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Abstract 

 

With aging, most older adults are at risk of having more than two diseases, conventionally 

defined as multimorbidity. We determined body organ disease number (BODN) as a new 

multimorbidity index. We measured the degree to which each disease level, from mild to severe, 

predicts longitudinal BODN uncoupled from chronological age. We determined Body Clock 

using global disease levels burden from all systems predicting longitudinal BODN for each 

individual, which is a proxy of the personalized rate of biological aging. Change in Body Clock 

predicts late-life age-related outcomes and can be used for geriatric clinics and clinical trials for 

precision medicine.     
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 The current medical practice focuses primarily on one disease or on diseases that are coexistent 

in the same organ system. However, epidemiological data show that multimorbidity, 

conventionally defined as having two or more diseases, is the most frequent health condition in 

persons 65 and older 1-4. Multimorbidity is associated with a high risk of polypharmacy, 

iatrogenesis, and geriatric syndromes that imposes burdens on individuals and society 5. The rate 

of aging itself is posited as the underlying cause of pathologies across body systems, with 

damage accumulation exceeding homeostatic mechanisms and physiological resilience, 

emerging clinically as multimorbidity 6,7.  

The central hypothesis that multiple chronic diseases represent a clinical manifestation of the rate 

of aging has led to the development of tools for measuring multimorbidity.  

Some of these tools consider the number of chronic diseases 8, whereas others weigh the 

contribution of specific diseases based on their estimated impact on functional status 9 or 

mortality 10,11. The first type of tool fails to consider that chronic diseases are highly 

heterogeneous. The second type can underestimate the health burdens in patients of one 

potentially fatal disease or fail to recognize individuals can accumulate multiple diseases and still 

live long lives. Consistent dynamic compensatory mechanisms might counteract specific organ 

systems' dysfunctions, while global physical and cognitive functions remain preserved 9.  

Alternative approaches have estimated the rate of aging using indices that aggregate multiple 

physiological and/or blood biomarkers 12-14. In most cases, chronological age (c-age)  to predict 

mortality or self-reported health 12,14,15 or late-life outcomes 16,17 were included as part of the 

indices. Including c-age or late-life outcomes might skew the metric toward older c-ages and fail 

to capture specific early health deterioration. Moreover, indices based on volatile biomarkers 

might be prone to fluctuations due to transient stress levels and entropic forces, not distinguished 
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between damage and adaptation, masking underlying pathophysiological changes related to 

multimorbidity.  

An ideal tool should capture sub-clinical to clinical states as an overarching health assessment 

and address the complexity of multimorbidity uncoupled from c-age and independent of late-life 

outcomes 18,19. With these characteristics in mind, we developed a global outcome measure of 

multimorbidity called Body Organ Disease Number (BODN) as an ordinal number ranging 0-13. 

BODN is the number of organ systems with at least one disease. We assessed the beta coefficient 

estimates of all diseases at two lagged times that incorporate into BODN over time uncoupled 

from c-age. Given the premise of interindividual variability in rates of chronic disease 

manifestation and using all disease levels in a model, we predicted BODN over time using 

lagged disease-levels burdens at individual-levels as the personalized rate of biological aging 

termed Body Clock.  

We used Bayesian inference to obtain maximum information on the coefficient estimates and 

incorporated health deterioration from subclinical to clinically diagnosed diseases. We show that 

Body Clock can predict late-life outcomes ranging from physical functional declines to death. 
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Results 

To calculate observed BODN, the presence of a specific disease for each organ system was 

established based on predefined impairment criteria as either deviation from values at healthy 

young or commonly accepted diagnoses in clinical practice. A specific organ system with at least 

one positive disease contributes to the BODN as a global multimorbidity measure. In addition to 

11 organ systems, we also counted cerebrovascular accident (CVA), sharing pathophysiology 

across several organ systems, and cancer, with its distinct pathophysiology, giving BODN a 

range from 0 to 13 as an ordinal outcome (Fig. 1a). Over the study period, median BODN 

increased with age so that for those at age 27-44 years, BODN was 2 (range:0-8), at 45-54 years 

was 3 (range 0-11), at 55-64 was 4 (range0-11), at 65-74 was 5 (range: 2-11), at 74-85 was 6 

(range: 2-11), at older than 85 was 7 (range: 3-12). As lagged predictors, the organ-specific 

diseases were assigned an ordinal number for their deviation from younger age, severity or stage 

of disease (Table 1).  

With the premise that each disease impacts body systems heterogeneously, we determined 

coefficient estimates of lagged disease(s) at two time points (time-1 and -2) predicting 

longitudinal BODN (Fig. 1b). For each disease, we quantified a “total disease beta coefficient 

estimate” as well as “disease level estimates” to predict longitudinal BODN (from one lagged 

time to last follow-up), applying multilevel ordinal regression in the Bayesian inference 

framework with individuals as a model level (model levels are different than disease levels) and 

reported 95% credible intervals (CI), counterparts to confidence intervals (Table 1).  Avoiding 

possible crude categorization, we used “monotonic effect” in a Bayesian inference framework 

that considers the ordinal predictor as a continuous variable and provides a total coefficient 

estimate from the first to the last level of an ordinal predictor. Then it introduces ordinal cut-
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points after encountering the data and provides the proportion of each ordinal level so that level-

specific estimates can be quantified. First, to assess how time predicts BODN, a model included 

only time as the period from the lagged disease to the last follow-up. To understand how c-age, 

single-disease, or single organ-system diseases incorporate into longitudinal BODN, we 

separately developed models at time-1 and time-2 for c-age, single disease, single organ-system 

diseases, multiple-systems diseases, and finally global disease levels burden from all systems. 

We obtained the degree to which each disease and its levels incorporate into longitudinal BODN. 

We then assessed each model’s performance by quantifying model weight, which indicates 

model predictivity, and compared each model with c-age to disentangle the predictive role of c-

age versus lagged single disease, single system, and multiple systems to predict longitudinal 

BODN. The model performance assessment (leave-one-out cross-validation) 20 and model 

weight comparisons (Bayesian Stacking weights) 21 are described in the methods. Using the post-

analysis prediction function in the model including time-1 and -2 global disease burden levels, 

we predicted longitudinal BODN for each individual, termed Body Clock, then determined 

change in Body Clock over time.  

Single Disease and Diseases of Single System Heterogeneously Incorporate into 

Longitudinal BODN. All single diseases and single-organ system diseases with heterogeneous 

magnitudes of beta estimates, significantly incorporated into longitudinal BODN 

(multimorbidity) except hyperthyroidism. C-age in age-only model at time-1 and -2 was a strong 

predictor of BODN (time-1 age: b=0.20±0.01, 95% CI=0.19–0.23; time-2 age: b=0.24±0.01, 

95% CI=0.21–0.26; Tables S2). Diseases of a single system, e.g., cardiovascular system (CVS), 

also heterogeneously and significantly predicted multimorbidity at both time-1 and -2 (Table 

S2). 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.03.29.21254372doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254372


7 
 

Preceding Diseases and Disease Level Burdens of Multiple System Heterogeneously 

Incorporate into Longitudinal BODN. We assessed the degree to which disease levels of all 

organ systems incorporate into longitudinal BODN, quantifying posterior coefficient estimates 

and 95% CI. Overall, all time-1 diseases heterogeneously incorporate into BODN. However, 

hyperthyroidism, peripheral artery disease (PAD), and Parkinson’s, with wide credible intervals 

(including 0), had larger uncertainty in predicting BODN (Fig. 2a,b, Table S2a). The CVS had 

the largest frequency as a single organ system and was the main component of BODN at all age 

groups (Fig. S1, S2). However, there was variability in its disease estimates with hypertension 

(HTN, b=0.49, 95% CI=0.38–0.59) and congestive heart failure (CHF, b=0.32, 95% CI=0.20–

0.45) as the strongest predictors that incorporated into BODN.  

Overall, milder states of organ system diseases (e.g., transitional ischemic attack, impaired 

glucose tolerance, mild anemia, subclinical hypothyroidism, cataract, mild liver disease, 

gingivitis without edentulous, osteopenia, and mild osteoarthritis, and poor hearing that improves 

with hearing aid) predicted multimorbidity with larger estimates than the more severe states. 

Likewise, diseases with no treatment modalities had larger coefficient estimates predicting 

multimorbidity (BODN), as seen with HTN, type-2 diabetes mellitus (DM), hyperlipidemia, 

chronic bronchitis, gastrointestinal disease (GID), depression, and Parkinson’s (Fig. 2b, Table 

S2a). For example, HTN with no treatment (b=0.32, 95% CI=0.26–0.40) was more predictive of 

BODN than HTN with treatment (b=0.16, 95% CI=0.13–0.19; Fig. 2a, Table S2a,). Moreover, 

CHF with preserved ejection fraction (EF; b=0.23, 95% CI=0.14–0.32), common with aging, had 

a larger coefficient estimates than CHF with low EF (b=0.09, 95% CI=0.05-0.12). For 

arrhythmias, sinus bradycardia, followed by elongated QTc and atrial fibrillation, incorporated 

more significantly into multimorbidity than others.  
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Stage-1 age-related CKD, uncoupled from diabetic kidney failure, incorporated more strongly 

into multimorbidity (stage1; b=0.54, 95% CI=0.42–0.71) than stage-2 (b=0.07, 95% CI=0.05-

0.09) and stage-3 (b= 0.10, 95%CI=0.08-0.13), followed by end-stage-renal disease (stage-4; 

b=0.20, 95% CI=0.16–0.27; Fig. 2a, b, Table S2a).  

We detected a similar dynamic pattern in the time-2 full model integrating all diseases, but now 

hyperthyroidism (b=1.47, 95% CI=0.45–2.60) and Parkinson’s (b=0.76, 95% CI=0.16–1.37) 

incorporated significantly into multimorbidity (Fig. 2c,d, Table S2b). Model assessments showed 

that full models had the highest accuracy in predicting multimorbidity (Table S3, Fig. S3a-b). 

Notably, while PAD strongly predicted multimorbidity as a single disease (time-1; b=3.68, 95% 

CI=2.52–4.81) or as part of a single organ system (time-1; b=1.36, 95% CI=0.27–2.43), its 

significance was eliminated in the full models (time-1: b=-0.04, 95% CI=-0.5–0.47; time-2: b=-

0.04, 95% CI=-0.58–0.49). One could speculate that shared pathophysiology among one 

system’s diseases might change its significance when collapsed into one model. To test this, we 

used Bayesian stacking that finds model-specific weights. The model has zero weight if it is not 

adding more predictive information to the other models. Using Bayesian stacking weights for all 

cardiovascular-related single-disease models, we assessed their usefulness in predicting 

multimorbidity. The models’ weights for PAD and ischemic heart disease (IHD) turned to 0, but 

allocating weights to HTN, CHF, and arrhythmia by 49.7%, 48.3%, and 2%, respectively, 

suggesting shared pathophysiology between CVAS diseases. 

 

Age Outperforms Time, Single Disease, and Single Organ System to Predict Longitudinal 

BODN. Because most chronic diseases manifest at older ages, we hypothesized that c-age is a 

stronger predictor of longitudinal BODN than any single disease or single-system diseases. 
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Bayesian Stacking of model weights revealed that the age-only model outweighed any single 

disease or single-system diseases, suggesting that c-age is the driving force for health 

deterioration. Among all single diseases, eye, kidney, and periodontitis carried larger weights 

predicting BODN, followed by GID and DM (Fig. 3; Table S2). Comparing time and c-age 

model weights revealed c-age is a stronger predictor than time, at both time-1 and time-2 (Table 

S3).  

Diseases of Multiple Systems Outperform C-Age in Predicting Longitudinal BODN. When 

we used one system’s integrated diseases, the models performed better than any single disease to 

predict multimorbidity. With the premise that diseases of one system can impact all other 

systems, we hypothesized that global burdens of disease levels from multiple systems would 

better predict future BODN than a single disease, single-system diseases, or c-age. In the 

stepwise analyses, multiple-system integrated diseases better predicted longitudinal BODN than 

any other single model shown by model performance and model weight compared to age-only 

models. Finally, integrating all lagged diseases, the full models outperformed c-age to predict 

longitudinal BODN (Figs. 3e,f, Table S2), suggesting that this is a global measure capturing the 

rate of biological aging and its effect on health. Likewise, global disease burdens at time-2 

predicted BODN better than c-age so that the time-2 full model outweighed c-age in predicting 

BODN with a larger weight than the time-1 model (when participants are younger, and time is 

longer). Together, this shows that intrinsic biological age does increase with c-age and time, but 

it is steeper with advancing c-age (Figs. 3e,f). In-sample (simulated BLSA data) and out-of-

sample validations (InCHIANTI data) confirmed these findings (Fig. S4). 

Body Clock in Men and Women and Change in Body Clock Over Time. We used burdens of 

disease levels at each time point to predict longitudinal BODN at the individual level, 
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termed Body Clock. Therefore, Body Clock can be based on time-1 diseases or time-2 disease 

levels. The change in Body Clock is quantified based on both time-1 and time-2 predicted 

longitudinal BODN and its change from baseline (Fig 1b). In the multilevel analyses, individuals 

are included as a model level. The spaghetti plots depict the heterogeneity in individuals’ Body 

Clock’s trajectories even within the same c-age spectrum, revealing a unique rate of aging for 

each person (Fig. 4a,b). Quantifying a personalized Body Clock, from sub-clinical states to 

severe diseases, allows us to measure the process of aging at any age. Using quadratic spline 

regressing Body Clock over c-age revealed that Body Clock increases non-linearly with c-age 

over lifespan from the 40’s to the 90’s, in both women and men (purple overlay, Fig. 4a,b). The 

association of Body Clock based on time-1 diseases and c-age groups with 10-year intervals 

showed increase in Body Clock with c-age over the lifespan (men: b=0.95, 95% CI= 0.79-0.95; 

women: b=0.90, 95% CI=0.89-0.98). In addition to fixed effect of c-age on Body Clock, we 

assessed the random effects of each c-age, including age (years) as model level, to quantify 

variability of Body clock within the same c-age and between c-ages. The wide 95% credible 

interval depicts significant within-age variability of Body Clock (does not include 0) after age 

67, increasing with c-age (Fig 4c).   

Body Clock Predicts SPPB, Disability, Geriatric Syndrome, and Mortality. To assess 

whether Body Clock predicts late-life age-related outcomes, we performed multilevel cubic-

spline Cox-regression hazard models within the Bayesian framework 22 to predict Short Battery 

of Physical Performance (SPPB) <9 23; disability (Activities of Daily Living scale [ADL] >1 or 

Instrumental Activities of Daily Living scale [IADL]>1]24; geriatric syndrome (having injurious 

fall or urinary/bowel incontinence 25; and mortality (Fig. 5). The results showed that people with 

higher Body Clock are at higher risk of SPPB<9 (hazard ratio [HR]=2.30, 95% CI=1.85–2.90, 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.03.29.21254372doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254372


11 
 

SD=18.0); geriatric syndrome (HR=1.70, 95% CI=1:55–1.80, SD=3.30); disability (HR=1.8, 

95% CI=1.44–1.80); and mortality (HR=1.71, 95% CI=1.42–2.11, SD=1.68), showing Body 

Clock’s capability as an initial measure of health to predict late-life outcomes. To evaluate a 

dynamic reciprocal relation between Body Clock and SPPB, we examined the association 

between time-1 SPPB<9 with the change in Body Clock, revealing that lagged functional 

impairment also predicts change in Body Clock (SPPB<9) (b=0.96, 95% CI=0.57-1.35).     
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Discussion 

We applied Bayesian inference to longitudinal data with well-defined clinical information and 

developed a validated personalized tool that matches multimorbidity with fast aging. 

Approaching multimorbidity as a global organ system health outcome, we defined body organ 

disease number (BODN) and quantified the degree to which each disease levels incorporate into 

longitudinal BODN. Using the post-analysis prediction function, we defined individual-based 

predicted BODN, termed Body Clock. The heterogeneity in disease estimates and the 

interindividual variability in Body Clock supports the idea of heterogeneity in rates of both organ 

and individual aging. C-age was a stronger predictor of BODN compared to any single disease or 

single organ system. However, global burden of disease levels and their levels outperformed c-

age, allowing to predict individual-based BODN and quantify Body Clock as a rate of biological 

aging uncoupled from c-age, which predicts late-life outcomes.  

The Charlson Index 26, a common hospital-based multimorbidity index, includes c-age weighted 

diseases based on a hazard ratio for predicting 1-year mortality. The category-allocated weighted 

value might bias the multimorbidity score by selective-mortality, disregarding early-onset 

changes at younger ages. However, Body Clock, uncoupled from c-age, reflects progressive 

health impairments at any age independent of mortality. The Cumulative Illness Rating Scale for 

Geriatric (CIRS-G) is another hospital-based index using medical chart reviews of 13 systems. It 

includs both acute and chronic disease burdens, to calculate a total score, a severity score as an 

average over the severity of the diseases (0 to 4), and a comorbidity index as mean severity score 

of 2 or more. CIRS-G can skew the severity scores toward the acute condition that originally 

caused the hospitalization. For example, current acute myocardial infarction is scored 4 while 

congestive heart failure, an age-related health deteriorating chronic disease is scored 2. 
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Moreover, averaging over the severity of the diseases assumes that the disease severity levels are 

equidistant. However, we showed substantial heterogeneity in disease levels’ estimates that 

predict body organ systems. Moreover, averaging the disease severity levels might bias the 

comorbidity index by underestimating chronic diseases relative to acute morbidities. Disability, a 

late-life outcome, was also included as part of the disease severity score, while we predicted 

BODN as Body Clock independent of late-life outcomes 27. Nevertheless, our suggestive 

algorithm could be applied to patients’ chart review at hospital or clinic to predict late-life 

outcomes.  

There is consensus that functional integrity without disability is one key component of 

healthspan 28,29. Hence, some multimorbidity tools, such as the multimorbidity-weighted index, 

employed physical function to weight diseases to measure multimorbidity 9,30. However, one 

might have physical function resilience when compensatory physiologic strategies in some 

organs cope with the effects of damage accumulation in other organ systems 6, leading 

multimorbidity-weighted estimates biased by physical functional states. Moreover, weighting 

organs by physical function status skews the metric toward more irreversible late-life health 

states. Notably, counterintuitive finding from a clinical trial, the LIFE trial, aimed at targeting 

late-life functional decline with structured physical activity intervention, reported paradoxical 

results for multimorbidity with further hospitalization and mortality in the group with higher 

multimorbidity burdens 31. However, we showed that declining physical function predicts 

increased Body Clock, reinforcing its bidirectionality 32, suggesting that age-related impairments 

should be measured and intervention(s) initiated before irreversible declines occur. Therefore, 

we developed Body Clock independent of physical functioning, yet it predicted late-life 

outcomes with high accuracy.  
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Some indices use diseases that predict in-hospital mortality as multimorbidity measures. Any 

health tool based on mortality 10,12,33 is more life-span oriented and can bias multimorbidity 

measures in survivors of potentially fatal diseases who have more extended longevity. Moreover, 

the mortality rate itself can be confounded by the type of hospital facilities, type of care, 

individual choices for care and technological advances over time. As such, we quantified Body 

Clock based on a prediction of future BODN as a measure of systems multimorbidity rather than 

predicting mortality. Other indices apply summation of the number of diseases while 

disregarding the possible heterogeneity in the degree to which these diseases incorporate into 

multimorbidity 8. We showed such heterogeneity exists for chronic diseases and their levels, 

accentuating the variability in organ aging. For example, the cardiovascular system (CVS) with 

the highest system morbidity frequency across all age spectrum includes five diseases. However, 

CHF with preserved ejection fraction, mainly reported in older adults 34; HTN without treatment; 

age-related arrhythmias such as sinus arrhythmia; and atrial fibrillation 35,36 were the levels that 

predicted BODN most strongly, indicating that merely summing the number of diseases can over 

or underestimate multimorbidity.  

Alternatively, several tools have been developed to reveal the rate of aging, mainly employing 

biochemical and/or physiological biomarkers, which might not disentangle damage from 

compensatory mechanisms 12,13,15. Moreover, biomarker-based tools can fluctuate due to 

transient stress levels and, therefore, might not distinguish between immediate compensatory 

mechanisms and longer-term health perturbations. One could speculate that those who do not 

respond well to stress and have lower values for these markers might have worse health 

problems. 
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Data showed that diseases at sub-clinical states or without treatment have larger estimates for 

predicting multimorbidity. Notably, clinical trials have shown that mild hypertension strongly 

associates with cognitive impairments 37 or suggested that intensive HTN treatment is protective 

for cognitive impairments and kidney function 38-40. Our results also endorse the idea that 

sustained exposure to subclinical disease levels might result in chronic wear and tear causing 

damage accumulation, and culminates in variable impairment in some organ systems, manifested 

as heterogeneity in organ disease levels’ estimates, and change in personalized Body Clock. 

Moreover, the sub-clinical states with large estimate magnitudes and wide uncertainty at younger 

ages suggest that some organ systems might maintain functional capacity to respond to 

accumulated damage in other organ systems with diminished resilience. Ferrucci’s team has 

shown that the resting metabolic rate (RMR) at disease-onset increases but the RMR declines 

with advancing chronic diseases over time with possible exhaustion in organ function at 

subcellular levels 41. Likewise, heterogeneity in disease-level estimate magnitudes suggests that 

at older c-age, the damaged state may reach a plateau with perturbed organs’ reserve to function 

and no repair capacity remains to respond to further damage. Age-related changes at sub-cellular 

and tissue levels can be manifested as physiological changes and finally as irreversible pathology 

accumulation. Therefore, it is not unrealistic to claim that Body Clock, an integrated estimates of 

disease levels predicting BODN, can capture allostatic overload, which is dramatic, cumulative 

physiological dysregulation, outstripping the convergence of stress and adaptation 6. Therefore, 

additional body stressors, such as diseases of other organs, medicines, infection, and other socio-

environmental stressors, can be manifested as unique rate of increases in Body Clock. 
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For the first time, Body Clock matches multimorbidity with fast aging at individual level. 

Applying multilevel Bayesian inference to medically and clinically well-defined phenotypes with 

cross-population consistency showed that integrated disease levels of body organ systems 

outperform c-age to predict future BODN. It also unraveled heterogeneity in organ systems 

aging, endorsing multimorbidity as a clinical manifestation of the rate of intrinsic aging that was 

otherwise hidden with a single disease or a single organ-system approach. Furthermore, as an 

individual-based metric of damage accumulation, Body Clock can be applied to distinguish 

biomarkers of damage from those of resilience. 

There are limitations to this study. One is that the time between follow-up points were not 

equidistant. However, by including time in the model and calculating personalize-based 

estimates we still could quantify Body Clock with high accuracy. Also, the BLSA is a study of 

healthy aging, recruiting initially healthy individuals. Hence, the general population with more 

severe conditions and hereditary diseases might have more accelerated Body Clock over c-age or 

time. However, because we quantify Body Clock at individual level, Body Clock can be updated 

whenever new personalized information on new disease levels is available.  

Body Clock can be used to further disentangle variability in biological aging and its underlying 

mechanisms, including genetics and environmental factors, and creating new individual-based, 

multifaceted biomarkers and tailored interventions and can be updated and used as a potential 

assessment tool for geriatric clinics, hospitals, and clinical trials in a precision medicine 

approach. 
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Material and Method 

Study Population. We used information on physical examinations, laboratory tests, and medical 

records collected for the participants of the Baltimore Longitudinal Study on Aging (BLSA), a 

cohort study of healthy aging in community-dwelling participants29. For external validation, we 

used the Invecchiare in Chianti (InCHIANTI) aging study, a prospective population-based study 

of older persons in Tuscany, Italy (as reported previously)42.  Study participants have provided 

consent form. The data are available through BLSA and InCHIANTI website applications.

The BLSA study recruited individuals ≥20 years who were followed quadrennially if younger 

than 60, biennially if 60–79, and yearly if ≥80 or who developed the disease at any age. Our 

analyses included 456 men and 451 women (N=907) with three available subsequent visits with 

dynamic intervals (mean 3.9 ± SD 2.9 years) range (1-13) years of follow-ups. Mortality follow-

up continued for 3.1 ± 2.3, range 1-9 years after the last visit through 2019. 

Body Organ Disease Number (BODN). We defined disease states for 11 organ systems, two 

distinct diseases, cerebrovascular accidents (CVA) and adult-onset cancer. CVA shares 

pathophysiology and symptoms between CVS and CNS, so to avoid any misclassification and as 

a distinct entity, it was counted as one system. With distinct mechanisms from other age-related 

processes, cancer of any organ was also considered separate from other organ system diseases. 

The organ system diseases and the levels of diseases are summarized in Table 1.  

BODN is determined as the number of organs with at least one impairment as a new measure of 

multimorbidity. Pathology at the specific organ level was established based on predefined 

impairment criteria aligned to those that either deviates from normal at a younger age or is used 

for disease diagnoses in clinical practice. A specific organ system contributed to BODN, a 

global health index if it had at least one positive criterion. We then assigned organ-specific 

diseases an 
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ordinal number for a level or stage of disease (e.g., no hypertension, hypertension with no 

treatment, and hypertension with treatment would be coded 1, 2, and 3, respectively; Table 1).  

Statistical Analyses  

Bayesian inference. We used a Bayesian approach in developing our new multimorbidity tool. 

We used BODN as an ordinal outcome and time-1 or time-2 disease levels as lagged ordinal 

predictors, adjusting for the time but excluding c-age. We used multilevel ordinal regression and 

individuals as model level in a Bayesian framework to develop various models 43, assessed the 

models’ predictive accuracy using leave-one-out cross-validation (LOO-CV) 20, quantified model 

weights, and compared all models with c-age and the time. Including all disease levels in one 

model, we obtained post-analyses predicted BODN at individual levels to quantify individual-

based Body Clock.  

We evaluated the models using in-sample (using the BLSA parameters to predict BODN in 

simulated data) and out-of-sample accuracy (using BLSA parameters to predict BODN in 

InCHIANTI data) with “predictive checks,” as part of the usual Bayesian workflow 44,45. We 

then determined the model-specific weights, performed model comparisons using the Bayesian 

stacking approach, and compared all models’ weights with the age-only model described in the 

supplementary information (SI). We used the Bayesian Cox-proportional hazard model to predict 

late-life age outcomes.  

Bayesian Inference. A Bayesian model comprises two components: 1) Prior knowledge on the 

estimates (parameters), as the information before observing the data P(ϴ) where ϴ denotes the 

parameters; and 2) the likelihood P(Y|ϴ) of the information contained in the data (Y). Using the 

Bayes formula, we can obtain the posterior distribution of the parameters P(ϴ|Y), which can be 

updated when encountering new data. Moreover, the Bayes approach provides a distribution of 
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estimates rather than a point estimate, and uncertainty around the estimates known as the 

credible interval (CI).46  

Bayes Approach for Multilevel Ordinal Outcome and Ordinal Predictors. With ordinal 

outcomes, the difference between the orders might not be equidistance. In other words, moving 

from having one organ with at least one disease to the next organ with disease is not necessarily 

equal to moving from having two or three organ morbidities to the next organ morbidity. We 

used a Bayesian ordinal model that assumes the observed ordinal outcome Y (i.e., BODN) is 

derived from categorizing a latent continuous variable Ỹ, here BODÑ 43. Therefore, we used 

longitudinal, multilevel ordinal regression models with BODN as an ordinal outcome and each 

person as a level using “brms” Bayesian software package, built on top of Stan, a probabilistic 

programming framework for Bayesian inference 45,47-49. Also, considering that the levels of 

ordinal predictors might not be equidistant, we used a function called “monotonic effect” 

implemented in the Bayesian “brms” software package published previously 47,50, which assume 

that the ordinal predictor is a latent continuous variable with a posterior estimate (total beta 

coefficient for the ordinal variable). When encountering information from the data, a cut-point is 

introduced using the “simplex function” ζ, so that ζ i ∈ [0,1]. Therefore, ζ is the posterior 

probability of each level, and i is the number of ordinal categories. We can quantify the posterior 

estimate (beta coefficient) of each disease level through multiplying the total posterior estimate 

by the proportion of each level ζi, e.g., HTN has three levels, the first level is the reference 

[normal]; the second and the third level proportions are ζ% and 1-ζ%, respectively. With the 

posterior estimate ϴ (total beta coefficient) of the latent continuous HTN, the posterior estimate 

of each HTN level would be (ϴ * ζ%) and (ϴ * 1- ζ%), respectively50. Except peripheral artery 
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disease (PAD), hyperthyroidism, cancer, thrombocytopenia, and asthma, which are binary, all 

other diseases are ordinal (Table 1).  

Using all disease-level burdens, we obtained predicted BODN for each individual as a level, 

termed Body Clock at each time-point and change in Body Clock over time. We used change in 

Body Clock to predict late-life outcomes such as Short Battery of Physical Performance (SBPP), 

geriatric syndrome, disability and mortality, using multilevel Cox-Hazard Models in Bayesian 

inefrence framework 22.  

Prior Knowledge of Predictive Estimates of BODN. We determined the prior distribution for 

each parameter, including intercept and beta coefficients using weak priors. For the beta 

coefficients and intercepts classes, the prior estimate with a normal distribution (mean: μ = 0, 

variance σ = 10), and for the class standard deviation (sd) related to varying subjects, the half-

Cauchy (0,10) were used. The uniform prior with a Dirichlet distribution was used for ordinal 

predictors (i.e., (2, 2) for ζ1 and ζ2 [simplex parameters] for a three-level predictor).  

We used a dynamic Hamiltonian Markov chain Monte Carlo (MCMC) algorithm 48,49 to obtain 

posterior draws. We performed the analyses with a minimum of five chains and a minimum of 

5,000 iterations. We obtained mean posterior values from the posterior distribution of the 

parameter estimate ϴ if the distributions were normal but reported median if not normal.   

Model Inference Diagnostics. To assess the computational success and resulting inferences, we 

evaluated the convergence diagnostic Rhat and the effective sample size measures for each 

estimated parameter 51.   

Model Comparisons. Each Bayesian model has its own predictive performance on a logarithmic 

scale called estimated log predictive density (ELPD). The ELPD estimates the predictive 

performance of future data, and its standard error (SE) quantifies the uncertainty in knowing the 
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future BODN exactly. Leave-one-out cross-validation (LOO-CV)52, a variant where each 

observation takes the role of the validation set in turn and leads to a natural single prediction 

approach, was used for each model evaluation and also for model comparisons. As MCMC is 

time-consuming, Pareto smoothed importance sampling (PSIS) was used for faster LOO-CV 

estimates 53. If the PSIS diagnostic indicated an unreliable PSIS estimate (k>0.7), we used 

MCMC for a slower but more accurate computation. To compare each model with the age-only 

models, we used LOO-CV and comparison of models’ ELPDs to obtain ELPD_DIFF, which 

shows ELPD differences between each model and the age-only models. The models with larger 

ELPD are optimal, and a negative ELPD_DIFF favors the first model in the comparison.  

Model Evaluation and In-Sample and Out-of-Sample Predictive Checks. To assess the 

robustness of the model to predict BODN, we used the time-1 full model based on BLSA data to 

predict BODN in the InCHIANTI data as out-of-sample validation. We compared ELPDs of the 

models using LOO-CV. Additionally, we used “posterior predictive checking”44 implemented in 

“brms” software package to compare the posterior predictive density of simulated data to density 

estimates of the observed data (in-sample evaluation of BLSA) or predict new data (InCHIANTI 

data; out-of-sample validation).   

Bayesian Stacking Weights to Compare Models. Bayesian stacking is useful for computing 

model weights for several models simultaneously by optimizing the estimated LOO-CV 

predictive performance of the weighted model combinations.  

Here we computed stacking weights for each kind of model paired with their corresponding age-

only models (single-disease, single-system, stepwise multisystem, and full models separately). 

The Bayesian stacking approach provides the model-specific weights versus the age-only models 

and informs the models with the best predictive performance.  
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Figures Legends 

Figure 1. (a) Symbolic representation of the integrated system-based calculated Body Clock  

Body organ disease number (BODN) considers 11 organs and two diseases, cerebrovascular 

accidents and cancer. The predicted BODN at an individual level is quantified, termed Body 

Clock. Clockwise, the Body Clock includes the central nervous system and cerebrovascular 

accidents, cardiovascular system, respiratory system, gastrointestinal and liver system, metabolic 

system, cancer, renal system, hematopoietic system, the sensory systems (ophthalmic and 

hearing), dysthyroidism, and musculoskeletal system. (b) Schematic of Body Clock 

Measurement. Time-1 full model provides estimates of longitudinal BODN (at three-time points, 

green arrows). Time-2 full model provides estimates of BODN at time 2 and 3 (blue arrows). 

The orange arrow shows change in Body Clock. The red arrows depict the effect of incorporation 

of future information on a new disease on the Body Clock.  
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Figure 2. Lagged full models’ multisystem posterior estimates predicting longitudinal Body 

Organ Disease Number (BODN). The larger the posterior estimates with narrower 95% credible 

intervals (CI), the better the prediction is. (a & b). Total disease coefficient estimates, with 95% 

CI predicting BODN in the full models using Bayes approach at a. time-1 and b. time-2. Organ 

systems diseases have heterogeneous coefficient estimates predicting BODN. (c & d). Disease 

levels coefficient estimates heterogeneously incorporating into BODN at (c) time-1 and (d) time-

2 full models. The significance is considered when 95% CI does not include 0. HTN: 

hypertension, IHD: ischemic heart disease, CHF: congestive heart failure, PAD: peripheral artery 

disease, Arr: arrhythmia, CKD: chronic kidney disease, DM: diabetes mellitus, GID: 

gastrointestinal disease, COPD: chronic obstructive pulmonary disease, Hypoth: hypothyroidism, 

Hyperth: Hyperthyroidism, OA: Osteoarthritis, Oteop: Osteoporosis, Periodon: periodontitis, 

Dep: Depression, Park: Parkinson’s disease, CI: cognitive impairment. Systems abbreviations: 

CV: cardiovascular system, CA: cerebrovascular accidents, Re: renal system, Me: metabolic, 

GL: gastrointestinal and liver, Res: respiratory, Th: dysthyroidism, He: hematopoietic, MS: 

musculoskeletal, Pe: periodontitis, Se: sensory, CNS: central nervous system, Can: Cancer. 
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Figure 3.  Bayesian Stacking weights for time-1 and time-2 models compared to the age-only 

model. (a) Time-1 model weights for every single disease compared to age-only model weight 

predicting BODN. (b) Similar comparisons for time-2 models. (c) Time-1 single-system model 

weight versus age-only model. (d) Similar comparisons for time-2 models. C-age weight 

outperformed single disease and single organ-system weights. In time-2 models, when people 

were older, the age-only model outweighed single disease even more than time-1 (younger age). 

€ Time-1 stepwise multiple organ-system weights versus age-only model. (f) Similar 

comparisons for time-2 models. Time-2 full model outweighed c-age the most, indicating the 

global burden of organ-system diseases measure the rate of aging better than any single disease 

or single system. CHF: congestive heart failure, CKD: Chronic Kidney disease, COPD: Chronic 

Obstructive Pulmonary Disease, DM: diabetes mellitus, GID: gastrointestinal disease, IHD: 

ischemic heart disease, PAD: peripheral artery disease, CNS: central nervous system, CVA: 

cerebrovascular disease, CVD: cardiovascular disease, GL: gastrointestinal and Liver, Hemat: 

hematopoietic system, MSK: musculoskeletal system, Periodent: periodontitis, Res: respiratory 

system, Th: Dysthyroidism. The numbers in graphs e and f indicates  the number of systems 

with morbidities in Body Organ Disease Number (BODN).  
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Figure 4. Body Clock and chronological age. (a) Body Clock using time-1 organ-system disease 

levels predicting longitudinal BODN. (b) Body Clock using time-2 organ-system disease levels 

predicting BODN. The spaghetti plots show individual-based integrated predicted estimates of 

BODN as sporadic lines (Body Clock). The quadratic spline regression line (purple overlay) with 

a 95% credible interval is a population-based Body Clock in men (left) and women (right). Body 

Clock increased with advancing age, even in younger age groups with substantial interindividual 

variability. (c) Random effect of age on change in the Body Clock. There are within the same 

age and between age variability in Body Clock. The random variability of the Body Clock within 

the same age is significant after age 67.   
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Figure 5. Density Distribution of Estimated Body Clock by Mortality, Geriatric Syndrome, 

Disability, and Functional Decline (SPPB < 9). The distribution of Body Clock with a. Short 

Battery of Physical Performance (SPPB) < 9, b. Geriatric Syndrome, c. disability (Activity of 

daily living (ADL) or instrumental activity of daily living (iADL), and d. mortality as binary 

outcomes using the Cox model in the Bayes Framework. An average Body Clock of more than 

7.0 is highly significant in all models. However, some individuals have the resilience to 

developing these late-life outcomes even at larger Body Clock values. In all graphs, the gray area 

is the normal state of the corresponding late-life outcome.  
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Table 1: Body Organs and The Corresponding Disease Levels Definitions Based on Disease 

Severity or Stage 

Cardiovascular System (CVS) 

Hypertension 

(HTN; 1-3) 

1: No HTN 

2: SBP>140; DBP>90 or documented history of HTN and no medication 

3: SBP>140; DBP>90 or documented history of HTN and medication 

HTN: medication (hydropyridines calcium channel blocker (CCB), diuretics, 

angiotensin converting enzyme inhibitors, beta blockers, and other antihypertensive 

drugs) 

Ischemic Heart 

Disease (IHD; 1-3) 

 

1: No IHD 

2: History of prolonged angina pectoris, angioplasty, or coronary artery bypass 

surgery (CABG) 3: Myocardial infarction (significant q wave on EKG, documented 

history of myocardial infarction, or nitrate medication) 

Congestive Heart 

Failure (CHF; 1-3) 

1: No CHF 

2: CHF with preserved ejection fraction (EF) 3: EF < 50 or history of heart failure 

and use of digitalis, non-hydropyridines CCB 

Arrhythmia  

Based on 

Electrocardiogram, 

(EKG; 1-6) 

1: No arrhythmia  

2: Sinus bradycardia 

3: Elongated QTC (> 440 ms in men or > 460 ms in women) 

4: Elongated P-R interval >200 m-second 

5: Supraventricular, ventricular, or paroxysmal atrial tachyarrhythmia  

6: Atrial fibrillation 

Peripheral Artery 

Disease (PAD; 1-2) 

1: No PAD 

2: Left or right ankle brachial index (ABI) < 0.9  

Cerebrovascular Accident (CVA) 
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Stroke (1-4) 1: No stroke 

2: TIA with no history of severe stroke 

3: History of documented stroke, elongated sudden numbness, or loss of speech 

with no paralysis or limb weakness 

4: Paralysis or paresis in either limbs or any sudden and long lasting of motor 

neuron dysfunction such as cranial nerve (CN) CN-III, CN-IV, CN-VI (ocular 

movements, nystagmus and ocular convergence); CN-IX (Oropharynx symmetry); 

CN-VII (Facial asymmetry) 

Renal (Ren) 

Chronic Kidney 

Disease (CKD; 1-

5) 

Using CKD-EPI 

formula 

1: Estimated glomerular filtration rate (eGFR) > 90 (no CKD) 

2: Stage-1: 60 ≤ eGFR ≤ 90 

3: Stage-2: 45 ≤ eGFR ≤ 59 

4: Stage-3: 30 ≤ eGFR ≤ 44 

5: Stage-4: eGFR ≤ 29 

Metabolic (Me) 

Diabetes Mellitus 

(DM;1-6) 

1: No DM 

2: Impaired glucose tolerance test (140 at ≤ 2 hr postprandial blood sugar ≤ 199 

(mg/dL) 

3: DM with no complications 

4: DM with CKD no retinopathy 

5: DM with retinopathy no CKD 

6: DM with both CKD and retinopathy 

Hyperlipidemia 

(1-3) 

1: No hyperlipidemia 
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2: Triglyceride (TG) >150 mg/dL, low density cholesterol (LDL) > 130 mg/dL, 

high density cholesterol (HDL) < 40 mg/dL for men and < 50 mg/dL for women, 

and no medication 

3: TG > 150 mg/dL, LDL > 130 mg/dL, HDL < 40 mg/dL for men and < 50 mg/dL 

for women, and medication 

Gastrointestinal and Liver (GL) 

Liver (1-3) 1: No liver disease 

2: History of hepatitis or increased liver function tests 2 times more than normal 

range 

3: Liver fibrosis (based on FIB4 scoring system)54 

4: Liver cirrhosis  

Gastrointestinal 

disease (GID; 1-3) 

1: No GID 

2: Gastritis or gastroesophageal reflux disorder (GERD)  

3: History of peptic ulcer, current ulcer, or use of antiacid medication 

Respiratory (Res) 

Chronic 

Obstructive 

Pulmonary Disease 

(chronic bronchitis 

or emphysema) 

(COPD; 1-3) 

1: No COPD 

2: Wheeze with physical exam (Yale criteria) and no medication use  

3:  Wheeze with physical exam (Yale criteria) and use of medication (adrenergic 

drugs, leukotriene receptor antagonists, or others) 

Adult-Onset 

Asthma  

(1-2) 

1: No asthma 

2: Documented adult onset, still having asthma  

Dysthyroidism (Th) 
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Hypothyroidism55 

(1-4) 

1: Euthyroid 

2: Subclinical hypothyroidism: 4.5 ≤ thyroid stimulating hormone (TSH) ≤ 6.9 

3: 7.0 ≤ TSH ≤ 9.9  

4: TSH ≥ 10 or use of levothyroxine 

Hyperthyroidism 

(1-2) 

1: Euthyroid  

2: TSH < 0.3 or use of thiouracil or other antithyroid medication 

Hematopoietic System (He) 

Anemia (1-4) 1: No anemia 

2: Mild anemia (women: 11.0 ≤ Hemoglobin (Hb) <12; men: 11.0 ≤ Hb <13 

3: Moderate anemia: 8.0 ≤ Hb <11  

4: Severe anemia Hb < 8.0 (rarely seen in population studies) 

Thrombocytopenia 

(1-2) 

1: Normal platelet count 

2: Platelet count < 150,000 without cancer or liver disease states 

Oral Health (Periodontitis: Pe) 

 Periodontitis (1-3) 1: Normal  

2: Gingivitis or periodontitis 

3: Edentulous, >50% tooth loss due to periodontitis 

Musculoskeletal System (MS) 

Osteoarthritis (OA)  

 

1: No OA 

2: Pain more than 1 month or stiffness but not both, at either knee or hip joints 

3: Both pain and stiffness at the knee or hip joints 

Osteoporosis 

(based on bone 

mineral density 

(BMD), total BMD 

1: Normal bone mineral density 

2: Osteopenia (BMD score < -1.0) 

3: Osteoporosis (BMD score < -2.5) 
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at either vertebrae 

L1-4, femoral neck, 

or trochanter; 1-3) 

Sensory System (Se) 

Hearing (1- 4) 1: Normal hearing 

2: Decreased hearing ability from poor to deaf without a hearing aid  

3: Normal to fair hearing ability with a hearing aid  

4: Poor hearing with a hearing aid 

Eye (1-5) 1: Normal eye function 

2: Cataract but no glaucoma or macular degeneration 

3: Glaucoma but no macular degeneration  

4: Macular degeneration but no glaucoma 

5: Glaucoma and macular degeneration 

Central Nervous System (CNS) 

Depression (1-3) 

CES-D: Center for 

Epidemiologic 

Studies Depression 

Scale (CES-D) 

1: No depression 

2: CES-D scores ≥ 16 but no use of antidepressants. 

3: CES-D score ≥ 16 and use of antidepressants 

Parkinson’s 

Disease (PD; 1-3) 

1: No Parkinson’s 

2: Documented history of PD (Hoehn and Yahr scale), mild symptoms, stage ≤ 3 or 

no medication  

3: Stage 4 or 5 PD, moderate to severe symptoms or use of medication 
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Global Cognitive 

Impairment (CI; 1-

3) 

1: Normal global cognition 

2: Total mini mental status (TMMS) < 24  

3: Documented Alzheimer’s disease (combined medical examinations) 

*Vascular dementia is part of cerebrovascular accident 

Cancer (Can) 

Lung, Breast, 

Prostate, Stomach, 

Pancreatic, 

Leukemia, Thyroid, 

Ovary, Squamous 

Cell Carcinoma, 

melanoma 

1: No cancer 

2: At least one adult-onset cancer  

Late-life Outcomes 

Disability instrumental activities of daily living (iADL) ≥ 2 or activity of daily living (ADL) 

>1  

 Geriatric 

Syndrome 

 

Experienced two injurious falls in past month, urinary or bowel incontinence 

Functional decline 

SPPB < 9 

Short Battery of Physical Performance, which includes chair standing (1-4), walking 

speed (1-4), and balance (1-4) with total score 12 

Mortality Mortality any time after data used in this analysis 
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Time

Second Visit 
Body Organ Disease

First Visit
Diseases Predict BODN over time

Third Visit
Body Organ Disease

Time-1 and Time-2 Lagged Estimates Of Diseases Levels Predicting BODN Over Time 
At Individual Level:  Body Clock 

Y2= time 1 estimates
carried to time 2 

Y3=Y2+ Body Clock at 
time 2 Predicting 
BODN Over Time 

Y1=Body Clock at 
time 1 Predicting 
BODN Over Time 

Y4= Time 1 estimates
carried to time 3+ 
Time 2 estimates
carried to time 3
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Single  Disease, Single System, and Multi plesystem Weights Vs. Age−only Weight Predicting BODN
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Time−1 and Time−2 Body Clock Over the Age Spectrum
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Body Clock Distribution by Late−life Age−Related Outcomes
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Supplemental Materials 

Results 

Table S1 depicts the descriptive baseleine characteristics of Baltimore Longitudinal Study of 

Aging by baseline age groups.  

Table S1. Baseline Characteristics of Baltimore Longitudinal Study of Aging  

  20-44 

(n=68) 

 

45-55 

(n=137) 

 

56-64 

(n=230) 

 

65-74 

(n=278) 

 

75-85 

(n=143) 

>85 

(n=51) 

Follow-up (years) 

Mean ± SD 

(range) 

5.8±4.1  

(1-15) 

5.4±3.7  

(1-15) 

4.1±2.7  

(1-14) 

3.5±2.2 

(1-14) 

5.0±0.37  

(1-9) 

5.2±0.7 

(1-11) 

Sex 

Female % 

 

51.5 

 

39.4 

 

38.7 

 

56.8 

 

62.2 

 

51.0 

CVD 

HTN  

IHD  

CHF  

Arrhythmia  

PAD  

 

19.1 

0 

36.8 

27.9 

2.9 

 

27.0 

2.9 

40.2 

24.8 

1.46 

 

44.8 

10.4 

50.4 

33.0 

0.87 

 

54.3 

14.4 

51.8 

42.8 

2.9 

 

59.5 

28.7 

60.2 

74.5 

9.1 

 

62.7 

25.5 

80.4 

49.0 

13.7 

CVA 4.4 4.4 4.3 9.4 17.5 17.6 

CKD 32.4 66.4 73.1 92.8 100 96.1 

Metabolic 

DM 

Hyperlipidemia 

 

17.6 

35.3 

 

26.3 

28.5 

 

39.1 

33.5 

 

43.2 

28.0 

 

48.3 

21.85 

 

53.1 

29.4 
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GL 

Liver 

GID 

 

2.9 

4.4 

 

11.7 

16.8 

 

13.9 

20.0 

 

16.6 

21.6 

 

32.9 

25.2 

 

15.7 

15.7 

Respiratory 

COPD 

Adult Asthma 

 

0 

8.8 

 

2.2 

11.0 

 

1.6 

6.5 

 

4.7 

4.7 

 

9.1 

7.0 

 

11.8 

3.9 

Dysthyroidism  

Hypothyroidism 

Hyperthyroidism 

 

5.8 

0 

 

12.4 

2.9 

 

14.8 

0 

 

15.5 

0.7 

 

24.5 

2.1 

 

25.5 

3.9 

Hematopoietic 

Diseases 

Anemia 

Thrombocytopenia 

 

 

10.3 

5.6 

 

 

8.0 

2.9 

 

 

6.0 

3.5 

 

 

8.6 

5.0 

 

 

15.4 

6.3 

 

 

23.0 

3.9 

Oral Health 20.6 22.6 34.8 35.3 34.3 23.5 

MS 

Osteoarthritis 

Osteoporosis  

 

23.5 

23.5 

 

40.1 

31.4 

 

50.0 

41.3 

 

45.3 

54.0 

 

44.0 

66.4 

 

37.3 

90.0 

Sensory 

Hearing 

Eye 

 

7.4 

4.4 

 

9.5 

9.5 

 

13.5 

25.3 

 

27.0 

61.5 

 

53.9 

82.5 

 

54.9 

94.1 

CNS 

Depression 

Parkinson’s 

Cognitive 

Impairment 

 

25.0 

0 

0 

 

16.1 

0 

0 

 

8.3 

0.87 

0 

 

9.4 

0.4 

0.4 

 

14.7 

2.1 

0.7 

 

13.7 

0 

17.7 
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Cancer 5.9 5.1 7.8 17.6 18.2 16.7 

Events Over the Course of Study   

SBPP < 9.0 0 1.2 1.9 5.6 20.2 66.7 

Disability  0 1.5 1.3 4.7 18.3 66.7 

Geriatric 

syndrome 

0 0 1.1 34.58 61.02 86.32 

Mortality 0 0.49 0.43 1.4 3.3 5.9 

 

SD: standard deviation, CVS: cardiovascular system, HTN: hypertension, IHD: ischemic heart disease, CHF: 

congestive heart failure, PAD: peripheral artery disease, CVA: cerebrovascular accidents, CKD: chronic kidney 

disease, DM: diabetes mellitus, GID: gastrointestinal disease, COPD: chronic obstructive pulmonary disease, MS: 

musculoskeletal diseases, CNS: central nervous system, SBPP: a short battery of physical performance.  

 

The prevalence of each organ system morbidity over the 13 years in men and women is depicted 

in Figure S1.  

 

Figure S1. Prevalence of each organ system morbidity by age groups from left to the right: <45, 

45–54, 55–64, 65–74, 75–84, >84 years in a. men and b. women. Renal and cardiovascular 

systems have the highest prevalence followed by sensory and gastrointestinal, and liver systems. 

The organ-systems morbidities increased with age. Ca: Cancer, CNS: central nervous system, 

CVA: cerebrovascular accident, CVS: cardiovascular system, GL: gastrointestinal-liver system, 

He: hematopoietic system, Met: metabolic system, MK: musculoskeletal system, Pe: 

periodontitis, Re: renal system, Res: respiratory system, Se: sensory system, Th: dysthyroidism 
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Figure S2. Frequency and Combination Patterns for Body Organ Disease Number. The 

interactive graphs illustrate any existing combined multisystem morbidities in the youngest 

group (≤ 44 years), >50% of individuals had no morbidity or only one system morbidity. The 

dynamic graphs are illustrated in the link below.  

 https://bodiagesystem.shinyapps.io/BODN/ 

In the youngest age group (≤ 44 years), >50% of individuals had no morbidity or morbidity in 

one organ system only. In this age group, participants with cancer frequently have other system 

morbidities, including CVS, central nervous system (CNS), and renal system (Ren) (Fig. S2a). 

With increasing age, BODN increases in heterogeneous combinations so that both the number of 

people with multiple organ-system morbidities and the number of systems with morbidity 

increase. Particularly, periodontitis, metabolic, kidney, respiratory, and endocrine systems 

become more frequent after age 55; CVS maintained its increased frequency (Fig. S2c). Renal, 

sensory (Se), and musculoskeletal (MS) systems appeared more frequently after age 65 (Fig. 

S2d), while other morbidities such as CVA, cancer, gastrointestinal and liver (GL), and 

respiratory systems (Res) also further increased. After age 75, most persons showed multiple 

organ system morbidities, with sensory, CNS, and MS appearing more frequently. CVS, 

however, was still the most frequent system morbidity in all age groups.   
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Model Assessments. Using posterior predictive checks and LOO-CV model assessment showed 

high accuracy for both time-1 and time-2 full models, with diagnostics indicating reliable 

computation (k < 0.5; Table S3, Figs. S3a and S3b; and model convergence Rhat = 1 for all 

models). Good effective-sample size from chains using MCMC should be >1,000. All models 

had at least an effective sample size of 2,500. The model assessment showed full models 

performed better in predicting BODN than their corresponding age-only models (with larger 

ELPD with diagnostic k<0.5; Table S3).  

Table S3: Model Assessments, Model Comparisons, and Model Weights to Predict BODN 

 

Model Fits ELPD SE PSIS κ 

<0.7 

ELPD_DIFF DIFF_SE Weights % 

 Time* -3877.1 40.9 100 % -39.9 9.6 7.0 % 

Time-1 age-only -3837.2 40.6 100 % Ref Ref 93.0 % 

 Time** -2825.0  33.4 100 % -111.1 14.5 2.0 % 

Time-2 age-only -2714.0  33.6 100 % Ref Ref 98.0 % 

Time-1 age-only -3992.0 41.5 100 % -302.6 29.8 8.0 % 

Time-1 full  -3690.0 42.8 100 % Ref Ref 92.0 % 

Time-2 age-only 

Time-2 full  

-2714.0 

-2398.0 

33.4 

38.3 

100 % 

100 % 

-316.4 

Ref 

29.3 

Ref 

2.0 % 

98.0 % 

 

ELPD: expected log posterior predictive density (higher value is better); ELPD-DIFF: difference in ELPD values 

compared with the age-only model; SE-DIFF: standard error of the ELDP_DIFF. * Time from baseline to the end of 

study. ** Time from the second visit to the end of study.  

 

Figure S3. Leave-one-out cross-validation (LOO-CV) for model assessment (with diagnostic k < 

0.5). Full models leave-one-out cross-validation in the BLSA at a. time-1 and b. time-2. Each + 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.03.29.21254372doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254372


7 
 

represents an individual at each time-point (907×3=2701 observations at time-1, and 

907×2=1904 at time- 2). Pareto-smoothed importance sampling diagnostic k <0.5 indicates that 

the LOO-CV computation is reliable and there are no outlier observations.   

 

a.       b.  

 

 

 

 

 

 

 

 

 

 

 

In-sample and Out-of-Sample Validation of Body Clock. To validate the BLSA data results, 

we used the parameters obtained from time-1 BLSA to predict BODN in the InCHIANTI 

participants as an out-of-sample validation. The external estimates optimally predicted BODN 

values for InCHIANTI data as illustrated (Fig. S4a).  Stacking showed that the full models using 

InCHIANTI outperformed the age-only models predicting BODN (time-1: 72% versus 28%, 
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time 2: 84% versus 16%). We also used time-1 BLSA parameters (estimates) to create a 

simulated dataset to compare with the observed data (in-sample validation), showing that the 

parameters obtained from the model can optimally reproduce the observed BODN (Fig. S4b).  

 

 

 

Figure S4. Posterior predictive check (coefficient estimates distribution) of Body Organ Disease 

Number (BODN). a. InCHIANTI using BLSA time-1 lagged parameters (out-of-sample-

validation). b. Simulated data using BLSA time-1 parameters (In-sample-validation). The 

predictive check applying distribution of coefficient estimates obtained from BLSA (full model 

time-1 diseases predicting BODN can be employed to predict BODN in the InCHIANTI dataset 

(out-of-sample validation). S4b shows that applying the BLSA parameters from the time-1 full 

model to create a simulated BODN matched the observed BODN in the BLSA dataset (in-sample 

validation).                                                                     
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HTN 1.48748513 0.14244193 1.265261 1.727344

HTN[L2] 0.608147942 0.02302767 0.199595 1.180122

HTN[L3] 0.879337188 0.02302767 0.400834 1.454855

IHD 1.590701418 0.2130871 1.236201 1.93902

IHD[L2] 1.405548061 0.0164556 0.885476 1.886387

IHD[L3] 0.185153357 0.0164556 0.033556 0.550124

CHF 1.817841746 0.19135231 1.505468 2.132722

CHF[L2] 0.623780921 0.01429419 0.335977 1.01448

CHF[L3] 1.194060825 0.01429419 0.789357 1.65676

Arr 0.745955299 0.14010083 0.548137 1.004203

Arr[L2] 0.134633477 0.01096928 0.038362 0.329043

Arr[L3] 0.142959825 0.01435785 0.030942 0.384028

Arr[L4] 0.160614601 0.01634462 0.033734 0.420957

Arr[L5] 0.095755181 0.01156393 0.016202 0.303803

Arr[L6] 0.175775971 0.01722097 0.036285 0.447191

PAD 3.681348581 0.69690847 2.527541 4.812853

Stroke 1.658084319 0.24100643 1.271465 2.058649

Stroke[L2] 0.718711659 0.03128027 0.294805 1.354062

Stroke[L3] 0.160869135 0.01655708 0.026049 0.537075

Stroke[L4] 0.753050646 0.03122227 0.285943 1.348193

CKD 2.543278968 0.38526266 1.982762 3.255165

CKD[L2] 0.981979037 0.02375893 0.591656 1.616537

CKD[L3] 0.439258811 0.01611823 0.216993 0.808529

CKD[L4] 0.386338901 0.02596589 0.107669 0.875411

CKD[L5] 0.718089258 0.04482019 0.194285 1.476121

DM 1.100313801 0.19663324 0.813673 1.443534

DM[L2] 0.198607407 0.01352298 0.066055 0.455984

DM[L3] 0.062931814 0.00808473 0.010279 0.227045

DM[L4] 0.295125897 0.01868092 0.103901 0.648871

DM[L5] 0.117869808 0.01239906 0.022203 0.332538

DM[L6] 0.400923358 0.02374551 0.12154 0.762908

Lipid 0.428824981 0.21146636 0.087281 0.786089

Lipid[L2] 0.195343596 0.0478554 0.012359 0.642082

Lipid[L3] 0.233481385 0.0478554 0.015989 0.674777

Liver 1.318365534 0.23246367 0.986947 1.77978

Liver[L2] 0.542588758 0.03254616 0.197003 1.161116

Liver[L3] 0.476694279 0.03321418 0.141961 1.07997

Liver[L4] 0.27348675 0.02790752 0.05192 0.748293

GID 1.624688808 0.18822779 1.308383 1.939053

GID[L2] 1.30231338 0.02097809 0.773181 1.836277

GID[L3] 0.322375427 0.02097809 0.069348 0.793182

COPD 2.821346678 0.45855995 2.111571 3.614884

COPD[L2] 1.974075995 0.06542288 0.989305 3.2832

COPD[L3] 0.847270683 0.06542288 0.193747 1.921252

Asthma 2.679086915 0.5416834 1.794785 3.587009

 Estimate      Estmate.Error          2.5 % QI        97.5 % QIDisease

Table S2a. Time-1 Single Disease Models Predicting Longitudinal BODN Diseasefor use under a CC0 license. 
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Hypoth 1.150961988 0.1483237 0.908648 1.402722

Hypoth[L2] 0.708281824 0.01762675 0.381034 1.122354

Hypoth[L3] 0.207032219 0.01618875 0.041684 0.551865

Hypoth[L4] 0.206456346 0.01601004 0.041332 0.542585

Hyperth 2.629559971 1.24912886 0.601021 4.750696

Anemia 1.499373068 0.31865919 1.012262 2.137788

Anemia[L2] 1.166531876 0.04124908 0.551422 2.02005

Anemia[L3] 0.332841192 0.04124908 0.05575 0.973244

Thrombocytopenia 2.068472599 0.65843308 0.744881 3.324791

OA 1.369356305 0.24714511 0.998293 1.796632

OA[L2] 0.91317123 0.03097241 0.47735 1.58459

OA[L3] 0.456185075 0.03097241 0.11782 0.937543

Osteop 1.3915404 0.18631465 1.094002 1.7

Osteop[L2] 0.862914982 0.01980504 0.498618 1.37375

Osteop[L3] 0.528625419 0.01980504 0.209952 0.925184

Periodontitis 2.027162054 0.30434752 1.558269 2.530962

Periodontitis[L2] 1.218530109 0.03095982 0.702117 2.003396

Periodontitis[L3] 0.808631945 0.03095982 0.324813 1.390574

Hearing 1.523168862 0.18266472 1.25482 1.849644

Hearing[L2] 1.016883232 0.01693737 0.656657 1.510456

Hearing[L3] 0.225454716 0.01440523 0.05265 0.54385

Hearing[L4] 0.255980065 0.01695774 0.056576 0.624517

Eye 1.652546546 0.20648247 1.352296 2.044069

Eye[L2] 0.983275203 0.01589571 0.647984 1.486025

Eye[L3] 0.084973886 0.00696323 0.016475 0.25369

Eye[L4] 0.236649432 0.01383546 0.064188 0.521441

Eye[L5] 0.320243499 0.02024355 0.074992 0.726519

1.074648122 0.24174024 0.6803 1.475524

0.6515118 0.0480564 0.182853 1.297759

0.423136322 0.0480564 0.08196 1.078929

3.17286003 1.36860008 1.004209 5.669947

1.785098423 0.28943681 0.236803 4.948727

1.387761607 0.28943681 0.127736 4.332916

3.281019941 0.89599083 1.896976 4.898348

2.311773652 0.14338112 0.799231 4.509921

0.969246289 0.14338112 0.150426 2.834585

Depression

Depression[L2]

Depression[L3]

Parkinson's 
Park[L2]

Park[L3]

CI

CI[L2]

CI[L3]

Cancer 2.764381135 0.41449836 2.089097 3.439591

HTN: Hypertension, IHS: Ischemic heart disease, CHF: Congestive heart 
failure, Arr: Arrhythmia, PAD: peripheral artery disease, CKD: chronic 
kidney disease, DM; diabetes mellitus, Lipid; hyperlipidemia, GID: 
gastrointestinal disease, COPD: Chronic obstructive pulmonary disease,
Hypoth: Hypothyroidism, OA: osteoarthritis, osteop: osteoporosis, Park: 
Parkinson's, CI: cognitive impairment
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Table S2b. Time-1 Single-System Models Predicting Longitudinal BODN

System  Disease Estimate Estimate.Error 2.5QI  97.5QI
C

V
D

Hypertension (HTN) 1.124871 0.131508 0.911012 1.349484

HTN[L2] 0.516662 0.024162 0.16062 1.035927

HTN[L3] 0.608209 0.024162 0.211677 1.111557

Ischemic Heart Disease (IHD) 0.915819 0.209326 0.571136 1.254201

IHD[L2] 0.721609 0.028235 0.286257 1.188038

IHD[L3] 0.19421 0.028235 0.030129 0.625586

Congestive Heart Failure (CHF) 1.268613 0.181241 0.975808 1.565369

CHF[L2] 0.412375 0.017686 0.167571 0.775772

CHF[L3] 0.856238 0.017686 0.492213 1.296555

Arrhythmia (Arr) 0.436442 0.093867 0.288669 0.599071

Arr[L2] 0.078718 0.008845 0.015312 0.218847

Arr[L3] 0.10548 0.011948 0.02019 0.283023

Arr[L4] 0.086246 0.011292 0.013514 0.256734

Arr[L5] 0.068738 0.00965 0.010744 0.219818

Arr[L6] 0.067916 0.009233 0.010824 0.2124

Pripheral Artery Disease 1.36731 0.662953 0.276587 2.435516

C
V

A

Stroke 1.658084 0.241006 1.271465 2.058649

Stroke[L2] 0.718712 0.03128 0.294805 1.354062

Stroke[L3] 0.160869 0.016557 0.026049 0.537075

Stroke[L4] 0.753051 0.031222 0.285943 1.348193

R
e

n
al

Chronik Kidney Disease (CKD) 2.543279 0.385263 1.982762 3.255165

CKD[L2] 0.981979 0.023759 0.591656 1.616537

CKD[L3] 0.439259 0.016118 0.216993 0.808529

CKD[L4] 0.386339 0.025966 0.107669 0.875411

CKD[L5] 0.718089 0.04482 0.194285 1.476121

M
et

ab
o

lic

Diabetes Mellitus (DM) 1.101389 0.198533 0.809445 1.444972

DM[L2] 0.192811 0.013445 0.06163 0.438466

DM[L3] 0.063025 0.008057 0.010321 0.226901

DM[L4] 0.296613 0.018001 0.107253 0.640297

DM[L5] 0.121125 0.012964 0.024071 0.344114

DM[L6] 0.403003 0.024542 0.119298 0.770622

Lipid 0.230079 0.199008 -0.088 0.558714

Lipid[L2] 0.105417 0.048264 -0.01104 0.464697

Lipid[L3] 0.124662 0.048264 -0.01481 0.488608

G
IL

IV

Liver 1.319161 0.230119 0.99516 1.761209

Liver[L2] 0.458375 0.030105 0.155004 1.030652

Liver[L3] 0.561652 0.033289 0.202313 1.171493

Liver[L4] 0.270554 0.027127 0.051625 0.724991

Gastrointestinal disease (GID) 1.609891 0.178336 1.320603 1.912127
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GID[L2] 1.294788 0.020005 0.785528 1.813776

GID[L3] 0.315104 0.020005 0.067926 0.774745
R

e
sp

ir
at

o
ry

Chronic Obstructive Pulmonary Disease (COPD)2.407244 0.427321 1.756588 3.161102

COPD[L2] 1.823845 0.056413 0.920263 2.955031

COPD[L3] 0.583399 0.056413 0.114511 1.505026

Asthma 1.966591 0.558395 1.052898 2.887338

D
ys

th
yr

o
id

is
m

Hypothroidism (Hypoth) 1.130064 0.148923 0.890788 1.376182

Hypoth[L2] 0.708059 0.017667 0.375589 1.116119

Hypoth[L3] 0.201862 0.016071 0.039943 0.534519

Hypoth[L4] 0.194634 0.015693 0.036885 0.523929

Hyperth 1.30653 1.220865 -0.68112 3.281895

H
em

at
o

lo
gi

c

Anemia 1.544343 0.329312 1.055362 2.156649

Anemia[L2] 1.204675 0.043028 0.580662 2.039886

Anemia[L3] 0.339667 0.043028 0.057138 0.970056

Thrombocytopenia 2.235982 0.654625 1.156019 3.322787

M
SK

Osteoartheritis (OA) 1.488638 0.247557 1.106206 1.913239

OA[L2] 0.944788 0.02838 0.51686 1.604315

OA[L3] 0.543851 0.02838 0.178615 1.019303

Osteop 1.448479 0.177452 1.159768 1.744862

Osteop[L2] 0.947034 0.017462 0.578679 1.438021

Osteop[L3] 0.501444 0.017462 0.20395 0.874243

O
ra

l H
e

al
th

Periodontitis 2.027162 0.304348 1.558269 2.530962

Periodontitis[L2] 1.21853 0.03096 0.702117 2.003396

Periodontitis[L3] 0.808632 0.03096 0.324813 1.390574

Se
n

so
ry

Hearing 1.029489 0.159273 0.794711 1.318599

Hearing[L2] 0.683202 0.016603 0.395062 1.098742

Hearing[L3] 0.134098 0.012827 0.024995 0.37325

Hearing[L4] 0.194003 0.016816 0.037838 0.489177

Eye 1.392945 0.180934 1.141757 1.732366

Eye[L2] 0.878411 0.014839 0.577192 1.329798

Eye[L3] 0.073999 0.006344 0.014944 0.221153
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0.166353 0.011557 0.03864 0.409862

0.24551 0.017393 0.054983 0.594865
C

N
S

1.025566 0.243399 0.629312 1.420564

0.589299 0.051223 0.146429 1.246848

0.436267 0.051223 0.076956 1.090026

3.162885 1.355242 1.113903 5.630722

1.763537 0.287345 0.26076 4.895371

1.399348 0.287345 0.145471 4.312595

3.074245 0.838734 1.741828 4.567159

2.236709 0.130251 0.772743 4.239599

0.837536 0.130251 0.124925 2.540988

C
an

ce
r

Eye[L4]

Eye[L5]

Depression

Depression[L2] 
Depression[L3] 
Parkinson's (Park)

Park[L2]

Park[L3]

Cognitive Impairment (CI) 
CI[L2]

CI[L3]

Cancer 2.764381 0.414498 2.089097 3.439591
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Table S2c. Time-1 Disease Levels of All Organ Systems Predciting  Longitudinal BODN

97.5QI

C
V

D
Hypertension (HTN) 0.4901 0.063542 0.387963 0.5967

HTN[L2] 0.3299 0.042782 0.261211 0.401752

HTN[L3] 0.1601 0.02076 0.126752 0.194948

Ischemic Heart Disease (IHD)0.2304 0.107847 0.053816 0.408531

IHD[L2] 0.1081 0.050608 0.025254 0.191707

IHD[L3] 0.1223 0.057239 0.028563 0.216825

Congestive Heart Failure (CHF)0.3216 0.074757 0.201216 0.449982

CHF[L2] 0.2341 0.054418 0.146471 0.327556

CHF[L3] 0.0875 0.020339 0.054744 0.122426

Arrhythmia (Arr) 0.1664 0.039274 0.102884 0.235059

Arr[L2] 0.0697 0.016448 0.043087 0.098441

Arr[L3] 0.027 0.006376 0.016701 0.038158

Arr[L4] 0.0201 0.004739 0.012413 0.028361

Arr[L5] 0.0189 0.004461 0.011686 0.026699

Arr[L6] 0.0206 0.004861 0.012734 0.029094

Pripheral Artery Disease -0.0406 0.315954 -0.5617 0.478966

C
V

A

Stroke 0.6723 0.098464 0.512061 0.838745

Stroke[L2] 0.3464 0.050729 0.263817 0.432127

Stroke[L3] 0.0935 0.013697 0.071233 0.116678

Stroke[L4] 0.217 0.031779 0.165268 0.270705

R
e

n
al

Chronik Kidney Disease (CKD)0.9306 0.147978 0.726341 1.222689

CKD[L2] 0.5406 0.085965 0.421951 0.710294

CKD[L3] 0.0708 0.011254 0.055237 0.092984

CKD[L4] 0.0976 0.015517 0.076166 0.128215

CKD[L5] 0.2046 0.032536 0.1597 0.268831

M
et

ab
o

lic

Diabetes Mellitus (DM) 0.4106 0.049724 0.337443 0.505957

DM[L2] 0.1762 0.021342 0.144831 0.217158

DM[L3] 0.059 0.007145 0.048489 0.072703

DM[L4] 0.0586 0.0071 0.048183 0.072246

DM[L5] 0.0481 0.005824 0.039522 0.059259

DM[L6] 0.0528 0.006397 0.043411 0.06509

Lipid 0.4458 0.083246 0.314462 0.58849

Lipid[L2] 0.3219 0.060111 0.22707 0.424943

Lipid[L3] 0.1239 0.023135 0.087392 0.163547

G
IL

IV

Liver 0.7769 0.133789 0.591171 1.031132

Liver[L2] 0.4361 0.075101 0.331848 0.578816

Liver[L3] 0.128 0.022035 0.097366 0.169829

Liver[L4] 0.1999 0.034431 0.15214 0.265366

Gastrointestinal disease (GID)0.9063 0.082108 0.773708 1.047646

System Disease     Estimate    Estimate.Error  2.5QI
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GID[L2] 0.7413 0.067157 0.632825 0.856882

GID[L3] 0.165 0.014951 0.140883 0.190764

R
e

sp
ir

at
o

ry

Chronic Obstructive Pulmonary Disease (COPD)0.6973 0.175453 0.414325 0.989226

COPD[L2] 0.5629 0.141638 0.334472 0.798574

COPD[L3] 0.1344 0.033815 0.079852 0.190653

Asthma 1.6447 0.247988 1.241771 2.057476

D
ys

th
yr

o
id

is
m

Hypothroidism (Hypoth) 0.7089 0.066144 0.604167 0.820915

Hypoth[L2] 0.5181 0.048342 0.441563 0.599976

Hypoth[L3] 0.0896 0.008359 0.076352 0.103744

Hypoth[L4] 0.0884 0.008245 0.075308 0.102325

Hyperth -0.0282 0.531731 -0.90793 0.838024

H
em

at
o

lo
gi

c

Anemia 0.9656 0.18783 0.699185 1.326615

Anemia[L2] 0.6969 0.135558 0.504605 0.957423

Anemia[L3] 0.2687 0.052272 0.194581 0.369192

Thrombocytopenia 2.1069 0.293686 1.626414 2.604094

M
SK

Osteoartheritis (OA) 0.9236 0.114284 0.748405 1.117593

OA[L2] 0.6574 0.081345 0.5327 0.79548

OA[L3] 0.2662 0.032939 0.215705 0.322113

Osteop 0.5872 0.070873 0.474086 0.707026

Osteop[L2] 0.4998 0.060321 0.403501 0.60176

Osteop[L3] 0.0874 0.010552 0.070585 0.105267

O
ra

l H
e

al
th

Periodontitis 1.3705 0.11046 1.205917 1.570483

Periodontitis[L2] 1.1645 0.093851 1.024595 1.334344

Periodontitis[L3] 0.2061 0.016609 0.181322 0.236139

Se
n

so
ry

Hearing 0.47 0.07944 0.348463 0.608929

Hearing[L2] 0.2875 0.048601 0.213188 0.37254

Hearing[L3] 0.0939 0.015869 0.069609 0.12164

Hearing[L4] 0.078 0.013187 0.057844 0.101081

Eye 0.6709 0.096069 0.539163 0.854469

Eye[L2] 0.4295 0.061503 0.345174 0.547033

Eye[L3] 0.05 0.007157 0.040165 0.063654
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Eye[L4] 0.0386 0.00553 0.031036 0.049186

Eye[L5] 0.1399 0.020034 0.112436 0.178189

C
N

S
Depression 0.7574 0.104652 0.587376 0.929958

Depression[L2] 0.4662 0.064419 0.36156 0.572437

Depression[L3] 0.2912 0.040233 0.225816 0.357521

Parkinson (Park) 0.5288 0.56304 -0.48385 1.507164

Park[L2] 0.2617 0.278659 -0.23947 0.745924

Park[L3] 0.2671 0.284381 -0.24438 0.76124

Cognitive Impairment (CI) 1.3213 0.353249 0.755685 1.95154

CI[L2] 1.0165 0.271779 0.5814 1.501454

CI[L3] 0.3047 0.08147 0.174284 0.450086

C
an

ce
r

Cancer 2.3113 0.183372 2.014284 2.61664
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Disease Estimate   Estimate. Error     2.5QI             97.5 QI

HTN 1.365808 0.145896 1.084617 1.654983
HTN[L2] 0.457781 0.023344 0.073561 1.118686
HTN[L3] 0.908027 0.023344 0.35147 1.542738
IHD 1.622505 0.222358 1.192195 2.065991
IHD[L2] 1.405864 0.017816 0.808273 2.02548
IHD[L3] 0.216641 0.017816 0.023377 0.66531
CHF 1.769312 0.180345 1.418302 2.119335
CHF[L2] 0.478147 0.015519 0.153727 0.937947
CHF[L3] 1.291165 0.015519 0.790608 1.889624
Arr 0.743946 0.136673 0.506709 1.043734
Arr[L2] 0.139165 0.010789 0.025686 0.375279
Arr[L3] 0.152824 0.014173 0.020366 0.45125
Arr[L4] 0.172207 0.015866 0.021512 0.509586
Arr[L5] 0.118181 0.012682 0.011569 0.390252
Arr[L6] 0.161569 0.015239 0.01854 0.471411
PAD 2.978019 0.689274 1.619879 4.338565
Stroke 1.668384 0.229083 1.234162 2.119765
Stroke[L2] 0.73642 0.028718 0.250695 1.482205
Stroke[L3] 0.167642 0.015495 0.015594 0.567612
Stroke[L4] 0.764322 0.029001 0.243015 1.461221
CKD 2.442091 0.310664 1.904067 3.104174
CKD[L2] 1.036799 0.01708 0.612134 1.664554
CKD[L3] 0.428573 0.013215 0.188043 0.822401
CKD[L4] 0.464603 0.018483 0.145306 0.955831
CKD[L5] 0.512116 0.028469 0.08769 1.218533
DM 0.951331 0.12853 0.717657 1.21484
DM[L2] 0.234595 0.010546 0.070654 0.508477
DM[L3] 0.066894 0.006142 0.006137 0.22857
DM[L4] 0.286248 0.012644 0.085145 0.609971
DM[L5] 0.148542 0.00974 0.02146 0.391146
DM[L6] 0.215052 0.012681 0.037313 0.514318
Lipid 0.558611 0.189719 0.195398 0.942886
Lipid[L2] 0.304678 0.037964 0.029306 0.851936
Lipid[L3] 0.253933 0.037964 0.018848 0.801471
Liver 1.444632 0.180459 1.134956 1.845936
Liver[L2] 0.621207 0.023077 0.213619 1.269331
Liver[L3] 0.622685 0.023548 0.210204 1.275429
Liver[L4] 0.200739 0.014479 0.022901 0.595614
GID 1.815753 0.185757 1.455839 2.185794
GID[L2] 1.433338 0.019864 0.807431 2.104678
GID[L3] 0.382415 0.019864 0.054027 0.973519
COPD 2.732677 0.460804 1.880481 3.688122
COPD[L2] 2.000727 0.057043 0.884057 3.48998
COPD[L3] 0.73195 0.057043 0.101028 1.954252
Asthma 2.469325 0.561051 1.364427 3.581968
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Hypoth 1.235864 0.149337 0.9413 1.530367
Hypoth[L2] 0.603571 0.018269 0.234759 1.117869
Hypoth[L3] 0.317071 0.019663 0.042818 0.821795
Hypoth[L4] 0.315221 0.019071 0.043257 0.806556
Hyperth 2.122435 1.482759 -0.77767 5.092417
Anemia 1.591337 0.322833 1.017547 2.288061
Anemia[L2] 1.185091 0.040385 0.489339 2.181544
Anemia[L3] 0.406246 0.040385 0.04737 1.187731
Thrombocytopenia 2.890611 0.634849 1.659163 4.127576
OA 1.165759 0.182332 0.81344 1.534836
OA[L2] 0.82754 0.020706 0.393912 1.416313
OA[L3] 0.338219 0.020706 0.062815 0.791585
Osteop 1.165759 0.182332 0.81344 1.534836
Osteop[L2] 0.82754 0.020706 0.393912 1.416313
Osteop[L3] 0.338219 0.020706 0.062815 0.791585
Periodontitis 1.871257 0.26831 1.368994 2.407186
Periodontitis[L2] 1.270717 0.028206 0.667175 2.151126
Periodontitis[L3] 0.60054 0.028206 0.145624 1.234051
Hearing 1.559496 0.215671 1.17085 2.014039
Hearing[L2] 0.938724 0.020281 0.50103 1.595718
Hearing[L3] 0.286431 0.018466 0.045657 0.732353
Hearing[L4] 0.334341 0.021373 0.047961 0.841117
Eye 1.666392 0.192839 1.328692 2.081217
Eye[L2] 1.035007 0.013648 0.647295 1.591406
Eye[L3] 0.084664 0.006026 0.008998 0.26293
Eye[L4] 0.273197 0.012249 0.060557 0.606492
Eye[L5] 0.273524 0.015775 0.038655 0.704151
Depression 1.481503 0.258922 0.97758 1.977831
Depression[L2] 0.783133 0.047483 0.168334 1.715752
Depression[L3] 0.69837 0.047483 0.129537 1.63726
Parkinson 2.572778 0.771707 1.076916 4.076622
Park[L2] 1.501403 0.157381 0.171917 3.774496
Park[L3] 1.071375 0.157381 0.079812 3.425835
CI 3.001057 0.633862 1.869988 4.33048
CI[L2] 2.11621 0.08822 0.7863 4.081947
CI[L3] 0.884847 0.08822 0.107322 2.509583
Cancer 2.818 0.413636 2.034214 3.641436

HTN: Hypertension, IHS: Ischemic heart disease, CHF: Congestive heart 
failure, Arr: Arrhythmia, PAD: peripheral artery disease, CKD: chronic 
kidney disease, DM; diabetes mellitus, Lipid; hyperlipidemia, GID: 
gastrointestinal disease, COPD: Chronic obstructive pulmonary disease,
Hypoth: Hypothyroidism, OA: osteoarthritis, osteop: osteoporosis, Park: 
Parkinson's, CI: cognitive impairment
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C
V

D
Hypertension (HTN) 1.018357 0.143377 0.73696 1.301482

HTN[L2] 0.418161 0.026729 0.066469 1.035602

HTN[L3] 0.600197 0.026729 0.150554 1.184096

Ischemic Heart Disease (IHD) 1.000125 0.216349 0.5789 1.429937

IHD[L2] 0.729253 0.03174 0.227183 1.362437

IHD[L3] 0.270872 0.03174 0.027327 0.868773

Congestive Heart Failure (CHF) 1.315361 0.17528 0.9752 1.662775

CHF[L2] 0.334378 0.017722 0.07355 0.777206

CHF[L3] 0.980983 0.017722 0.519377 1.537368

Arrhythmia (Arr) 0.467016 0.103864 0.271467 0.683637

Arr[L2] 0.088638 0.009675 0.010178 0.269983

Arr[L3] 0.108507 0.012374 0.011571 0.3402

Arr[L4] 0.101532 0.012474 0.009 0.334287

Arr[L5] 0.090284 0.011443 0.008163 0.305801

Arr[L6] 0.078056 0.009979 0.006722 0.263613

Pripheral Artery Disease 1.10438 0.631697 -0.1545 2.346295

C
V

A

Stroke 1.668384 0.229083 1.234162 2.119765

Stroke[L2] 0.73642 0.028718 0.250695 1.482205

Stroke[L3] 0.167642 0.015495 0.015594 0.567612

Stroke[L4] 0.764322 0.029001 0.243015 1.461221

R
e

n
al

Chronik Kidney Disease (CKD) 2.442091 0.310664 1.904067 3.104174

CKD[L2] 1.036799 0.01708 0.612134 1.664554

CKD[L3] 0.428573 0.013215 0.188043 0.822401

CKD[L4] 0.464603 0.018483 0.145306 0.955831

CKD[L5] 0.512116 0.028469 0.08769 1.218533

M
et

ab
o

lic

Diabetes Mellitus (DM) 0.941733 0.127327 0.707474 1.207974

DM[L2] 0.220121 0.010625 0.057444 0.491319

DM[L3] 0.065162 0.006047 0.005998 0.229004

DM[L4] 0.280684 0.012822 0.080813 0.611516

DM[L5] 0.157705 0.010227 0.023789 0.407973

DM[L6] 0.21806 0.012769 0.035544 0.516079

Lipid 0.306806 0.183832 -0.05596 0.668182

Lipid[L2] 0.16523 0.03903 -0.00713 0.60988

Lipid[L3] 0.141576 0.03903 -0.00488 0.583097

G
IL

IV

Liver 1.38194 0.18042 1.073583 1.783083

Liver[L2] 0.514618 0.022064 0.159046 1.12239

Liver[L3] 0.661507 0.023015 0.248112 1.29947

Liver[L4] 0.205815 0.014926 0.024015 0.595372

Gastrointestinal disease (GID) 1.689544 0.174246 1.351319 2.031869

Table S2e. Time-2 Single-System Models Predicting Longitudinal BODN

System Disease Estimate Estimate. Error 2.5QI 97.5QI
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GID[L2] 1.3655 0.017146 0.796917 1.961903

GID[L3] 0.324044 0.017146 0.046532 0.833609

R
e

sp
ir

at
o

ry

Chronic Obstructive Pulmonary Disease (COPD)2.42372 0.44821 1.591579 3.332334

COPD[L2] 1.837564 0.055401 0.780943 3.194109

COPD[L3] 0.586156 0.055401 0.066018 1.697252

Asthma 1.658557 0.565445 0.553314 2.754458

D
ys

th
yr

o
id

is
m

Hypothyridism (Hypoth) 1.224121 0.148128 0.93947 1.51975

Hypoth[L2] 0.601929 0.018744 0.229635 1.11939

Hypoth[L3] 0.312949 0.019576 0.039265 0.821059

Hypoth[L4] 0.309242 0.019058 0.04149 0.805626

Hyperth 1.728464 1.441883 -1.09406 4.554366

H
em

at
o

lo
gi

c

Anemia 1.547565 0.321944 0.974908 2.23388

Anemia[L2] 1.13496 0.041509 0.455607 2.129547

Anemia[L3] 0.412605 0.041509 0.045533 1.189913

Thrombocytopenia 2.670039 0.654878 1.412888 3.992609

M
SK

Osteoartheritis (OA) 1.345266 0.219338 0.94882 1.802361

OA[L2] 1.008486 0.023515 0.506721 1.699702

OA[L3] 0.33678 0.023515 0.054043 0.839804

Osteop 1.189374 0.176104 0.850037 1.545254

Osteop[L2] 0.896277 0.01855 0.454305 1.453848

Osteop[L3] 0.293096 0.01855 0.050282 0.719389

O
ra

l H
e

al
th

Periodontitis 1.871257 0.26831 1.368994 2.407186

Periodontitis[L2] 1.270717 0.028206 0.667175 2.151126

Periodontitis[L3] 0.60054 0.028206 0.145624 1.234051

Se
n

so
ry

Hearing 1.139536 0.193769 0.789897 1.544018

Hearing[L2] 0.639806 0.021346 0.282885 1.209254

Hearing[L3] 0.189005 0.01728 0.021745 0.565522

Hearing[L4] 0.310724 0.023063 0.044807 0.784402

Eye 1.469936 0.1774 1.159481 1.856872

Eye[L2] 0.939982 0.013364 0.576022 1.467763

Eye[L3] 0.076834 0.005816 0.008069 0.247109
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Eye[L4] 0.20955 0.01113 0.037963 0.504977

Eye[L5] 0.24357 0.014698 0.033434 0.63251

C
N

S
Depression 1.348211 0.257022 0.856412 1.861212

Depression[L2] 0.692507 0.048249 0.132127 1.624393

Depression[L3] 0.655704 0.048249 0.108969 1.574065

Parkinson (Park) 2.070603 0.761152 0.556259 3.581636

Park[L2] 1.185202 0.159305 0.083112 3.306083

Park[L3] 0.885401 0.159305 0.042796 3.046493

Cognitive Impairment (CI) 2.616761 0.613695 1.484476 3.909597

CI[L2] 1.792295 0.089525 0.574103 3.670461

CI[L3] 0.824466 0.089525 0.0908 2.397608

C
an

ce
r

Cancer 2.818 0.413636 2.034214 3.641436
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System   Disease Estimate Estimate.Error    2.5QI         97.5QI
C

V
D

Hypertension (HTN) 0.379916 0.059904 0.262583 0.497771

HTN[L2] 0.232224 0.011382 0.056743 0.462956

HTN[L3] 0.147692 0.011382 0.018366 0.390204

Ischemic Heart Disease (IHD) 0.182975 0.099149 -0.01024 0.375307

IHD[L2] 0.101525 0.021356 -0.00128 0.346461

IHD[L3] 0.081449 0.021356 -0.00079 0.328557

Congestive Heart Failure (CHF) 0.269525 0.073366 0.126922 0.416864

CHF[L2] 0.151511 0.013051 0.02594 0.372765

CHF[L3] 0.118014 0.013051 0.013427 0.331668

Arrhythmia (Arr) 0.206914 0.036899 0.137996 0.283298

Arr[L2] 0.107797 0.003952 0.042722 0.206691

Arr[L3] 0.030836 0.003135 0.003271 0.098

Arr[L4] 0.021089 0.002399 0.001962 0.073197

Arr[L5] 0.02183 0.002435 0.001972 0.074123

Arr[L6] 0.025362 0.002743 0.002472 0.084984

Pripheral Artery Disease -0.04873 0.275327 -0.58769 0.491798

C
V

A

Stroke 0.781978 0.091318 0.61067 0.966722

Stroke[L2] 0.4037 0.011461 0.163408 0.73768

Stroke[L3] 0.142072 0.009589 0.017279 0.410499

Stroke[L4] 0.236206 0.010205 0.053314 0.50154

R
e

n
al

Chronik Kidney Disease (CKD) 0.842725 0.139055 0.605728 1.143257

CKD[L2] 0.518513 0.01307 0.270452 0.921447

CKD[L3] 0.043151 0.003882 0.005324 0.131483

CKD[L4] 0.056048 0.005493 0.006196 0.181499

CKD[L5] 0.225013 0.015071 0.035734 0.536295

M
et

ab
o

lic

Diabetes Mellitus (DM) 0.386649 0.038848 0.315486 0.467351

DM[L2] 0.217345 0.003384 0.123763 0.342049

DM[L3] 0.049183 0.00275 0.00679 0.135443

DM[L4] 0.035684 0.002165 0.004144 0.104461

DM[L5] 0.052721 0.002552 0.008262 0.127662

DM[L6] 0.031715 0.001949 0.003493 0.093711

Lipid 0.498728 0.068279 0.365821 0.636966

Lipid[L2] 0.440733 0.004888 0.261312 0.626467

Lipid[L3] 0.057995 0.004888 0.006029 0.18197

G
IL

IV

Liver 0.807865 0.102893 0.632982 1.035853

Liver[L2] 0.498323 0.010576 0.266522 0.848682

Liver[L3] 0.154523 0.008837 0.028778 0.387139

Liver[L4] 0.155019 0.009234 0.024971 0.391196

Gastrointestinal disease (GID) 0.971765 0.078902 0.821113 1.127105

Table S2f. Time-2 Disease Levels of All Organ Systems Predicting  Longitudinal BODNfor use under a CC0 license. 
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GID[L2] 0.797555 0.00683 0.521177 1.087994

GID[L3] 0.17421 0.00683 0.028493 0.411709
R

e
sp

ir
at

o
ry

Chronic Obstructive Pulmonary Disease (COPD) 1.054557 0.180949 0.720707 1.43213

COPD[L2] 0.854204 0.018734 0.418053 1.387046

COPD[L3] 0.200353 0.018734 0.022688 0.60141

Asthma 1.481823 0.236173 1.018359 1.940204

D
ys

th
yr

o
id

is
m

Hypothyridism (Hypoth) 0.809764 0.060403 0.692728 0.929966

Hypoth[L2] 0.591887 0.004773 0.394687 0.817915

Hypoth[L3] 0.127868 0.004774 0.019065 0.309397

Hypoth[L4] 0.090009 0.003882 0.011854 0.242219

Hyperth 1.479465 0.571852 0.35318 2.604114

H
em

at
o

lo
gi

c

Anemia 0.872939 0.114071 0.665332 1.11532

Anemia[L2] 0.748036 0.009246 0.449185 1.092055

Anemia[L3] 0.124903 0.009246 0.013878 0.362335

Thrombocytopenia 1.77794 0.275766 1.237905 2.330068

M
SK

Osteoartheritis (OA) 0.732732 0.092765 0.565253 0.929261

OA[L2] 0.586542 0.008107 0.353203 0.887675

OA[L3] 0.146191 0.008107 0.025296 0.348605

Osteop 0.632623 0.065177 0.507485 0.764525

Osteop[L2] 0.56705 0.003875 0.385834 0.75313

Osteop[L3] 0.065573 0.003875 0.007563 0.183267

O
ra

l H
e

al
th

Periodontitis 1.326301 0.095104 1.152712 1.523607

Periodontitis[L2] 1.18852 0.004988 0.901671 1.495978

Periodontitis[L3] 0.137781 0.004988 0.020904 0.331816

Se
n

so
ry

Hearing 0.461604 0.090482 0.297582 0.651263

Hearing[L2] 0.233712 0.01072 0.087032 0.488882

Hearing[L3] 0.085783 0.009331 0.008942 0.274269

Hearing[L4] 0.14211 0.011744 0.020134 0.362675

Eye 0.700673 0.081251 0.563311 0.878643

Eye[L2] 0.501037 0.006122 0.318461 0.753921

Eye[L3] 0.039964 0.002679 0.004938 0.1185
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Eye[L4] 0.04458 0.00306 0.005305 0.133565

Eye[L5] 0.115092 0.006577 0.016767 0.293015
C

N
S

Depression 1.049915 0.108762 0.840383 1.265493

Depression[L2] 0.465469 0.014725 0.158678 0.911871

Depression[L3] 0.584447 0.014725 0.234831 1.026547

Parkinson (Park) 0.764393 0.306402 0.164649 1.371399

Park[L2] 0.394865 0.066681 0.017924 1.241619

Park[L3] 0.369527 0.066681 0.015581 1.222107

Cognitive Impairment (CI) 1.238126 0.254549 0.774515 1.770587

CI[L2] 0.874406 0.034934 0.329794 1.676514

CI[L3] 0.36372 0.034934 0.041151 1.016659

C
an

ce
r

Cancer 2.418129 0.178807 2.07605 2.774339

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.03.29.21254372doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254372

	Cover Letter_Nature_Communication
	merged
	Cover Letter_Nature_Medicine
	Body Clock_Body Organ Disease Number_FINAL_Submission
	Fig1a
	Fig1b
	Figure. 2c-d
	Figure.2a-b
	Fig3.a-to-f
	Fig4a-b
	Fig4c
	Fig.5
	SupplemntalInformation_merged
	SupplemnetalInformation_Submission
	TableS2-A
	TableS2-B
	TableS2-C
	TableS2-D
	TableS2-E
	TableS2-F





