity had little benefit in this setting,
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with the parameter α1 tending toward zero and versions of the model that included humidity

fitting about as well as matched versions without it (Supplementary Table S1, Fig. S3).

Notably, the improvement in fit from day length could as well represent contributions from any

other correlated seasonal variable, such as temperature, solar radiation, or perhaps, time spent

outdoors15.  The additional improvement in fit from local sunrise time, however, must represent a

specific impact from this variable, because it is decoupled from day length only by the

convention of seasonal daylight savings time.  In other words, our model comparison is

conservative in attributing as many seasonal effects as possible to day length, and then only

attributing to sunrise specific effects that become apparent through the disruption of changing

the clocks in the spring and fall.  Interestingly, we find that the maximum-likelihood estimate

(MLE) of the parameter describing the peak impact of sunrise time on R0(t) occurs between 6

and 7 am (0.5 < s0 < 0.58; Supplementary Table S1), consistent with the typical morning rush

hour in most US cities (see Discussion). Thus we find that local sunrise time is significantly

associated with influenza even after accounting for other seasonal effects, and the nature of this

association is consistent with an elevated infection rate when sunrise occurs around the time of

the morning commute.

The apparent importance of local sunrise time after accounting for day length suggests a

possible counterfactual experiment: by how much could influenza infections be reduced if

seasonal daylight savings time were eliminated?  Our framework allows this question to be

addressed by running our model forward under hypothetical alternative relationships between

sunrise time and day length, consistent with various policies for clock time.  We focused on

three possible policies: (1) the one currently used in most US states (seasonal DST); (2) a policy

where DST is completely eliminated (permanent standard time); and (3) a policy where DST is

maintained throughout the year (permanent DST).  We evaluated all three schemes using

average values of the covariates over the past 10 years under the version of the model that

allows for both day length and sunrise time to obtain an estimate of the expected effect of each
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scheme on flu infections, holding all parameters fixed at their MLEs.  We found that eliminating

seasonal clock changes, through either the permanent standard time or permanent DST

policies, did indeed reduce the expected number of annual flu infections (Fig. 2B).  Interestingly,

however, the permanent-DST strategy results in a clearer reduction in infections (6.0%±1.7%)

than the permanent-standard-time strategy (0.8%±2.2%) (Fig. 2B&C; see Discussion). Here,

we report model predictions and uncertainty as MLE ± SD, where SD is calculated by

bootstrapping over states (see Discussion and Supplementary Materials). Owing to a variety

of factors, this reduction varies considerably across states (Fig. 2C), but the permanent DST

policy always reduces infections, and always by more than permanent standard time. Thus, our

model suggests that eliminating seasonal clock changes could significantly reduce the incidence

of seasonal influenza, particularly if permanent DST were adopted (see Discussion).

Application to COVID-19 data

We sought next to carry out a parallel analysis of data for COVID-19—to ask whether

local sunrise time also helps to explain COVID-19 infection rates, and if so, whether elimination

of seasonal clock changes could reduce them. To this end, we aimed to model R0(t) of

COVID-19 the same way as with flu, as a function of the population-weighted averages of the

same set of time-varying covariates. However, we faced additional technical challenges in this

case. First, the data on COVID-19 infections are less reliable than for influenza infections,

because of the prevalence of asymptomatic cases, the limited testing capacity, and overlap in

symptoms with flu and other respiratory diseases. As a result, we turned to data on deaths and

hospitalizations from the COVID Tracking Project

(covidtracking.com/data/download/all-states-history.csv), which we expect to be more reliable.

To accommodate deaths, we extended the model to include not only the S-I-R compartments,

but also a “resolving” (G) compartment to represent the pool of patients that have exited the
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stage of initial infection (I) and are awaiting resolution as a death (at a rate δ) or survival

(Supplementary Fig. S2B). We also introduced an “exposed” (E) compartment between S and

I to allow for the lag due to incubation of SARS-CoV-2 (see ref.16 for comparison). To

accommodate hospitalization data, we similarly introduced a compartment for hospitalized (H)

patients (in place of G), which infected individuals enter at a hospitalization rate η and remain in

for a mean time of κ (Supplementary Fig. S2C, also see ref.17).  We adapted our sampling

models to account for these data, again allowing for a full likelihood approach.  Drawing from a

variety of sources (see Supplementary Materials), we fixed the the death rate at δ=1%,

hospitalization rate at η=2.6%, incubation period at σ=5 days, infection period at γ=5 days, and

mean hospitalization time at κ=10 days.

A second major complication with COVID-19 is that, as a newly emerging pandemic, its

early stages are particularly difficult to model. We faced two major issues here: first, the “clock”

for the pandemic effectively started at different times in different locations, as the virus spread

across the US and the world; and second, the data on hospitalizations and deaths from early

2020 are particularly inconsistent and unreliable. To address the first problem, we treated the

initial fraction of the population attributed to the “infected” compartment, I/N, as a free parameter

to be separately estimated for each state.  To address the second, we considered only data

from on or after March 13, 2020, the date on which the US COVID-19 National Emergency was

declared.  In an attempt to provide further flexibility across states, we allowed the time of peak

local sunrise effect, s0, to vary across regions (see Supplementary Materials).  All other

parameters were shared across states.

As with influenza, we fitted various versions of these models to U.S. state-level

COVID-19 data from March 13, 2020 (or when they were first available, if later) to January 31,

2021, and compared them using the BIC.  The results for both the hospitalization and death

versions of the model were qualitatively similar to one another, and to the results for influenza.

Again, we found that the inclusion of the day-length covariate improved substantially on the
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baseline model, and the additional inclusion of local sunrise time improved model fit by a

smaller, but significant, margin (Fig. 3A; Supplementary Fig. S4).  Again, humidity provided no

improvement to versions of the model that already included day length and sunrise

(Supplementary Tables S2 & S5; Supplementary Fig. S4).  The version of the model with

both day length and local sunrise time showed a reasonably good fit to the state-wise and

regional data (Figs. 3C-F; Supplementary Figs. S7-S9), given the complexities of modeling a

newly emerging pandemic.  Moreover, our relative model fits and parameter estimates were

reasonably robust to different hospitalization and death rates (Supplementary Fig. S4,

Supplementary Tables S3-S7). The proportion of the population that had been infected and

recovered, R/N, showed some sensitivity to these rates, but, overall, exhibited reasonable

agreement with recent surveys of serological prevalence of COVID-19 antibodies18,19

(Supplementary Fig. S5). The main deficiency of our models was that, while they were able to

capture the spring and fall peaks in 2020 COVID cases, they were not able to resolve the spring

and summer waves in certain regions of the US, particularly in the south, perhaps because the

distinct summer peak reflects violations of our modeling assumptions (see Discussion).

Next, we asked, as with flu, how much COVID-19 incidence might be reduced by

eliminating seasonal clock changes.  Again, we ran our model forward under three hypothetical

time policies, using the day-length and local sunrise time covariates and keeping all parameters

fixed at their MLEs. We found, similar to flu, that abandoning seasonal clock changes resulted in

considerable reductions in both deaths and hospitalizations (Fig. 3B, Supplementary Fig. S6).

Remarkably, our models based on δ=1% and η=2.6% indicated that COVID deaths and

hospitalizations over the period from Mar 13, 2020 to Jan 31, 2021 could have been reduced by

as much as 20.9% ± 6.1% and 20.7% ± 6.2%, respectively, by the permanent DST policy.

Importantly, the relative effects of the permanent-DST and permanent-standard-time policies

exhibited considerable state-to-state variation (Supplementary Fig. S6). In general, permanent

DST offers a larger reduction of the fall and winter peak in the South and West, whereas
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permanent standard time provides the most advantage in the Northeast, by reducing and

shortening the spring peak (Figs. 3C-F).

Finally, we extended our analyses to 31 cities from around the world, fitting the

sunrise-and-day-length (sd) version of our model to city-level data.  The data sets for individual

cities are smaller and potentially more reflective of local anomalies, but, importantly, the day

length and sunrise time are much more precise at the city level, and therefore may provide more

explanatory power.  We found fair correlations of our model fit to the observed data across cities

(Pearson’s r=0.66), with higher correlations in the cities with peak daily deaths exceeding 150,

which tended to drive the joint model fitting (r=0.78). On the other hand, our bootstrapping

analysis revealed higher levels of uncertainty in total predicted deaths for all cities (±18.2%)

than for all US states (±4.9%), with particularly high variance in cities with low death counts

likely driven by local anomalies such as Melbourne (Supplementary Fig. S10).  Overall, our

model captured epidemiological trends in a range of cities in the Northern and Southern

Hemispheres, reiterating our other predictions that seasonal time changes substantially impact

infection rates (Fig. 4).

Discussion

Following the general Susceptibility-Infection-Recovery-Susceptibility (SIRS)

paradigm1,11,16,17, we developed models for both influenza and COVID-19, and fitted them to

available public data for infections (in influenza) and hospitalizations and deaths (in COVID-19).

We adapted these models to capture the relationship between the basic reproductive number R0

and several key covariates—including humidity, day length, and local sunrise time—allowing R0

to change in a seasonal manner as a function of the covariates.  Despite some variability across

states and cities, we found, overall, that these models fit the data remarkably well, especially

given the challenges stemming from heterogeneity in data sources and reporting standards, the
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emergence of new strains of both viruses, and the many challenges of adequately modeling the

early stages of the COVID-19 pandemic.

We found, in particular, that day length is a good predictor of R0 for both influenza and

COVID-19, suggesting that it plays a major role in seasonal variation in these diseases.

Interestingly, humidity had little effect in the context of the other covariates, resulting in

negligible improvements once day length and/or local sunrise time were accounted for, despite

that it appears to be one of the best available climatological covariates1,13. As noted, our

approach does not allow us to distinguish precisely between day length and a variety of other

covariates that are highly correlated with it, such as temperature, solar radiation, time spent

outdoors, or other variables that could make significant contributions to seasonal variation2,7.

Our test of local sunrise time, however, is conservative, because this variable is almost perfectly

correlated with day length except for the perturbation of seasonal daylight savings time.  Thus,

the significantly improved fit to the data that we observe when we add the sunrise time covariate

to a day-length model can be obtained only because the model exploits this perturbation.

Owing to the close correlation with day length, it is likely that our modeling approach

underestimates the importance of local sunrise time; that is, our conservative strategy likely

misattributes a portion of the sunrise effect to day length.  Indeed, a number of more

circumstantial observations suggest an important contribution from local sunrise time.  For

example, the first wave of SARS-CoV-2 infections occurred around the equinox, so that local

sunrise time occurred within a one-hour window at the incidence peak of daily cases in cities

across the globe (Supplementary Fig. S11).  This sunrise-peak co-incidence occurred despite

wide variation in case load, reporting rates, fatality rates, latitude and calendar date.

Interestingly, most equatorial countries, where sunrise always occurs in the same window, have

either largely escaped the pandemic or else have ongoing outbreaks without an obvious peak,

presumably reflecting a near-constant R0 throughout the year. As our model shows, subsequent

waves are generally limited by reductions in the susceptible population (S). Strikingly, however,
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the third wave currently spreading in Europe and the US in 2021 has similar patterns of

emergence as those observed in early 2020, likely reflecting a predictable seasonal trend.

Why would sunrise time so significantly impact the reproductive number? A likely

explanation is that reduced circadian immunity at sunrise contributes substantially to an

elevated R0 when it occurs during the morning commute, when the contact rate is high. Indeed,

the estimated s0 parameter, indicating the peak impact of sunrise time on R0, suggests that the

window of susceptibility that we have identified corresponds reasonably well to commuting

hours at most locations examined.  These modeling results are concordant with the recent

observation of considerably greater diurnal than seasonal variation in leukocyte counts in the

UK Biobank6.

Of course, social distancing measures, shutdowns, national holidays and travel

restrictions also greatly impact R0, and have complex relationships to day length, for example.

However, the sunrise model leads to some clear predictions. First, workers who start at dawn,

such as agricultural and outdoor market workers, would be particularly vulnerable, supporting a

recent proposal to change working hours to take circadian immunity into account20. Second, and

more broadly, the model suggests a simple intervention to reduce the length and severity of

“winter” epidemics:  abandoning the practice of changing the clocks each spring and fall.  As the

post-pandemic trajectory of COVID-19 hinges on a complex interplay between immunity and

seasonality1,21–23, a change in clock policy could serve as a relatively inexpensive mitigation

strategy in conjunction with vaccination efforts and other interventions.

We attempted to quantify the potential effect of this intervention by running our models

forward under the alternative time policies. The predicted reductions in overall influenza cases

under permanent DST were substantial, ranging from 4.3–7.7% (including estimated standard

errors; see Supplementary Materials).  Even more strikingly, we predicted an overall reduction

in COVID-19 deaths of 14.8–27.0% and an overall reduction in hospitalizations of 14.5–26.9%.

Notably, however, the COVID-19 estimates exhibited much greater variance, presumably due to
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the quality and heterogeneity of the COVID-19 epidemiological data.  Interestingly, our models

suggest—for both influenza and COVID-19—that the permanent-DST strategy is considerably

more effective at reducing infections, overall, than the permanent-standard-time strategy.  The

reason for this difference is that permanent DST tends to lead to a substantially earlier and

milder winter peak, whereas permanent standard time tends to delay the winter peak only

slightly.  These effects are particularly clear in the case of flu, where we have more data and

closer-to-equilibrium conditions (Fig. 2A&B).  They can be understood by considering the timing

and duration of the window of susceptibility during which the typical morning commute coincides

with local sunrise time, and hence, increased susceptibility. Seasonal DST tends to artificially

extend this window, even doubling it in some locations (Fig. 5), thereby contributing to a

pronounced increase in infections.  Of the two strategies that do not involve changing the

clocks, permanent standard time causes this window to occur substantially earlier in the fall,

which has the effect of not only making infections peak earlier but also considerably reducing

their number.  In some states (such as GA; see Fig. 5), permanent standard time causes the

window of susceptibility to occur in the summer or early fall, when infections are otherwise more

containable.

A major challenge in this exercise is quantifying the uncertainty in these counterfactual

predictions. We attempted to account for uncertainty by bootstrap-resampling at the level of the

states (see Supplementary Materials and ref.12). This bootstrapping approach accommodates

various sources of error, including failures in numerical optimization or selection of suboptimal

local maxima, and leads to substantial estimates in uncertainty, with the range of counterfactual

predictions by our COVID-19 models often exceeding 10 percentage points (Fig. 3B,

Supplementary Fig. S6). However, this approach still has the limitation that it only accounts for

uncertainty in parameter values, and not for misspecification of the model itself—for example,

owing to changes in hospitalization or death rates over time, evolving mitigation strategies, or

the omission of critical covariates.  For these reasons, it is likely that our error bars
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underestimate the true uncertainty in our predictions, especially for COVID-19.

Some observations did suggest that our modeling assumptions are not adequate in all

respects. For example, while our models were able to capture the spring and fall peaks in 2020

COVID-19 cases, they were not able to resolve the spring and summer waves in certain regions

of the US, particularly in the south.  This distinct summer peak may reflect evolving mitigation

strategies during the first half of 2020, seasonal day-break hours for vulnerable groups such as

agricultural workers, or other missing covariates in our model. In addition, the versions of the

model we fitted to hospitalization and death data, while generally concordant, did not agree in all

respects.  For example, the estimated parameters differ somewhat between the two versions

(Supplementary Tables S2 & S5), possibly owing to deviations from our assumption of

constant death and hospitalization rates. Similarly, we obtained somewhat different parameter

estimates at the city and state levels. One recurring issue is that our estimation procedure

inevitably sacrifices goodness of fit for cities or states with smaller numbers in order to

accommodate ones with larger numbers, causing population centers to dominate the model

fitting procedure. These limitations of our models attest to the substantial impact of lockdown

and social distancing measures on the epidemiology of COVID-19, and therefore their

indispensable role in combating pandemic respiratory viral diseases23–27. Nevertheless, despite

these caveats, the models generally fit the data fairly well and were in reasonable agreement

with one another and with other published observations (Supplementary Figs. S5, S7-S10).

Importantly, the effect of sunrise, even by our conservative estimation strategy, appears to be

substantial, it remains so under resampling approaches and alternative choices of the

hospitalization and death rates, and it is present even when additional environmental covariates

(such as humidity) are included.  Therefore, we believe the evidence is strong that a change in

clock policy would have a real impact in reducing infection rates of both influenza and

COVID-19, and likely for other respiratory infections as well.

The H1N1 influenza pandemic of 1918-1920 peaked in multiple spring and fall waves,
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the most-deadly being the second wave that began in September and October of 191828. DST

was first introduced in World War I, coinciding in the United States with the first and second

waves (March–November 1918).  The third wave in the spring of 1919 was less severe and

occurred after DST was widely abandoned.  DST was re-adopted as a Federal standard in

1967, just in time for the H3N2 Hong Kong Flu (1968–70), and was expanded in 2007, just in

time for H1N1 swine flu in 2009. DST was also observed in Hong Kong during the Asian (1957)

and Hong Kong (1968) flu pandemics.  But currently, Asian and African countries do not have

DST, and have lower incidence and severity of COVID-19 than most countries in the Americas,

Europe and the Middle East, where seasonal clock changes are widely observed

(Supplementary Fig. S12).  While there are many important exceptions, and many confounding

factors, this worldwide trend supports our counterfactual modelling predictions that seasonal

clock changes should be abandoned, a proposal already approved (though not yet

implemented) in the European Union29. If zeitgeber zero hour—sunrise—does play a role in

transmission and severity, these proposals to abandon seasonal clock changes are likely to

reduce the impact of circadian immunity on ongoing and future seasonal epidemics.
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Figure 1. Models for seasonal changes in R0. (A) Functions relating the basic reproductive
number R0 in a Susceptibility-Infection-Recovery-Susceptibility (SIRS) model to (combinations
of) time- and location-varying absolute humidity (h), day length (d) and sunrise time (s).
Exponential decay is assumed for h (with free parameter α1; see refs. 1,13), and Gaussian
relationships are assumed for d (α2) and s (α3), with maxima defined by free parameters d0 and
s0, respectively. s0 can be interpreted as the peak of the window of susceptibility for infection.
The range of R0 values (parameterized by R0,min and R0,range) was fixed based on previous
estimates for flu models, but fitted to data for COVID-19 models. Notice that d0 tends to be
estimated at values close to zero, making R0 a monotonically decreasing function of d (see
Supplementary Material for full details). (B) SIRS model goodness-of-fit for influenza
surveillance data for 40 U.S. states obtained from the US CDC’s FluView report from the
2010–11 season to the 2019–20 season. Goodness-of-fit is measured as the Bayesian
Information Criterion (BIC) for the base model minus the BIC for the model in question (and is
therefore 0 by definition for “base”). Results are also shown for the day-length (d) and
sunrise/day-length (sd) models. The models with humidity (h) showed negligible improvement
(Supplementary Fig. S3). Model likelihoods were maximized with the penalized likelihood
parameter set to λ=10, but the relative model fits were similar for other choices of λ (see
Supplementary Materials).
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Figure 2. Yearly incidence of seasonal flu under alternative policies for clock time. (A)
Estimates of the percentage of the population infected across 40 U.S. states over a typical flu
season under the sunrise/day-length (sd) model. Results are shown for the fitted model
(“Seasonal DST”; based on λ=10) as well as the “Permanent standard time” and “Permanent
DST” alternatives. For comparison, a summary of the raw data over 10 flu seasons is shown,
with error bars indicating one standard deviation. Data are from the US CDC’s FluView report
from 2010–11 to 2019–20. (B) Reduction (green) or increase (red) in infections under the
Permanent standard time and Permanent DST policies. These plots represent the differences
between the corresponding curves in panel A. (C) Difference in the total number of seasonal flu
infections (defined as in B) in individual US states. Error bands around the trajectories in (A),
(B) and error bars in (C) indicate one standard deviation based on 50 bootstrap replicates,
where the states are resampled in each replicate (see Supplementary Materials for details).
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Figure 3. SIRS-derived models fitted to state-level COVID-19 death data for U.S. states.
(A) Goodness-of-fit of the base, day-length (d), and sunrise/day-length (sd) models, as in
Fig. 1B. (B) Estimated changes in the total number of COVID-19 deaths between 03/13/2020
and 01/31/2021 under alternative time policies. (C–F) Observed COVID-19 death data from the
COVID Tracking Project from 03/13/2020 to 01/31/2021 (black) is shown alongside the
sunrise/day-length (sd) model fit (solid orange) and projections under alternative time policies
(dashed lines). Model fitting and simulations were performed at the state level, and results were
subsequently aggregated by census region. Error bands around trajectories in (C–F) and error
bars in (B) indicate one standard deviation based on 91 bootstrap replicates. Model likelihoods
were maximized under a death rate of δ=1% (see Supplementary Materials for full details).
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Figure 4. Application of the sunrise/day-length (sd) model to six urban centers around
the world. Error bands around trajectories indicate one standard deviation of simulation
outcomes based on 47 bootstrap replicates. Raw data are shown in black.  Model likelihoods
were maximized under a death rate of δ=1% (see Supplementary Materials for full details).
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Figure 5. Illustration of impact of time policy on window of susceptibility for infection.
The curves represent population-density-weighted local sunrise time in Massachusetts (A–C)
and Georgia (D–F), under the seasonal DST (A&D), permanent standard time (B&E), and
permanent DST (C&F) policies. The red horizontal band in each panel indicates the
approximate window of susceptibility in each location (defined by the estimated s0 parameter in
the sunrise/day-length (sd) model; Supplementary Tables S1 & S4). Colors on the x-axis
indicate the four seasons. Notice that seasonal DST substantially prolongs the interval where
local sunrise time coincides with the window of susceptibility in Massachusetts. Changing to
permanent daylight savings time would push sunrise one hour later in the late fall and winter
(C&F), ensuring that innate immunity does not reach its nadir until after the window of
susceptibility. Conversely, changing to permanent standard time would shift sunrise one hour
earlier in the spring, summer, and early fall. In Massachusetts, this would increase the interval
between sunrise and the window of susceptibility, and allow circadian innate immunity to recover
after the low point at dawn (B). In Georgia, however, sunrise occurs too late in the summer
months for this improvement to be realized.

24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.21254556doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254556
http://creativecommons.org/licenses/by-nd/4.0/

