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Abstract10

Simulation models from the early COVID-19 pandemic highlighted the urgency of ap-11

plying non-pharmaceutical interventions (NPIs), but had limited empirical data. Here12

we use data from 2020-2021 to retrospectively model the impact of NPIs. Our model13

represents age groups and census divisions in Ontario, Canada, and is parameterised with14

epidemiological, testing, demographic, travel, and mobility data. The model captures how15

individuals adopt NPIs in response to reported cases. Combined school/workplace closure16

and individual NPI adoption reduced the number of deaths in the best-case scenario for17

the case fatality rate (CFR) from 174, 411 [CI: 168, 022, 180, 644] to 3, 383 [CI: 3, 295,18

3, 483] in the Spring 2020 wave. In the Fall 2020/Winter 2021 wave, the introduction19

of NPIs in workplaces/schools reduced the number of deaths from 17, 291 [CI: 16, 268,20

18, 379] to 4, 167 [CI: 4, 117, 4, 217]. Deaths were several times higher in the worst-case21

CFR scenario. Each additional 7 − 11 (resp. 285 − 452) individuals who adopted NPIs22

in the first wave prevented one additional infection (resp., death). Our results show that23

the adoption of NPIs prevented a public health catastrophe.24

Introduction25

Non-pharmaceutical interventions (NPIs) such as school and workplace closure, limiting group26

sizes in gatherings, hand-washing, mask use, physical distancing, and other measures are es-27

sential for pandemic mitigation in the absence of a vaccine [1]. Scalable NPIs, in particular,28

are measures that can be taken up by the entire population in case containment strategies have29
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failed [2]. These measures have been applied extensively during the 2019 coronavirus disease30

(COVID-19) pandemic in order to reduce severe outcomes [3]. Given the extensive social and31

economic consequences of the COVID-19 pandemic, there is significant value in assessing how32

many cases, hospitalizations, and deaths were prevented by pandemic mitigation measures that33

relied upon scalable NPIs.34

Assessments of the effectiveness of NPIs sometimes rely upon comparing health outcomes35

in countries that did not implement certain NPIs, to those that did [4]. However, it may be36

difficult to control for confounding factors in cross-country comparisons such as differing social37

and economic circumstances. Another approach is to monitor outcomes longitudinally in a38

given population as they respond to a timeline of changing NPIs [5].39

However, empirical approaches to predicting the number of COVID-19 cases in the absence40

of interventions are difficult or impossible since, in every country, governments implemented41

control measures and/or the population responded to the presence of the virus. Even in the42

case of Sweden, whose government famously adopted a de facto herd immunity strategy [6],43

the population exhibited enormous reductions in mobility in March and April 2020 (27%, 61%,44

and 82% reduced time spent at retail/recreation destinations, transit stations, and workplaces,45

respectively, at their maximal values) [7]. However, simulation models can be useful the task of46

estimating the number of cases in the absence of interventions, as well as many other questions47

concerning SARS-CoV-2 transmission and COVID-19 disease burden [8–18]. Simulation models48

that were developed early during the pandemic made projections for such scenarios, but required49

rational assumptions about crucial parameter values in the absence of empirical data specific50

to COVID-19 [9, 16, 18].51

Here we adopt a retrospective approach of fitting a simulation model to empirical data52

from March 2020 to February 2021 in order to estimate how many COVID-19 cases and deaths53

would have occurred in the province of Ontario, Canada in the absence of NPIs. After fitting54

the model to empirical data, we relaxed the parameters relating to NPIs to predict what might55

have happened in their absence, or in the presence of only a selection of certain NPIs. The56

model includes the census area and age structure of Ontario, as well as travel between census57

areas. Moreover, the model accounts for population behavioural responses to pandemic waves:58

without volitional population uptake of NPIs, “flattening the curve” may not have been possible59

[17].60
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Results61

Model overview62

To capture the social-epidemiological dynamics of severe acute respiratory syndrome coron-63

avirus 2 (SARS-CoV-2) transmission and COVID-19 cases, we developed a stochastic compart-64

mental model incorporating age and spatial structure (Figure 1). Transmission dynamics in65

the population of each census region are described by a Susceptible (S), Exposed (E), Pre-66

symptomatic and infectious (P), Symptomatic and infectious (I), Asymptomatic and infectious67

(A), Removed (R) natural history. Populations in different regions are connected through com-68

muter travel. Transmission is reduced through school and/or workplace closure and infection69

control efforts in those settings, under direction from public health authorities. However, trans-70

mission is also reduced outside of school and work settings as a result of volitional efforts by71

individuals to adopt NPIs, including measures such as physical distancing, hand-washing, and72

mask wearing (Supplementary information, Figure S1). This occurs in proportion to the daily73

incidence of reported cases. Transmission rates are region-specific to account for regional differ-74

ences in contact patterns due to population density and other factors, and were also modified75

by seasonality in transmission. Age classes varies in their relative susceptibility. Age-specific76

testing rates increase over time from initially low levels in March 2020 to a constant level (with77

the date this is attained varying by age class).78

Using Ontario data, we estimated deaths resulting from COVID-19 under best-case and79

worst-case scenarios for the crude case fatality ratio (CFR). In the best-case scenario we as-80

sume that CFR computed from the historical for the first and second waves also applies in81

counterfactual scenarios where the case incidence was much higher due to relaxing NPIs. In82

the worst case, we extrapolate the observed empirical relationship between case incidence and83

CFR to consider the possibility that the CFR increases with case numbers [19], due to increased84

strain on the healthcare system [20] (Supplementary information, Figure S2).85

Epidemiological [21–23], testing [21–23], demographic [24], travel [25], and mobility data86

[7] for Ontario were used to parameterise the model. We employed a 2-stage non-linear opti-87

mization process to fit cases by age class at the provincial level, and total cases at the Public88

Health Unit (PHU) level [26–28]. The first stage used a global algorithm, with the results of89

that fitting input as the initial values for the second-stage local optimization. This allowed90

us to estimate the baseline transmission rate, as well as how it responded to school/workplace91

closure, and how many individuals adhered to NPIs in response to reported case incidence. Full92
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details on the model structure and parameterisation appear in the Methods.93

Scenarios and outcomes analyzed94

We generated model outputs for reported COVID-19 cases and deaths over three time periods.95

The first time period covers the first wave from 10 March 2020 to 15 August 2020. The second96

time period from 12 June 2020 to Feb 28 2021 covers Ontario’s reopening during the first97

wave and the subsequent second wave. These periods are studied separately because the first98

and second waves differed considerably in terms of their epidemiology, disease burden, and99

interventions. These two time periods were analyzed retrospectively: the empirical data from100

these time periods were used to fit the model.101

In the first time period, Ontario implemented school and workplace closure, and a significant102

proportion of the population adhered to recommended NPIs. For the first wave, we projected103

what might have happened under three counterfactual scenarios: (1) school/workplace closures104

were enacted but no individuals adhered to any other NPIs, (2) school/workplace closures were105

not enacted but individuals adhered to other NPIs in proportion to reported case incidence,106

and (3) school/workplace closures were not enacted and no individuals adhered to NPIs (a “do107

nothing” scenario).108

In the second time period, Ontario closed schools and workplaces in late 2020/early 2021,109

and began re-opening in February 2021, but with mandatory NPIs in place to combat transmis-110

sion, such as requiring mask use in schools. We considered two counterfactual scenarios for the111

re-opening phase in February 2021: (1) reopening does not occur (school/workplace closures112

continues indefinitely), and (2) schools and workplaces are reopened without NPIs in place.113

Individual NPI adherence varied in response to cases in homes and other locations for all of114

these scenarios. We also note that all of our scenarios for the second time period incorporated115

the first provincial imposition of control measures in Spring 2020 followed by the first provincial116

re-opening in Summer 2020.117

For the first time period and with reference to the average population uptake of NPIs during118

those periods, we also estimated how many additional individuals must adopt NPIs in order to119

prevent one additional case, or one additional death (i.e., incremental cases and death prevented120

by NPI uptake). These measures gauge the impact of individual-level efforts on the course of121

the pandemic. The numbers are calculated as an incremental quantity because the incremental122

effectiveness of an individual choosing to adopt NPIs depends upon how many other individuals123
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in the population are already doing so, on account of their impact on community transmission.124

Cases and deaths prevented by NPIs in the first and second waves125

Results for our three counter-factual scenarios in the first wave highlight the key role that126

NPIs played in limiting the spread of SARS-CoV-2, and also show how school/workplace clo-127

sures interact with individual-level behaviours concerning NPIs (Figure 2). The actual number128

of daily reported cases peaked at 640 in Ontario in April 2020, and the modelled time series129

of cases follows the empirical epidemic curve (Figure 2a, inset). However, in the absence of130

both school/workplace closure and individual uptake of NPIs, the model predicts that daily131

number of reported cases would have peaked at 65,000 in May 2020. Allowing for either132

school/workplace closure or individual uptake of NPIs reduces this peak considerably, although133

the peaks are still large compared to the factual (historical) scenario where both were applied.134

Under the best case scenario for the CFR, the first wave would have resulted in 174, 411135

[CI:168, 022, 180, 644] deaths in the absence of both school/workplace closure and individual136

adherence to NPIs (Figure 2b). This number greatly exceeds the 3, 383 deaths that actually137

occurred between 10 March and 15 August 2020 due to lockdown and population adoption of138

NPIs [29]. The worst-case scenario for deaths is even higher under the “do nothing” scenario139

(Figure 2c), on account of the unmanageable surge in cases causing a heightened CFR. However,140

applying either school/workplace closure or individual uptake of NPIs significantly reduces the141

number of deaths in both worst- and best-case scenarios. The reductions are greater for applying142

only individual-level NPI measures than for applying school/workplace closure. This is because143

school/workplace closure in our model only affects school-age children and working-age adults144

working in non-essential businesses, whereas individual adoption of NPIs in our model spans145

all employment sectors in all age groups.146

These findings are qualitatively unchanged for the second wave, except that the difference in147

cases and deaths across the scenarios is not as large, since we did not evaluate a “do nothing”148

scenario. (Figure 3). As before, cases and deaths are considerably higher when NPI use is149

limited (in this case, does not occur in workplaces/schools). Both the empirical epidemic curve150

and the modelled epidemic curves share the feature of a relatively slow rise to a peak, followed151

by a relatively rapid drop afterwards (Figure 2a). This is due to the combined effect of timing152

of school/workplace closure, behavioural response, and seasonality in the transmission rate.153
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Impact of individual-level efforts154

We estimated how many additional individuals must adopt NPIs in order to prevent one ad-155

ditional case, and one additional death, given what percentage of the population is already156

adherent to NPIs. We estimated this under both best-case and worst-case scenarios for the157

CFR. When the percentage of the population already adherent to NPIs in within empirically158

valid ranges for the first wave (shaded regions in Figure 4), we estimated that every 7 to 11159

individuals who adopted NPIs prevented a single SARS-CoV-2 infection. Similarly, every 285160

to 452 (respectively, 159 to 280) individuals who adopted NPIs prevented a single COVID-19161

death in the best-case (respectively, worst-case) scenarios.162

In the extreme case where a very high percentage of the population is already adherent to163

NPIs, the incremental number of individuals who must adhere to NPIs to prevent one case164

or death increases dramatically. This is expected, since high uptake of NPIs can reduce case165

incidence to very low levels, and thus reduce the incremental benefit of a few more individuals166

adopting NPIs. Similarly, in the other extreme when few individuals in the population have167

adopted NPIs, the incremental benefit of each additional individual who adopts NPIs is higher.168

Discussion169

This suite of simulations informs a picture of how NPIs–particularly the combination of gov-170

ernment mandated measures such as school/workplace closure and volitional individual level171

actions such as physical distancing and hand-washing–strongly mitigated COVID-19 cases and172

deaths across both age and census area in Ontario. School/workplace closure or individual-level173

NPIs implemented on their own would also have reduced both cases and deaths considerably,174

although the absolute numbers would still have been large.175

The number of deaths averted by NPIs was particularly large in the first wave. Our projec-176

tion of 174, 411 deaths in the “do nothing” scenario for interventions and the best-case scenario177

for the CFR is plausible: supposing that 70% of Ontario’s 14.6 million people had been infected178

in a “do nothing” scenario, the adjusted CFR for Spring 2020 of 1.6% [19] would have resulted179

in 163, 520 deaths. Moreover, the actual number of deaths would likely have been much higher180

than suggested by our best-case scenario. The adjusted CFR of 1.6% was estimated from a181

population where the ICU capacity in Spring 2020 was not greatly exceeded [29]. Therefore,182

the adjusted CFR would have been much higher in a population contending with a massive183
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surge in cases.184

Our results on the number of individuals who must adopt NPIs to prevent one case or185

death increased dramatically with the percentage of the population already adhering to NPIs186

(Figure 4). As a result, an individual in a population where most others have already adopted187

NPIs has a reduced personal incentive to practice NPIs, since the number of cases (and thus188

their perceived infection risk) is lowered. This suggests the possibility of a free-rider effect189

whereby non-mitigators gain the benefits of reduced community spread without contribute to190

infection control [30], although social norms can curb this effect [31, 32].191

Our model made several simplifying assumptions that could influence results and/or limit192

the conditions under which the model can be used. For instance, as our model describes193

community spread, we are not explicitly accounting for how transmission within congregate194

living settings, long-term care homes, etc. can cause case numbers to increase rapidly [29, 33,195

34]. As well, our simplification of Ontario’s tiered system for NPIs at the level of individual196

public health units [35] into a single aggregate “open with NPIs in place” state may lead us to197

over/underestimate cases at the PHU level, if the tier that PHU is in is more/less restrictive198

than the aggregate state.199

It is well known that mathematical models can be used for forecasting purposes, but they200

can also be valuable for conveying insights, or for aspirational purposes. In the latter case,201

mathematical models can motivate the uptake of behaviours to avoid the worst-case scenarios202

scenarios predicted by the model. The prosocial preferences that humans often adopt toward203

infectious disease control [31, 32] suggest that this use of models can be effective. Early mathe-204

matical models developed during the COVID-19 pandemic showed us what might happen if we205

chose not to mitigate the pandemic. Our retrospective analysis that uses data from the past206

year confirms that we prevented a very large loss of life by our decision to take action, and that207

each individual person who chose to adopt NPIs helped prevent both cases and deaths.208

Methods209

Base model210

Our model, modified from [16], captures transmission dynamics for SARS-CoV-2 within211

Ontario, Canada. Age structure is introduced, with age classes 1-5 respectively represent 0-19212

years old, 20-39 years old, 40-59 years old, 60-79 years old, and 80+ years old. The model also213
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includes mechanisms for testing, individual NPI adherence, and the implementation of closures214

(of schools and workplaces).215

We describe the transmission dynamics according to a SEPAIR disease progression. In-216

dividuals are classed according to their epidemiological status; susceptible to infection (S),217

exposed i.e. infected but not yet infectious (E), pre-symptomatic and infectious (P ), asymp-218

tomatic i.e. infectious without ever developing symptoms (A), symptomatic and infectious (I),219

or removed i.e. no longer infectious (R). We also incorporate testing for the virus, with individ-220

uals classed as having either a known (K) or unknown (U) infection status. Testing occurs for221

symptomatic, pre-symptomatic, and symptomatic individuals and the outcome of these tests222

becomes known with some daily probability.223

Ontario’s population is distributed across 49 census divisions, hereafter referred to as regions224

[25]. Within our model, each region contains a population with the same size as the census225

division it represents. Each day within the simulation begins with every individual within age226

class i in region j travelling to region k for the day, with some probability νimjk. Individuals227

who travel to another region experience any transmission events in the region they are visiting.228

At the end of the day, these individuals return to region j.229

The travel matrix, M = [mjk] contains empirical data on the frequency of travel between230

regions [25]. We use a matrix M∗ = [2mjk] as input to our model, since the data collected231

considers only individuals aged 15 and up who commute from their home to their place of work232

and thus excludes travel by unemployed individuals and those under age 15, as well as travel233

undertaken for other reasons (shopping, athletics, social events, etc.). We supplement M∗
234

with age-specific travel rates, assuming that young/old individuals travel less frequently than235

working-age individuals Individuals in age classes 1,4,5 (ages 0-19, 60+) reduce their travel by236

a factor of νi = ν0, with νi = 0 for age classes 2,3 (ages 20-39, 40-59).237

As 81% of reported COVID-19 cases are mild, we assume infected individuals reduce their238

travel by a factor r = 0.19 [36]. Additionally, individuals who test positive for COVID-19239

reduce their travel by a factor η = 0.8 [18, 37], so the combined reduction in travel for an240

infected individual in age classes 1,4 or 5 who has tested positive is (1 − νi)(1 − r)(1 − η).241

When a region closes its schools, the rate of travel to that region is reduced by a factor εs, with242

a similar reduction, εw, when its workplaces are closed. When both are closed, the combined243

reduction in travel is (1− εs) (1− εw). Similarly, if a region has its schools or workplaces open,244

but with NPIs in place, travel is reduced by a factor of δsεs and of δwεw respectively. These245

parameters (εw, εs, δw, δs) are explained in further detail below, as they are also used to describe246
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the efficacy of NPIs in reducing contacts in schools and workplaces.247

As noted in [16], there is a risk of overestimating the effect of travel, since we assume that all248

individuals within an age class have an equal likelihood of travelling to another region on any249

given day. Within real-world populations, the same individuals will tend to travel consistently250

(e.g. will travel frequently, to the same region, and interact with the same group of contacts).251

Despite this, it is preferable to err on the side of over-estimation, as travel can substantially252

impact spread of SARS-CoV-2 through the importation of the virus to regions with few or no253

cases.254

Each individual, i, has a state, {Dj
i , T

j
i } based on their age class, j ∈ {1, 2, 3, 4, 5}, epidemi-255

ological status, Dj
i ∈ {S

j
i , E

j
i , P

j
i , A

j
i , I

j
i , R

j
i}, and testing status, T ji ∈ {U

j
i , K

j
i }. An individual256

with age class j, epidemiological status Dj, and either testing status is {Dj
i , ·}, similarly for257

{·, T ji }. Within region k on day t, PDjT j

t,k is the number of individuals with age class j and state258

{Dj
i , T

j
i }, PDT

t,k is the number of individuals across all age classes with state {Di, Ti}, and Pt,k259

is the total population size.260

Every day, states for individuals with age class j in region k are updated according to the261

following steps:262

1. Exposure: With probability λj,k(t), {Sj, ·} individuals are exposed to SARS-CoV-2 and263

shift to {Ej, ·}.264

2. Onset of infectious period: With probability (1 − π)α, {Ej, ·} individuals become pre-265

symptomatic and infectious and transition to {P j, ·}, or alternatively (with probability266

πα) become asymptomatic and infectious and transition to {Aj, ·}.267

3. Onset of symptoms: With probability σ, individuals in {P j, ·} become symptomatic and268

shift to {Ij, ·}.269

4. Testing: With probability τk,Ij , individuals in {Ij, U j} are tested and shift to {Ij, Kj},270

similarly for τk,P j and τk,Aj .271

5. Removal: With probability ρ, individuals in {Ij, ·} and {Aj, ·} cease to be infectious and272

are removed to {Rj, ·}.273

During the onset of the infectious period, newly infected individuals are assigned as super-274

spreaders with probability s = 0.2 [38]. Super-spreaders are denoted with the subscript s, while275

non-super-spreaders are denoted by ns, creating sub-divisions within P j, Aj and Ij given by276
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P j
s , P j

ns, A
j
s, A

j
ns, I

j
s , I

j
ns. The probability of a super-spreader infecting others is (1 − s)/s277

higher than the probability of a non-super-spreader doing so. Several other factors also impact278

the infection probability. First, the individuals contacts; both those in schools and workplaces279

(limited by closures) and those in homes (unaffected by closures). Second; the prevalence of280

the virus within the population. Third; the effectiveness of closures and individual adherence281

to NPIs in reducing transmission.282

Individuals risk contracting or transmitting SARS-CoV-2 when they interact with others.283

Four possible locations for interactions are assumed; schools (s), workplaces (w), homes (h),284

and other (o). For each location, a contact matrix N l = [nlij], where l ∈ {s, w, h, o}, contains285

information on age-stratified contact frequencies. Each nlij indicates the relative frequency with286

which age class i has contacts in age class j, normalized using the the highest total number287

of contacts (across all locations) for a single age class. Matrices (Supplementary information,288

Figure S4) are generated by aggregating Canada-specific data from [39]. The 75-80 age class in289

[39] is used as a proxy for our 80+ age class. When aggregating, we weight the data from each290

5-year age class by the proportion of Ontario’s population that falls within that age-range [24].291

Closures reduce contacts in schools (s), workplaces (w). NPIs introduced to combat SARS-

CoV-2 transmission in workplaces and schools as they reopen will also reduce contacts, to a

lesser extent. C l
k(t) controls the measures in place for workplaces (l = w) or schools (l = s) in

region k:

C l
k(t) =


0 if l are completely open,

δlεl if l are open with NPIs in place,

εl if l are closed.

(1)

Parameters εw,s represent the efficacy of closures in workplaces, and schools. Additionally,292

δw,s < 1 control how effective NPIs in workplaces and schools are, in comparison to a closure.293

All remaining contacts are assumed to occur at home (h) or in other locations (o), where

contacts may be reduced through individual adherence to NPIs. The maximum efficacy of NPIs

in homes is denoted by εh, similarly for other locations by εo. In region k, the level of individual

adherence to NPIs in these locations, χk(t), is a function of perceived risk [40, 41], based on

the prevalence of confirmed cases within the region’s population, and of the presence/absence

of stay-at-home orders in the region, according to

χk(t) = 1− e−(ω(t)(P+
t,k/Pt,k)+L(t)) (2)
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where PAK
t,k + P IK

t,k = P+
t,k indicates the number of active confirmed cases in the region and

L(t) =

0 if no stay-at-home orders,

L0 if stay-at-home orders in place,
(3)

with L0 capturing the extent to which stay-at-home orders impact NPI adherence. The risk

perception coefficient, ω(t), changes over time, beginning to decrease during the second wave

according to

ω(t) =

ω0 if t < td

ω0e
−ζ(t−td) if t ≥ td

(4)

where ω0 is the base risk perception coefficient, td corresponds to August 15, 2020 and ζ controls294

the decay of ω(t) over time.295

Allowing ω(t) to change over time captures both the idea that perceived risk changes as296

new information about SARS-CoV-2 and COVID-19 becomes available, and that, though not297

explicitly modelled, the accumulating costs (economic, social, etc.) associated with NPI ad-298

herence may lead individuals to reduce their level of adherence [42, 43]. Ontario-specific data299

suggests it is plausible to assume these factors are influencing NPI adherence As time passes,300

the extent to which mobility in retail and recreation locations [7] (our proxy for NPI adherence)301

decreases when active cases are high is lessened (Supplementary information, Figure S1), in the302

absence of stay-at-home orders in one or more PHU (i.e. prior to 14 January 2021). Once303

stay-at-home orders have been introduced, reductions in mobility for a given level of active304

cases are larger.305

Additionally, we estimate a provincial weighted mean value for ω(t) (Supplementary in-306

formation, Figure S1) using Ontario-specific data, which begins to decay around mid-August307

2020 (we choose this as 15 August 2020 for simplicity). The increase in the estimated ω(t)308

value occurring in late December 2020 (prior to the stay-at-home orders) is likely caused by a309

combination of changing mobility patterns over the winter holiday period, and the declaration310

of a province-wide shutdown on 26 December 2020. We emphasize that this is a rough estimate311

of ω(t), as there is not a one-to-one relationship between PHU and the regions reported in the312

mobility data, and include it only to illustrate the assumed trend over time.313

Accounting for the effects of closures and individual NPI adherence, the fraction of contacts
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in age class j which remain for individuals in age class i at time t in region k is:

Fij,k(t) = nwij (1− Cw
k (t)) + nsij (1− Cs

k(t)) + nhij (1− εhχk(t)) + noij (1− εoχk(t)) . (5)

The transmission probability for non-super-spreaders ({Pns, ·}, {Ans, ·}, {Ins, ·}) is βDns =

βD0 , while for super-spreaders ({Ps, ·}, {As, ·}, {Is, ·}) we set βDs = βD0 (1 − s)/s. Individuals

who test positive for COVID-19 reduce their contacts by a fraction η, such that while fT=U =

1, fT=K = 1 − η, where η = 0.8 [18, 37]. The daily probability of a susceptible individual in

age class i becoming infected in region k, stated as 1 less the probability of the individual not

becoming infected, is:

λi,k(t) = 1−
∏
Dj ,T j

[
1− Fij,k(t)fTβDi,k(t)

]P ∗DjTj

t,k (6)

where βDi,k(t) is the probability of an individual in region k with epidemiological state D trans-

mitting SARS-CoV-2 to a susceptible individual in age class i, at time-step t. This probability

is:

βDi,k = ξkγiβ
D
0

[
1 +B cos

(
2π

365
(t+ φ)

)]
(7)

where γi is an age-specific susceptibility coefficient, ξk is a PHU-specific transmission modi-314

fier, and seasonality is controlled by B and φ so transmission probability peaks sometime in315

fall/winter and attains its lowest value in spring/summer [44]. Due to epidemiological data316

being reported at the PHU level ξk values are PHU-specific not region-specific and all regions317

within the same PHU will have identical ξk values. The starred notation in P ∗DjT j

t,k indicates318

the number of individuals with state {Dj, T j} in region k at time t after adjusting for travel.319

Based on examination of Ontario-specific data on tests completed per day [22], we assume

symptomatic testing probability for individuals in age class i changes over time according to

τIi(t) =

τI0 if t < tn=50

τImax − (τImax − τI0)e−ψi(t−tn=50) if t ≥ tn=50

(8)

where we have initial, τI0 , and maximum τImax testing probabilities that hold across all age320

classes. For each age class, i, we fit values for the parameter, ψi, controlling the rate at which321

the testing probability increases over time. Age-specific testing rates are assumed, as factors322

such as targeted testing in long-term care homes and schools, and the severity of symptoms in323
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different age groups can influence the likelihood that a person of a given age is tested [45–47].324

We assume that pre-symptomatic and asymptomatic individuals experience a lower testing

probability than symptomatic individuals, as provincial testing guidelines limit asymptomatic

testing to high risk individuals and those in groups targeted for testing [45]. We set τP0i
=

τA0i
= 0 ∀ i. The testing probability for pre-symptomatic individuals in age class i is:

τPi
(t) =

0 if t < tn=50,

τPmax

(
1− e−ψi(t−tn=50)

)
if t ≥ tn=50.

(9)

Similarly, for asymptomatic individuals we have a testing probability:

τAi
(t) =

0 if t < tn=50,

τAmax

(
1− e−ψi(t−tn=50)

)
if t ≥ tn=50.

(10)

For simplicity we assume τPmax = τAmax = κτImax , where κ ∈ (0, 1) and thus

τPi
(t) = τAi

(t) =

0 if t < tn=50

κτImax

(
1− e−ψi(t−tn=50)

)
if t ≥ tn=50

(11)

To implement key events within simulations, and compare our results to empirical data, we325

use the day the 50th case was detected in Ontario (tn≥50), 10 March 2020 [21], as our reference326

point. All time-steps (days) within simulations are measured in relation to tn≥50. Ontario327

declared a state of emergency on 17 March 2020, and we assume no NPI adherence occurred328

prior to this (ω = 0 for t− tn≥50 < 7). Within the model, the measures (closures, reopeninngs)329

for each PHU apply to all regions within that PHU.330

Schools were closed for March Break as of 14 March 2020 and remained closed for the rest of331

the 2019-2020 school year. We use 8 September 2020 as our school reopening date. Workplaces332

were closed on 25 March 2020 and we treat the day the majority of Ontario entered Phase 2 of333

the reopening plan (12 June 2020) as our workplace reopening date. In both cases, reopenings334

occur with NPIs in place to combat SARS-CoV-2 transmission. Schools closed for the Winter335

Break on 21 December 2020. A province-wide shutdown came into effect on 26 December 2020336

and was upgraded to a stay-at-home order on 14 January 2021, wherein Ontario’s population337

was required to remain at home except for essential trips. During February/March 2021 these338

orders began to lift, on 8 February 2021 schools reopened in all PHU except for Toronto, Peel,339
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and York (where schools reopened on 16 February 2021). On 10 February 2021 workplaces340

reopened in a small number of PHU (Hastings Prince Edward, Kingston, Frontenac and Lennox341

& Addington, and Renfrew County). For the majority of PHU, workplaces reopened on 16342

February 2021, with York held back until 22 February 2021 and Toronto, Peel, and North343

Bay - Parry Sound until 8 March 2021. We assume that schools in PHU were closed from 21344

December 2020 until their February 2021 reopening dates, and likewise that workplaces were345

closed from 26 December 2021 until their February/March 2021 reopening dates. Stay-at-home346

orders were in effect from 14 January 2021 until the day that the workplaces in a PHU reopened347

in February/March 2021.348

All fitting, simulations, analysis, and visualization are performed in Rstudio (Version 1.2.5019)349

using R (Version 4.0.3) [48, 49]. For each scenario we run 5 simulations using each of the 10350

best parameter sets (see Parametrisation for details). To meet minimum time requirements to351

run the code for the simulations on individual-level efforts using our computing facilities, 10352

simulations are run for each of the 10 best parameter sets, for each value of the percentage of353

the population adhering to NPIs.354

Parametrisation355

We set βP,A0 = 0.5βI0 , based on our assumed period of infectiousness and data indicating that356

44% of SARS-CoV-2 shedding occurs prior to the onset of symptoms [50]. All parameters not357

obtained from the literature are estimated by fitting modelled (1) time series of newly confirmed358

cases in each age class (number of individuals in each age class entering {·, K} states each day)359

to data on daily confirmed cases (by reporting date and age) at the provincial level [21]; (2)360

time series of PHU-level totals for newly confirmed cases across all age classes (aggregated361

from the region-level model output) to data on daily confirmed cases (by reporting date) at the362

PHU level [23]; (3) underascertainment ratio (ratio of total cases to confirmed positive cases) at363

the provincial level to a empirically estimated underascertainment ratio of 8.76 for the United364

States [51]; and (4) individual NPI adherence, ξk(t), to a real-world proxy - the change in365

mobility trends for retail and recreational locations [7]. The percent change in mobility for366

these locations (from baseline) is treated as indicative of the percent adherence to NPIs. All367

parameters are described in the Supplementary information, Table S1.368

We employ a 2-stage fitting process, first using a global non-linear optimization algorithm369

(Improved Stochastic Ranking Evolution Strategy [27]), and then feeding the results of that370
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process into a second local optimizer algorithm (Constrained Optimization BY Linear Approx-371

imations [28]) to refine the solution. Optimization processes are implemented using the Nloptr372

package for R [26]. During both stages, the algorithms attempt to minimize the value of a cost373

function which incorporates all of the fitting criteria outlined above. As our global algorithm is374

stochastic and thus different runs of the fitting process may result in different solutions, we run375

the process 1000 times. Parameter distributions for the 10 best parameter sets (i.e. those with376

the lowest cost function value at the end of the fitting) are shown in Supplementary informa-377

tion, Figure S5, Figure S6, and Figure S7. Output from simulations run using these parameter378

sets is shown in Supplementary information, Figure S8, Figure S9, and Figure S10.379

Case fatality ratio380

To estimate deaths resulting from COVID-19, we consider 2 scenarios for the crude case

fatality ratio (CFR). For the best-case scenario the CFR is calculated using Ontario-specific

data [22] at weekly intervals, with the crude CFR in week t given by

(crude CFR)t =
(Total deaths)t

(Total new cases)t−2

. (12)

A 2-week lag between new cases and deaths is used based on estimates of the interval between381

symptom onset and a case being reported in Ontario [21] and of the interval between symptom382

onset and death and between case reporting and death [19, 52, 53]. Here, we assume that the383

CFR value in week t holds regardless of the number of new cases.384

However, increased strain on the healthcare system [20] may mean that the CFR increases

with case numbers [19]. We consider this as an alternative worst-case scenario and fit functions

of the form

(crude CFR)t = δ + µ
(
1− eν(Total new cases)t−2

)
(13)

to the crude CFR values calculated for the best-case scenario, over different periods of time.

The base CFR is controlled by δ, the maximum is δ + µ and ν controls the rate at which

the CFR increases with case numbers. Based on the clustering of weekly CFR values plotted

vs. weekly cases at 2-week lag (Supplementary information, Figure S2) we identify 3 time

periods (23 March 2020 to 31 May 2020, 1 June 2020 to 16 August 2020, 17 August 2020 to

28 February 2021) during which the relationship between new cases and the CFR appeared

distinct. Using these groups of points we fit parameter values for Equation 13. When fitting,
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we assume that δ must be no smaller than the lowest calculated CFR value (approx. 0.0025),

and that δ+µ ≤ 0.2 based on national-level CFR values [54]. For the 23 March 2020 to 31 May

2020 period we exclude from the fitting 3 points corresponding to weeks early in the pandemic

where reporting issues result in unusually high CFR values. Fitted values of (δ, µ, ν) for our

3 time periods are (0.01226, 0.1877, 0.0001832), (0.002500 0.1975, 0.00008455), and (0.009264,

0.1113, 0.00008747) respectively. Estimated deaths are calculated as

(Deaths)t = (crude CFR)t(Total new cases)t−2. (14)

To evaluate the accuracy of our CFR functions, we apply them to data on cases in the province385

(Supplementary information, Figure S11) and find a reasonable level of agreement between386

reported deaths and deaths calculated using Equation 13.387

Extension to individual-level NPI adherence388

In our base model, Equation 2 captures, at the population level, how the proportion of the389

population who adhere to NPIs changes in response to case prevalence. Here, we examine NPI390

adherence at a more granular level. We consider a population where each individual either391

adheres or does not adhere to NPIs, and does not switch their behaviour during the simulation.392

We limit this experiment to our first time period (10 March 2020 to 15 August 2020) as over a393

longer time period we would expect some individuals to change their adherence.394

Within this model extension some constant proportion, x, of the population does not adhere395

to NPIs (with the remaining 1−x adhering). This is achieved by adding a third state variable,396

Bj
i , for NPI adherence, so the state of individual i in age class j is {Dj

i , T
j
i , B

j
i }. Thus, Bj

i ∈397

{Cj, N j} for individuals who are, respectively, adhering and not adhering to NPIs. Non-398

adherent individuals are seeded throughout the population, with the number of non-adherent399

individuals within age class j in region k proportional to the number of individuals within400

that age class in that region. The seeding of infections within the population allows for both401

adherent and non-adherent individuals to be amongst those initially infected.402

For every interaction between a susceptible individual and an infectious individual there are

4 possibilities for NPI adherence; both parties are adherent (CC), neither party is adherent

(NN), the susceptible individual is adherent but the infectious individual is not (CN) and vice

versa (NC). When both parties are adherent, the proportion of contacts remaining (replacing
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Equation 5) is:

FCC
ij,k (t) = nwij (1− Cw

k (t)) + nsij (1− Cs
k(t)) + nhij(1− εh) + noij(1− εo). (15)

If neither party is adherent the remaining fraction of contacts for a susceptible individual is:

FNN
ij,k (t) = nwij (1− Cw

k (t)) + nsij (1− Cs
k(t)) + nhij + noij, (16)

with no reduction in contacts in either of the “home” or “other” locations.403

When only one party is adhering to NPIs (CN or NC) the efficacy of NPI adherence in

reducing contacts depends on which party is adherent. When only the susceptible is adherent

the remaining fraction of contacts is:

FCN
ij,k (t) = nwij (1− Cw

k (t)) + nsij (1− Cs
k(t)) + nhij (1− θεh) + noij (1− θεo) (17)

while when only the infectious individual is adherent the remaining fraction of contacts is:

FNC
ij,k (t) = nwij (1− Cw

k (t)) + nsij (1− Cs
k(t)) + nhij (1− (1− θ)εh) + noij (1− (1− θ)εo) (18)

where θ ∈ [0, 1] indicates the relative importance of the susceptible’s choice to adhere with404

NPIs. For simplicity, we assume θ = 0.5 meaning the adherence of the susceptible and infectious405

individual are equally important and FCN
ij,k (t) = FNC

ij,k (t).406

During the simulation, adherent susceptibles experience an infection probability:407

λCi,k(t) = 1−

( ∏
Dj ,T j ,Cj

[
1− FCC

ij,k (t)fTβ
D
i,k

]P ∗DjTjCj

t,k
∏

Dj ,T j ,Nj

[
1− FCN

ij,k (t)fTβ
D
i,k

]P ∗DjTjNj

t,k

)
(19)

while non-adherent susceptibles experience an infection probability:

λNi,k(t) = 1−

( ∏
Dj ,T j ,Cj

[
1− FNC

ij,k (t)fTβ
D
i,k

]P ∗DjTjCj

t,k
∏

Dj ,T j ,Nj

[
1− FNN

ij,k (t)fTβ
D
i,k

]P ∗DjTjNj

t,k

)
. (20)
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Data availability408

Data sets required to run simulations are available in a GitHub repository (https://github.409

com/k3fair/COVID-19-ON-model). Data sets generated from our analysis and simulations are410

available from the corresponding author upon reasonable request. All epidemiological [21–23],411

testing [21–23], demographic [24], travel [25], and mobility data [7] used to parametrise the412

model are publicly available online.413

Code availability414

Code used for parameter fitting and simulations is available in a GitHub repository (https:415

//github.com/k3fair/COVID-19-ON-model). Code used for analysis and visualization is avail-416

able from the corresponding author upon reasonable request.417
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Figure 1. Schematic representation of transmission model. Note that the epidemiological
compartments were stratified by age as well as location (see Methods).
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Figure 2. NPIs significantly reduced cases and deaths in the first wave. Figure
panels show (a) new confirmed cases by day, and mean projected deaths from 10 March 2020
to 15 August 2020 in (b) the best-case scenario (values from left-right are: 2, 789, 3, 383,
20, 728, 36, 782, 174, 411) and (c) worst-case scenario (values from left-right are: 2, 789, 2, 797,
69, 590, 164, 311, 553, 460) for healthcare system functioning in a regime of very high case
incidence. Transparent lines in panel (a) correspond to different stochastic realizations of
model runs, with solid lines corresponding to the median value across all realizations. Error
bars in panels (b,c) represent the minimal and maximal values across all stochastic
realizations. Model parameter settings appear in Supplementary information, Table S1.
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Figure 3. NPIs significantly reduced cases and deaths in the second wave. Figure
panels show (a) new confirmed cases by day, and mean projected deaths from 12 June 2020 to
28 February 2021 in (b) the best-case scenario (values from left-right are: 4, 493, 2, 154, 4, 167,
17, 291) and (c) worst-case scenario (values from left-right are: 4, 493, 1, 785, 3, 991, 20, 709)
for healthcare system functioning in a regime of very high case incidence. Transparent lines in
panel (a) correspond to different stochastic realizations of model runs, with solid lines
corresponding to the median value across all realizations. Error bars in panels (b,c) represent
the minimal and maximal values across all stochastic realizations. Model parameter settings
appear in Supplementary information, Table S1.
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Figure 4. Impact of individual efforts. Figure panels show the incremental median
number of individuals who needed to adopt NPIs in order to prevent (a) one infection, and
one death under (b) the best-case scenario and (c) worst-case scenario for healthcare system
functioning in a regime of very high case incidence, for the first wave (10 March to 15 August
2020). The shaded region demarcates the estimated range in the percentage of individuals
adhering to NPIs over that time-period (see Supplementary information, Figure S3). Model
parameter settings appear in Supplementary information, Table S1.
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