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Abstract  

Many clinical datasets are intrinsically imbalanced, dominated by overwhelming majority 
groups. Off-the-shelf machine learning models that optimize the prognosis of majority patient 
types (e.g., healthy class) may cause substantial errors on the minority prediction class (e.g., 
disease class) and demographic subgroups (e.g., Black or young patients). For example, our work 
found that missed death cases are 3.14 times higher than missed survival cases in a mortality 
prediction model. In the typical one-machine-learning-model-fits-all paradigm, racial and age 
disparities are likely to exist, but unreported. What makes it worse is the deceptive nature of 
widely used whole-population metrics, such as AUC-ROC. We show that some metrics fail to 
reflect serious prediction deficiencies. To mitigate representational biases, we design a double 
prioritized (DP) bias correction technique. Our method trains customized models for specific 
ethnicity or age groups, a substantial departure from the one-model-predicts-all convention. We 
report our findings on four prognosis tasks over two imbalanced clinical datasets. DP reduces 
relative disparities among race and age groups, 5.6% to 86.8% better than the 8 existing 
sampling solutions being compared, in terms of the minority class’ recall.  

Introduction 

Researchers have trained machine learning models to predict many diseases and conditions, 
including Alzheimer's disease1, heart disease2, risk of developing diabetic retinopathy3, cancer 
risk4 and survivability5, genetic testing for diseases6, hypertrophic cardiomyopathy diagnosis7, 
psychosis8, PTSD33, and COVID–199. Neural network-powered automatic image analysis has 
also been shown useful for fast disease detection, e.g., breast cancer16 and lung cancer39. A study 
showed that deep learning algorithms diagnose breast cancer more accurately (AUC=0.994) than 
11 pathologists16. Hospitals (e.g., Cleveland Clinic’s partnership with Microsoft10, John Hopkins 
hospital partnership with GE)11 are reported to use predictive analytics for monitoring patients’ 
health status and preventing emergencies12–15. 
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However, clinical datasets are intrinsically imbalanced due to the naturally occurring 
frequencies of data17. The data is not evenly distributed across prediction classes (e.g., disease 
class vs. healthy class), race, age, or other subgroups. Data imbalance is a major cause of biased 
prediction results17. Biased prediction results may have serious consequences for some patients. 
For example, a recent study showed that automatic enrollment of high–risk patients into the 
health program favors white patients, although Black patients had 26.3% more chronic health 
conditions than equally ranked white patients18. Similarly, algorithmic osteoarthritis pain 
prediction shows 43% racial disparities19. The design of widely used case-control studies is 
shown to have a temporal bias that reduces predictive accuracy41. For non–medical applications, 
researchers also identified serious biases in high–profile machine learning applications, e.g., a 
widely deployed recidivism prediction tool20–22, online advertisement system23, Amazon’s 
recruiting engine24, and face recognition system25. The lack of external validation and 
overclaiming causal effect in machine learning also raise concerns26.  

A widely used bias-correction approach to the data imbalance problem is sampling. 
Oversampling, e.g., replicated oversampling (ROS), is to balance a dataset by adding samples of 
the minority class; undersampling, e.g., random undersampling (RUS), is to balance a dataset by 
removing samples of the majority class27. An improvement is the K–nearest neighbor (K–NN) 
classifier–based undersampling technique28 (e.g., NearMiss1, NearMiss2, NearMiss3, Distant) 
that selects samples from the majority class based on distance from minority class samples. 
State-of-the-art solutions are all oversampling methods, including Synthetic Minority Over-
sampling Technique (SMOTE)29, Adaptive Synthetic Sampling (ADASYN)30, and Gamma31. All 
three methods generate new minority points based on existing minority samples, namely using 
linear interpolation29, gamma distribution31, or at the class border30. However, existing sampling 
techniques are not designed to address subgroup biases, as they sample the entire minority class. 
These methods do not differentiate demographic subgroups (e.g., Black patients or young 
patients under 30). Thus, it is unclear how well existing sampling solutions reduce accuracy 
disparity.  

We present two categories of contributions to machine learning prognosis for 
underrepresented patients. One contribution is empirical evidence showing severe racial and age 
prediction disparities and the deceptive nature of common metrics. Another contribution is on 
evaluating the bias-correction ability of sampling methods, including a new double prioritized 
(DP) bias correction technique.  

In our first contribution, we use two large medical datasets (MIMIC III and SEER) to 
show multiple types of prediction disparities, including the metric disparity. Poor prediction 
performance in minority samples is not reflected in widely used metrics. For imbalanced 
datasets, conventional metrics such as overall accuracy and AUC–ROC are largely influenced by 
the performance of the majority samples, which machine learning models aim to fit. 
Unfortunately, this serious deficiency is not well discussed or reported by medical literature. For 
example, a study showed that 66.7% of the 33 medical-related machine learning papers used 
AUC–ROC to evaluate models trained on imbalanced datasets45. We report racial, age, and 
metric disparities in machine learning models trained on clinical prediction benchmark14 on 
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MIMIC III and cancer survival prediction5 on SEER cancer dataset. Both training datasets are 
imbalanced, in terms of gender, race, or age distribution. For example, for the in-hospital 
mortality (IHM) prediction with MIMIC III, 70.6% of data represents White patients, whereas 
only 9.6% represents Black patients. MIMIC III and SEER also have data imbalance problems 
among the two class labels (e.g., death vs. survival). For the IHM prediction, only 13.5% of data 
belongs to the patient who died in the hospital. These data imbalances result in serious prediction 
biases. A typical neural network-based machine learning model14 that we tested correctly 
predicts 87.6% of non-death cases, but only 60.9% of death cases. Meanwhile, overall accuracy 
(computed over all patients) is relatively high (0.85), and AUC–ROC is 0.86, as a result of the 
good performance in the majority class. These high scores are misleading. Our study also reveals 
that accuracy disparity among age or race subgroups can be severe. For example, the mortality 
prediction precision (i.e., the fraction of actual deaths among predicted deaths) of young patients 
under 30 is 0.09, substantially lower than the whole population (0.40). Recognizing these 
accuracy disparities will help advance AI-based technologies to better serve underrepresented 
patients. 

In our second contribution, we present a new technique, double prioritized (DP) bias 
correction, that aims to improve the prediction accuracy of specific demographic groups through 
sample enrichment. DP trains customized prediction models for specific subpopulations, a 
departure from the existing one-model-predicts-all-demographics paradigm. DP prioritizes 
specific underrepresented groups, as opposed to sampling across the entire patient population. 
Our results show that DP is effective in reducing disparity among age and race groups. For the 
in-hospital mortality (IHM) and 5-year breast cancer survivability (BCS) predictions, DP shows 
an 8.6% to 23.8% improvement over the original model and 5.6% to 86.8% improvement over 
eight existing sampling techniques, in terms of minority class recall. Our cross-race and cross-
age-group results also suggest the need for training specialized machine learning models for 
different demographic subgroups. All sampling techniques (including DP) are not designed to 
address biases caused by underdiagnosis, measurement, or any other sources of disparity besides 
data representation. In what follows, DP assumes that the noise is the same across all 
demographic subgroups and the only source of bias that it aims to correct is representational.  

 

Methods 

Double prioritized (DP) bias correction method. DP prioritizes a specific demographic 
subgroup (e.g., Black patients) that suffers from data imbalance by replicating minority 
prediction class (C1) cases from this group (e.g., Black in-hospital deaths). DP incrementally 
increases the number of duplicated units and chooses the optimal unit number based on the 
resulting models’ performance. Figure 1 shows the machine learning workflow with DP bias 
correction. The main steps are described next. 

Sample Enrichment replicates minority class C1 samples in the training dataset for a target 
demographic group g up to n times. Each time, duplicated samples are merged with the original 
training dataset, which forms a new training dataset. Thus, we obtain n+1 sets of training 
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datasets, including the original one. Our experiment sets n to 19. The value n can be empirically 
determined based on prediction performance. 

Candidate Training is to generate a set of candidate machine learning models. Each of the n+1 
datasets is used to train and generate a candidate machine learning model. Two types of neural 
networks are used, the long short-term memory (LSTM) model and the multilayer perceptron 
(MLP) model. Following Harutyunyan et al,14 for the hospital record prediction tasks, patients’ 
data is preprocessed into time-series records and fed into an LSTM model. Cancer survivability 
prediction utilizes an MLP model, following Hegselmann et al.5 Prediction and data analysis 
code is in Python programming language. The hospital record prediction tasks were executed on 
a virtual machine with Ubuntu 18.04 operating system, x86-64 architecture, 8 cores, 40 GB 
RAM, and 1 GPU. Cancer survivability prediction tasks were performed using a Ubuntu 21.04 
operating system, x86-64 architecture, 16 cores, 40 GB RAM, and 1 GPU. Model parameters 
remain constant in different bias correction techniques (Supplementary Table 1).  

Model Selection is to identify the optimal machine learning model among the n+1 candidate 
models. We choose a final machine learning model M* after evaluating all candidate models’ 
performance as follows. For each model, we first calibrate the predicted probabilities on the 
validation set. Calibration is to adjust the distribution of probabilities before mapping 
probabilities into labels. We calibrate the output probabilities using the Isotonic Regression 
technique. We then perform threshold tuning to find the optimal threshold based on balanced 
accuracy and the F1_C1 score. Specifically, we first identify the top three thresholds that give 
the highest F1_C1 scores and then further select the optimal threshold that gives the highest 
balanced accuracy for all samples. For some subgroups, there are only a couple of hundreds of 
samples in the validation set. Selecting the threshold based on subgroup data may cause 
overfitting to the validation set. Therefore, we choose thresholds based on the whole group 
performances. Given a threshold, we then identify the top three machine learning models with 
the highest balanced accuracy (i.e., average recall of both C0 and C1 classes, supplementary 
equation 6) values and select the model that gives the highest PR_C1 (the area under the curve 
(AUC) of minority class C1’s precision-recall curve, denoted by AUC-PR_C1 or PR_C1) for 
demographic group g. In this step, no enrichment is applied to the validation dataset. When 
deciding thresholds, AUC-PR cannot be used, as it is a threshold-free metric. Thus, we use 
balanced accuracy and F1_C1.  

Prediction applies model M* to new patients’ records of minority group g’ and obtains a binary 
class label. At deployment, the demographic group g of duplicated samples during Sample 
enrichment and test group g’ should be the same, e.g., the DP model trained with duplicated 
Black samples is used to predict new Black patients. Evaluation metrics include accuracy, 
balanced accuracy, Matthews Correlation Coefficient (MCC), AUC–ROC score, precision, 
recall, AUC–PR, and F1 score of minority and majority prediction classes, the whole population, 
and various demographic subgroups, including gender (male, female), race (White, Black, 
Hispanic, Asian), and 8 age groups. Minority class C1 precision and C1 recall are the two most 
used metrics in our paper. C1 precision calculates the fraction of actual minority C1 class cases 
among predicted ones. C1 recall calculates the fraction of C1 cases that are predicted by a 
machine learning model. We use the relative disparity metric to capture the disparity among race 
groups or age groups. Equation 1 shows the equation for the relative disparity. All other metrics 
are defined in supplementary equations. 
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Relative Disparity = 				"!				
"#

                (1) 

where R1 is the highest and R2 is the lowest evaluation metric value being compared. Similar to 
other studies48,49, our workflow does not sample the test dataset, because the ground truth (i.e., 
new patient’s disease or health label) is unknown in the real world. Relative disparity values are 
greater than or equal to 1. MCC values are in the range of [-1, 1]. The other metric values are in 
the range of [0, 1]. When comparing datasets that have different percentages of minority class C1 
samples, we avoid metrics (e.g., AUC–PR) whose baselines (i.e., the performance of a random 
classifier) depend on the C1 percentage45. 

Other bias correction techniques being compared. The eight existing sampling approaches 
being compared include four undersampling techniques (namely, random undersampling, 
NearMiss1, NearMiss3, distant method), and four oversampling techniques (namely, replicated 
oversampling, SMOTE, ADASYN, Gamma). Undersampling balances the distribution of the two 
prediction classes by selecting only a subset of the majority class cases. Oversampling balances 
the dataset by populating the minority class. We also use MLP models with different structures 
(i.e., different number of layers, different neurons per layer, and different dropout rates).  

Reweighting is an alternative bias correction approach to sampling46,47. The reweighting 
approach assigns different importance to samples in the training data, in order for some minority 
class samples to impact training outcomes more significantly. We compare DP with two 
methods, the standard reweighting method and a new prioritized reweighting method. Standard 
reweighting aims to make the weights of the two prediction classes balanced. In the standard 
reweighting approach, new weights are applied to the entire class population as follows. 
Reweight all samples so that each majority sample weights less than 1 and each minority sample 
weights more than 1, while satisfying the constraint that the total weight of each prediction class 
is equal. In our standard reweighting experiment, the minority class has a weight of 3.94 and the 
majority class has a weight of 0.57 for BCS prediction. The weights are 3.12 and 0.60 for the 
minority and majority classes, respectively for LCS prediction. 

 
Prioritized reweighting. Following our DP design, we also invent a new prioritized reweighting 
approach. Prioritized reweighting selectively reweights specific subgroup minority samples, as 
opposed to reweighting all minority class C1 samples as in the standard reweighting. In the new 
prioritized reweighting method, we dynamically reweight minority class samples of selected 
demographic subgroups and choose the optimal machine learning model using the same metrics 
and procedure as in DP. Specifically, in each round of prioritized reweighting experiments, we 
multiply the selected samples' default weight by a unit number n, where n ranges from 1 to 20. 
The weights of samples in other subgroups and majority class samples in the selected subgroup 
remain the default value, i.e., 1. These weights are used to train a machine learning model. Once 
the n machine learning models are trained, we follow DP’s Model Selection operation for 
calibration and threshold selection.  

Cross-racial-group and cross-age-group experiments. We also perform a series of cross-
group experiments, where enriched samples and test samples are from different demographic 
groups, i.e., group g used for Sample enrichment and test group g’ are different. The purpose is 
to assess the impact of different machine learning models on prediction outcomes. 
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Whole-group vs. subgroup-based threshold tuning. When analyzing the performance of the 
original model without bias correction, we evaluate two different settings. The first setting is to 
select an optimal threshold based on all samples in the validation set. We refer to the selected 
threshold as the whole group threshold. The second setting is to select an optimal threshold for 
each demographic subgroup based on that specific subgroup’s performance in the validation set. 
We refer to the selected thresholds as the subgroup thresholds. In both settings, we calibrate the 
prediction on all samples (i.e., whole group) and select the thresholds with the top 3 highest F1 
C1 scores and choose the one with the best balanced accuracy. 

SHAP-sum and SHAP-avg feature importance. We calculate the feature importance for all 
four tasks (i.e., IHM, Decompensation, BCS, and LCS) using the Shapley Additive exPlanations 
(SHAP). For one-hot encoded categorical variables, each of them is represented by multiple 
columns in the input data. SHAP is not designed for such one-hot encoded categorical features. 
The standard SHAP method calculates the importance of each column. Thus, we have to post-
process the importance of these features. We implement two approaches, SHAP-avg and SHAP-
sum. In the SHAP-avg approach, we compute the average importance of columns representing 
the same feature, i.e., the importance of columns representing the same variable is averaged. In 
the SHAP-sum approach, we add up the importance of all columns representing the same feature. 

Clinical datasets. We use MIMIC III14,32 and SEER35 cancer datasets, both collected in the US. 
We test existing machine learning models in a clinical prediction benchmark14 for MIMIC III 
and cancer survival prediction5 for SEER. We study a total of four binary classification tasks, in-
hospital mortality (IHM) prediction and decompensation prediction from the clinical prediction 
benchmark,14 5-year breast cancer survivability (BCS) prediction, and 5-year lung cancer 
survivability (LCS) prediction. In what follows, we denote the minority prediction class as Class 
1 (or C1) and the majority class as Class 0 (or C0). 

Figure 2a-d shows the composition of IHM training data, which contains 14,681 time-
series samples from MIMIC III. The majority of the records (86.5%) belong to Class 0 (i.e., 
patients who do not die in hospital). The rest (13.5%) belong to Class 1 (i.e., the patients who die 
in the hospital). The percentage of Class 1 samples within each subgroup slightly varies but is 
consistently low. 70.6% of the patients are White and 76% belong to the age range [50, 90). 
45.1% of the patients are females and 54.9% are males. The training set contains insufficient data 
for the young adult population. Distributions of the decompensation training dataset (of size 
2,377,768) are similar (Supplementary Figure S1a-d). Figure 2e-h shows the percentages of 
different subgroup sizes for the training dataset used in BCS prediction. The BCS training set 
contains 199,000 samples, of which 87.3% are in Class 0 (i.e., patients diagnosed with breast 
cancer and survived more than 5 years) and 0.6% are males. The percentage of Class 1 samples 
is low in most groups, with an exception of the age 90+ subgroup, which has a high mortality 
rate. The majority race group (81%) is White. When categorized by age, 70% of the patients are 
between 40 and 70. The LCS training dataset (of size 164,443) follows similar imbalanced 
distributions (Supplementary Figure S1e-h).  

To compute standard deviations, we repeat the machine learning training process multiple 
times, each time producing a machine learning model. Specifically, for BCS and LCS prediction 
tasks, we repeat the experiments five times. For the in-hospital mortality task, we repeat the 
experiments three times. Under these settings, average values and standard deviations are 
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computed for all results except SHAP. Tables only show average results without error bars. All 
SHAP feature importance results (in the Supplementary Section) are based on the performance 
of a randomly selected machine learning model. For the decompensation prediction task, due to 
its high time complexity, we run the experiments once.    

Results 

Accuracy of majority and minority prediction classes without any bias correction. Without 
any bias correction, the original machine learning model demonstrates drastically different 
prediction capabilities for the majority prediction class C0 and the minority prediction class C1. 
Figure 2a shows recall values for both classes for various patient groups for in-hospital mortality 
(IHM) prediction and Figure 2e for predicting 5-year breast cancer survivability (BCS). For 
IHM, the recall value (0.61) for the minority class C1 is much lower than the recall of the 
majority class (0.88). For BCS, the recall C1 (0.67) is much lower than the recall C0 (0.93). This 
trend is consistently observed for various demographic groups, with a few exceptions of senior 
patients for BCS prediction. We further show detailed IHM predictions with the MIMIC III 
dataset for various subpopulations under 12 metrics in a heatmap in Figure 3a. 12% of non-death 
cases (class C0) in IHM prediction are wrong, whereas the missed mortality prediction (class C1) 
rate is much higher at 39%. For Black patients, while recall, precision, F1, and AUC-PR are all 
above or equal to 0.89 for class C0, the recall of class C1 is only 0.50, i.e., for every 100 Black 
patients who die in hospital, the model would mispredict 50 of them. A similar trend is observed 
for the BCS prediction results (Figure 3b). For the [40, 50) age group, the recall, precision, F1, 
and AUC-PR for majority class C0 are all over 0.9, while for C1 merely 0.58, 0.48, 0.52, and 
0.55 are observed, respectively.  

Accuracy across demographic subgroups without bias correction. The original model also 
shows different prediction capabilities for specific demographic groups. For the IHM prediction 
(Figure 3a), Black patients have the lowest minority class C1 recall (0.50), lower than the whole 
group (0.61) and Hispanic patients (0.83). The difference among C1 recalls of various age 
groups is relatively smaller, all values in the range of [0.51, 0.72]. Most subgroups have 
somewhat similar C1 precision values, except the age <30 group. Young patients under 30 have 
a very low C1 precision of 0.09 in the IHM prediction, substantially lower than the whole 
population (0.40). This prediction deficiency is also reflected in the MCC metric, which is 0.19 
for the age <30 group (Figure 3a). For the BCS task (Figure 3b), the minority class C1 recall 
(0.58) of age group [40,50) is only 64% of that of the 90+ age group (0.91), resulting in a large 
0.33 difference. [40,50) and <30 groups have the lowest C1 precision; the 90+ age group has the 
highest. For the BCS prediction, accuracy difference across different racial groups also exists but 
appears less pronounced. The largest C1 recall difference is 0.13 between Hispanic (0.61) and 
Black (0.74). C1 precisions are all in the range of [0.53, 0.58].  

Both gender groups perform similarly in both tasks, even though male patients only 
account for 0.6% of the samples in the SEER dataset for BCS prediction. Young patients under 
30 account for only 0.6% and 4% in SEER (Figures 2h) and MIMIC III datasets (Figure 2d), 
respectively. Their predictions are consistently poor. Despite the large difference in minority 
class C1 performance, majority class C0 precisions and recalls are consistently high for all 
subgroups, with most values above 0.85. Despite small sample sizes, some demographic groups 
(e.g., 90+ groups in BCS prediction) have high prediction accuracies even without sampling.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2022. ; https://doi.org/10.1101/2021.03.26.21254401doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254401
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Metrics for imbalanced data: For imbalanced datasets, commonly used metrics such as AUC-
ROC and accuracy are deceptive and do not reflect minority class performance. These metrics 
may show misleadingly higher values, even when the performance of the minority class is poor. 
The overall accuracy and AUC-ROC values are consistently high (> 0.80 in most cases, Figure 
4) across different subgroups, even when minority class C1’s performance is less optimistic. 
None of the MCC values in Figure 3a exceeds 0.5 and the F1-score is only 0.39 for Black 
patients in IHM prediction.  

Accuracy and AUC-ROC values are dominated by the overwhelmingly high precision 
and recall (> 0.85 in most cases) of the majority prediction class C0. Thus, these commonly used 
metrics in prediction do not reflect the minority class performance under data imbalance. In 
biased datasets, AUC-ROC is no longer sufficient, as it covers both classes with one dominating 
class. This deficiency is well established in the machine learning literature42, 43, 44, where multiple 
previous studies pointed out that AUC-ROC gives an overly optimistic view of imbalanced 
classification. Our work points out the severity of the metrics issue in digital health applications. 
In contrast to the overly optimistic AUC-ROC and accuracy metrics, MCC is a more sensitive 
metric and reflects prediction deficiencies in this type of imbalanced setting. By definition, MCC 
values range from [-1, 1], with 0 indicating the performance of a random classifier. Metrics 
reporting an individual class are also necessary to include. 

DP reduces accuracy disparity among demographic subgroups. We use relative disparity 
(defined in Equation 1) as a metric to quantify performance gaps across demographic subgroups 
under various machine learning conditions, including the original model (without any bias 
correction), DP bias correction, and existing sampling methods. Relative disparity measurement 
below 1.25 is considered fair, following the 80% rule for assessing disparate impact36. Our 
results show that machine learning models trained with our DP bias correction method exhibit 
the smallest racial and age disparities in most cases (Figure 5). For balanced accuracy and C1 
recall of both IHM and BCS tasks, most of DP’s relative disparity values are in the fair range 
(1.25 and lower), substantially reducing the disparity in the original model. Specifically, DP has 
a 14.8% to 23.9% improvement over the original model in terms of C1 recall disparity. DP 
method also reduces MCC disparity the most for in-hospital mortality prediction (Figure 5c).  

 In contrast, all three state-of-the-art sampling methods (namely, Gamma, Adasyn, and 
SMOTE) fail to substantially reduce the racial and age disparities in the IHM task, with some 
models (e.g., Gamma) exacerbating disparity. Undersampling methods (especially Distant) 
perform worse than oversampling methods. When compared to the eight existing methods, DP 
reduces racial disparity by 10.2% (ADASYN) to 64.3% (Distant) and age disparity by 5.6% 
(Replicated Oversampling) to 34.5% (Distant), in terms of the minority C1 recall for IHM 
prediction (Figure 5a). Balanced accuracy (Figure 5b) and MCC results (Figure 5c) follow a 
similar trend. The Distant method’s MCC race disparity is high (316.3), due to its extremely low 
MCC score for Hispanic patients (0.001). 

While the racial and age disparity is less severe for BCS prediction, the advantage of DP 
can still be observed. Overall, DP shows 14.3% (random undersampling) to 37.7% (Distant) 
improvement among racial groups and 23.3% (NearMiss 1) to 88.0% (Distant) improvement for 
age groups in terms of C1 recall (Figure 5d) compared to existing sampling methods.  
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Mitigation solely based on adjusting thresholds. We also test whether or not threshold tuning 
alone can boost the performance of demographic subgroups and reduce disparity. Specifically, 
we compare the prediction performance under the whole group threshold and subgroup 
thresholds, which are described in the Methods section. Prediction results under the original 
machine learning models (no bias correction) using different optimized thresholds for different 
demographic groups are shown in Supplementary Figure S2. For the IHM task, the performance 
differences between using the whole-group threshold and subgroup threshold are small (< 0.1), 
in terms of C1 precision and recall, for subgroups with relatively large sizes (e.g. middle-aged 
patients). However, for other smaller subgroups (e.g. young patients with age<30), the 
performance decreases. A likely reason is overfitting, i.e., the threshold selected based on a small 
sample size in the validation set is not optimal on the test set, due to the small sample sizes. BCS 
results follow similar patterns. Thus, threshold adjustment alone is insufficient for the data 
imbalance and accuracy disparity problems. 

Subpopulation-based vs. whole-population-based sampling. Existing sampling solutions do 
not differentiate subpopulations. We found such whole-population-based sampling methods 
decrease the performance of some underrepresented groups. We compare DP with two common 
sampling techniques (i.e., random undersampling and SMOTE) with four demographic groups 
(namely, Black, Asian, age < 30, 90+ for the IHM task and Hispanic, Asian, age <30, 90+ for the 
BCS task). These groups are chosen because of their low performances under the original 
machine learning model. DP consistently boosts the performance of most underrepresented 
demographic groups (Figure 6). In contrast, this consistent improvement is not observed in the 
other two methods. For example, for the IHM task, although the undersampling technique boosts 
the balanced accuracy for Asian patients, the performances of Black and age 90+ subgroups 
slightly decrease (Figure 6b). For the BCS task, SMOTE slightly decreases the C1 recall for the 
Hispanic, Asian, and age [40,50) groups (Figure 6c). We note that for the age <30 subgroup, 
DP’s balanced accuracy drops (Figure 6d), which is due to a decrease in the majority class C0 
recall. The complete comparison results with the 8 existing sampling methods are shown in 
Supplementary Figure S3. 

DP brings stronger improvements in terms of minority class recall for subgroups with 
lower original performance. Figure 7 shows the comparison of minority class recall between the 
original model with subgroup threshold and the DP model trained for each subgroup. For the 
IHM task, DP improves the C1 recall by 200.4%, 163.4%, and 75.2%, respectively, for the age 
<30, Black, and Asian patients (Figure 7a). Similarly, for the BCS task, C1 recall of DP is 
30.7%, 27.3%, and 27.1% higher than the original performance for age [40, 50), Hispanic, and 
Asian patients, respectively (Figure 7b).  

Impact of specialized machine learning models on prediction outcomes. In our cross-group 
experiments, we use the DP model trained for demographic group A (e.g., Black) to predict 
group B (e.g., Hispanic). The aim is to evaluate the impact of different machine learning models 
on prediction outcomes. We perform both cross-race and cross-age-group experiments for BCS 
prediction (Figure 8) and IHM prediction (Supplementary Figure S4), which involve 3 
underrepresented races and 3 underrepresented age groups. For 5 out of the 6 DP models in BCS 
prediction, the minority class C1 recall is the highest when the matching DP model is applied, 
i.e., when the race or age group of patients being predicted matches the race or age group that the 
DP model is trained for. For example, when predicting Asian patients’ breast cancer 
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survivability, the DP Asian model (0.78) outperforms the DP Black model (0.55), DP Hispanic 
model (0.58), and the original model without DP (0.62), in terms of minority class C1 recall 
(Figure 8a). Similarly, the balanced accuracy is the highest when DP Asian model is applied to 
predict Asian patients (Figure 8c). In the cross-age-group experiment, this trend is also observed. 
For example, DP [40, 50) model substantially outperforms the other three models when 
predicting patients in the [40, 50) age range. Its recall C1 is 0.75, whereas the DP <30, DP 90+, 
and the original models give 0.56, 0.52, and 0.58, respectively (Figure 8b). However, the DP 90+ 
model does not show an advantage, as the original model gives a slightly higher recall C1 and 
the DP [40, 50) gives the highest balanced accuracy when being applied to 90+ patients. 

For IHM prediction, DP models’ advantage is observed in 3 out of the 6 groups (for 
Black, <30, and 90+ groups), which is less pronounced than BCS prediction (Supplementary 
Figure S4). In the cross-age-group experiment, both DP <30 and 90+ models demonstrate 
advantages. For Hispanic and Asian patients, the DP Black model gives the best recall C1, higher 
than DP Hispanic and DP Asian models.  

Decompensation prediction and 5-year lung cancer survivability (LCS) prediction. We 
repeat the experiments for the other two tasks, decompensation prediction, and 5-year lung 
cancer survivability (LCS) prediction, and observe similar patterns. For decompensation 
prediction on the MIMIC III dataset, the minority class C1 represents patients whose health 
condition deteriorates after 24 hours. Without any bias correction, C1 recall is merely 0.40 and 
0.39 for Black (Supplementary Figure S5a) and age 90+ patients (S5b), respectively, while C0 
recalls are near perfect (Supplementary Figure S6a). Prediction accuracy also differs across 
demographic subgroups, e.g., C1 precision is 0.46 for age 90+ patients and 0.13 for age <30 
patients (Supplementary Figure S6a). For LCS prediction on the SEER dataset, the minority 
Class 1 represents patients who survive lung cancer for at least 5 years after the diagnosis. 
Without any bias correction, the recall, precision, and AUC-PR are all above 0.93 for Class 0, 
while the values for Class 1 are lower at 0.65, 0.61, and 0.67, respectively, for Black patients 
(Supplementary Figure S5c). Regarding each demographic subgroup, the original model catches 
all survival cases (minority class in LCS) in the age <30 group, however, it misses 40% and 70% 
of the survival cases in age [80, 90) and 90+ groups, respectively (Supplementary Figure S6b). 
Results on subgroup thresholds (Supplementary Figure S7) follow a trend similar to the earlier 
IHM and BCS findings. 
 Sampling results for the decompensation and LCS prediction tasks are shown in 
Supplementary Figures S8-S11. For decompensation prediction, we apply the two most 
commonly used sampling techniques, random undersampling (RUS) and replicated oversampling 
(ROS). We have to exclude other sampling techniques as their pairwise quadratic distance 
computation is expensive for 2,377,768 patients' time series training dataset. After applying DP 
bias correction, the minority class C1 recall for most subgroups consistently improves 
(Supplementary Figures S8a and S9a). The improvements are higher than applying RUS and 
ROS (Supplementary Figures S8a and S8b). Regarding fairness for the decompensation task, the 
relative disparity of DP is lower than or comparable with other sampling approaches for most 
cases (Supplementary Figure S10a-c), which is consistent with the trend observed in Figure 5. 
We examine an exceptional case for race groups in terms of recall, where the high Hispanic 
group performance (0.76) increases the disparity value (Supplementary Figure S10a). For the 
LCS prediction task, the results of applying DP and other sampling methods follow a similar 
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pattern as the BCS prediction. For sampling’s fairness comparison, NearMiss 1 undersampling 
shows the lowest relative disparity for age groups, in terms of C1 recall (Supplementary Figure 
S10d). While NearMiss 1 brings C1 recall of all age groups to a relatively good range of [0.63, 
1.00], its C1 precision ([0.03, 0.54]) is poor. NearMiss 1’s MCC age disparity shown in 
Supplementary Figure S10f is high (5.36), as MCC is a more comprehensive and sensitive 
metric. Additional sampling comparisons can be found in Supplementary Figure S11. 

We also conduct cross-group experiments for the LCS task and the decompensation task. 
For the LCS prediction, 4 out of 6 matching DP models (i.e. Black, Hispanic, Asian, and age [80, 
90) groups) show an advantage in terms of both C1 recall and balanced accuracy (Supplementary 
Figure S12). Two exceptions are the age [30, 40) and 90+ groups. The original model performs 
the best for the age [30, 40) subgroup; the [80, 90) DP model outperforms others on the age 90+ 
patients. Supplementary Figure S13 shows that matching DP models show some degree of 
advantage in 4 out of 6 settings for the decompensation task.  
Reweighting and feature importance. The standard reweighting models, where reweighting 
does not differentiate subpopulations, perform almost identically to the original model when 
applied to Asian and age [40, 50) patient groups (Supplementary Figures S14). This performance 
similarity between the standard reweighting model and the original model is also observed in 
LCS prediction for Black and 90+ patient groups (Supplementary Table 2). In contrast, 
prioritized reweighting, where new weights are optimally placed on a specific group of patients, 
boosts C1 recall in BCS prediction for Asian patients from 0.617 to 0.802 (Supplementary Figure 
S14a) and from 0.577 to 0.763 for age [40, 50) patients (Supplementary Figure S14b). This boost 
is comparable to DP’s performance. DP and prioritized reweighting also exhibit comparable 
performances under other metrics (Supplementary Figures S14).  

Cancer survivability prediction on the SEER dataset includes age and race features. 
Under SHAP-avg, age-related features rank at the very top for all BCS and LCS prediction 
models (Supplementary Figures S15 and S16). Race-specific DP and prioritized reweighting 
models rank race features higher than the original and the standard reweight models in the BCS 
prediction. For example, race recode A and Y are the top 5th and 6th features in both the DP 
Asian model and the prioritized reweighting model for Asians (Supplementary Figures S15b and 
S15e). For LCS prediction, the race feature ranks 16th in the DP Black model (Supplementary 
Figure S16c). In contrast, race is not among the top 18 features for the original or standard 
reweight models. For BCS and LCS tasks under SHAP-avg, top clinical features include the 
number of positive lymph nodes examined, tumor size and site, grade, and stage (Supplementary 
Figures S15 and S16), which are expected. 

Race-specific models and age-specific models show different top features or have 
different orderings of top features for BCS and LCS predictions. For example, [40, 50)-specific 
models (Supplementary Figures S15c and S15f) have multiple age-related top features, but do 
not have race features in the top ranks. For DP and prioritized reweighting models, their top 
features for the same demographic group appear very similar, which is consistent with their 
similar prediction performance. For example, for BCS prediction, DP and prioritized reweighting 
models for Asian have identical top 8 features; the models for the [40, 50] age group have 
identical top 7 features (Supplementary Figure S15).  

For IHM and Decomp tasks under SHAP-avg, the top features of the DP models and the 
original models are similar, slightly differing in their feature ordering (Supplementary Figures 
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S17 and S18). For example, for IHM prediction DP age 90+ model ranks weight at the 4th 
position, slightly higher than its ranking in the DP Black and the original models (both at the 7th 
position). This observation may suggest that overweight in older patients is more likely to cause 
serious consequences. Following the existing benchmark14, our IHM and Decomp predictions 
only use 17 clinical features and exclude race and age information in MIMIC III. We found that 
SHAP-sum identifies very different top features from SHAP-avg, highlighting categorical 
features due to their multiple one-hot encoding representations for machine learning. We show 
the SHAP-sum feature ranking of IHM prediction in Supplementary Figure S19. We discuss 
them in the next section. 

For BCS and LCS predictions, default MLP model setting gives performances 
comparable to the other two neural network structures, in terms of prediction accuracy 
(Supplementary Table 4) and relative disparity (Supplementary Table 5).  

Discussion 

Our findings empirically demonstrate multiple deficiencies of typical machine learning 
prognosis procedures when they are applied to imbalanced medical datasets. One deficiency is 
that the weak performance of underrepresented patients may be eclipsed by the whole population 
performance and not accurately reported at all. Underrepresentation is two-fold: i) demographic 
subgroups and ii) the minority prediction class. The low accuracy problem is particularly severe 
when a patient belongs to both categories. For example, for the IHM prediction, Black patients’ 
C1 recall (0.50) is 18% lower than the whole group (0.61)  (Figure 3). Low recalls in the disease 
group can lead to underestimation of risks, missed treatment opportunities, or life-threatening 
wrong prognoses. In addition, racial and age disparities in machine-learning-based prognoses are 
also observed. Conceptually, these findings are consistent with what other AI fairness studies 
have reported, e.g., for face recognition25,47. Thus, besides conventional machine learning 
accuracy metrics, fine-grained single-class metrics and fairness metrics need to be used, which 
will provide important insights into how well machine learning models respond to different types 
of patients.  

Our work also reveals that the machine learning model computed based on the whole 
population may not be the optimal model for an underrepresented demographic subgroup. 
Conventional machine learning prognoses follow a one-model-predicts-all-demographics 
paradigm. Similarly, all existing sampling methods are also designed to oversample or 
undersample across all demographics. Our results show that the existing one-model-for-all-
demographics approaches including sampling methods are not well equipped to achieve good 
fairness performance when the training data has biases.   

A key contribution of our work is to systematically compare the conventional one-model-
fits-all approach with a new double-prioritized (DP) bias correction approach, where specialized 
prognosis models are trained for minority prediction class patients of a certain race or age. 
Conceivably, it is challenging to train a single machine learning model that optimizes for all 
demographic groups. In contrast, the DP bias correction technique allows one to train models for 
specific demographic groups, not having to use the same model for the entire patient population. 
The key enabler of DP is demographic-specific sampling, i.e., selectively enriching the number 
of samples in the minority prediction class (C1). Training a specific machine learning model for 
some patient groups is necessary. For example, the oldest-old age group (typically defined as 
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85+)37 is a growing population in the US38. However, our study shows that 90+ patients’ recall 
C1 value (0.51) in the mortality prediction is 16% lower than the whole group (0.61) in the 
original model. Prioritized bias correction is highly effective for improving C1 recalls of 
demographic subgroups who are underrepresented in the training data, e.g., DP’s recall C1 is 
0.66 (29.4% improvement) for 90+ patients in mortality prediction.   

Our cross-race-group and cross-age-group experiments evaluate the impact of specialized 
machine learning models on prognosis accuracy. Overall, 16 out of the 24 (67%) matching DP 
models across the four tasks demonstrate an advantage over non-matching models, where the 
matching DP models (i.e., sample enrichment matches the test group’s demographics) achieve 
the highest recall C1 performance. Out of the 16 DP models, 8 of them are race models and 8 of 
them are age models (Supplementary Table 3). These findings confirm that algorithms matter in 
prognosis prediction and different model choices can significantly impact accuracy. These results 
also indicate the need for training specialized machine learning models for underrepresented 
patient groups.  

Model specialization still needs to rely on the whole group samples. Training a model 
solely based on particular subgroup samples (e.g., Black patients) gives poor results, worse than 
the original model on almost all metrics, due to small sample sizes. This result (not shown) 
suggests the importance of involving all samples in training, which forms a necessary starting 
point for further model optimization. The whole population training takes full advantage of 
shared features before subsequent model specialization. On the other hand, whether the model is 
calibrated with the whole group or is calibrated with a specific subgroup does not make much 
difference in prediction accuracy. We compare the original machine learning model under these 
two conditions for the IHM prediction (Supplementary Figure S20). The results are similar for 
most cases. For several groups (e.g., Black, Asian, age <30, and age [30,40)) underrepresented in 
the training data, their recalls are significantly lower if we apply subgroup calibration. Thus, our 
experiments are conducted under the whole group calibration condition, unless otherwise 
specified. Similarly, when applying subgroup optimized thresholds, we observe small 
performance changes for relatively large subgroups and decreased performance for the smaller 
ones (Supplementary Figures S2 and S7). One possible reason is that the selected threshold is 
overfitted to the small sample size in the validation set, resulting in lower testing performance. 
Therefore, we use a whole-group-based threshold on our DP and other bias correction 
experiments.  

Prioritized reweighting results further confirm the need for designing subpopulation-
specific bias correction mechanisms in machine learning. The prioritized reweighting method 
described in this paper is new. It puts more weights on a subset of C1 samples, as opposed to 
applying the same weight to all C1 samples. Prioritized reweighting performs similarly to the DP 
method (Supplementary Figure 14). This similarity is expected for two reasons. First, the 
workflow of the prioritized reweighting method is designed to mimic DP to emphasize specific 
subgroups’ C1 samples. Their only difference is that the former increases the weights and the 
latter adds more samples. Second, literature shows that reweighting and sampling approaches are 
statistically equivalent if operating under similar conditions46. In contrast, the standard 
reweighting method, which reweights the entire C1 population, has a weaker effect in boosting 
recall C1 for specific subpopulations (Supplementary Figure 14). The standard reweighting 
performs almost identically to the original model for Asian and age [40, 50) patients in the BCS 
prediction.  
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When computing feature importance, our results show that the SHAP-avg approach is 
more appropriate for one-hot encoded categorical features that have a large number of choices. 
When compared with SHAP-sum, SHAP-avg performs an additional step to normalize the 
importance value of a categorical feature. Without this step, categorical features with a large 
number of possible values are ranked high. For example, irrelevant features such as the patient’s 
state-county information and SEER registry (about data source) consistently rank high under 
SHAP-sum for the BCS and LCS predictions (results not shown), which is because of their 
hundreds of columns in the one-hot encoding representation. On the other hand, when the size of 
the category is small, the SHAP-sum ranking can be meaningful. For example, the Glasgow 
Coma Scale contains three categorical features, each with 4 to 6 options. SHAP-sum ranks the 
Glasgow Coma Scale (i.e., the extent of impaired consciousness) at the very top for all models in 
both the IHM prediction (Supplementary Figure S19) and decompensation prediction (not 
shown). Their ranks drop to the 7th to 14th positions under SHAP-avg. In this IHM case, both 
SHAP-sum and SHAP-avg methods give meaningful rankings. Further AI interpretability 
research will help develop a more systematic methodology for ranking one-hot encoded features.    

DP bias correction does not boost the performance of the majority prediction class and 
may reduce the model’s overall performance if applied. In BCS prediction, death is the minority 
prediction class for most demographic groups. However, for the age 90+ group, nearly 60% of 
the patients died within 5 years, making death the majority prediction class in this subgroup. 
Thus, the original model’s C1 performance is good, in terms of recall (0.91), precision (0.75), 
AUC-PR (0.90), and F1 (0.82). In contrast, the class C0 performance for age 90+ is weaker, with 
0.50 recall and 0.61 F1. Further increasing the number of C1 (death) cases would cause the data 
to be even more imbalanced. Thus, a key first step in DP is to identify the minority prediction 
class and the underrepresented demographic subgroups in the training dataset.  

Our results show that DP can mitigate racial and age disparities introduced by data 
underrepresentation in training machine learning models, better than the existing 8 sampling 
methods being compared. However, data imbalance is only one source of disparity. For example, 
the diagnosis and treatment conditions may vary across different demographic subgroups and 
affect data quality. These variations may also contribute to the disparity observed across groups. 
Eliminating such more fundamental and systemic medical biases is beyond the scope of technical 
solutions.   

In summary, because underrepresentation is prevalent in clinical medicine, our findings 
likely have broad implications beyond the specific datasets and demographic groups studied. 
Fully recognizing accuracy disparities associated with imbalanced data will help reduce life-
threatening prediction mistakes. Vast accuracy gaps exist between minority C1 and majority C0 
classes and across some demographic subgroups. When training and testing machine learning 
models, using multiple metrics is crucial, including balanced accuracy and separate metrics for 
the two prediction classes. Commonly used metrics, namely AUC-ROC and accuracy, are 
heavily influenced by the majority class and may fail to reflect the minority class performance 
when the dataset is imbalanced. DP bias correction is applicable to medical datasets, where data 
imbalance may be a source of accuracy disparity. The method is not designed to address non-
representational disparities, e.g., underdiagnosis and measurement bias. Future directions include 
further enhancing the interpretability of machine learning prognosis models, as well as exploring 
how data underrepresentation impacts the quality of medical image analysis and mutation-based 
evolutionary computation40.  
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Figure 1: Workflow for improving data balance in machine learning prognosis prediction 
using double prioritized (DP) bias correction.  
Sample enrichment prepares a number of new training datasets by incrementally enriching a 
specific demographic subgroup; candidate training is where each of the n+1 datasets is used for 
training a candidate machine learning model; model selection identifies the optimal model; 
prediction applies the selected model on new patient data. AUC-PR represents the area under the 
curve of the precision-recall curve.    
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Figure 2: Recall values for both classes C0 and C1 and training data statistics for the in-
hospital mortality (IHM) and the 5-year breast cancer survivability (BCS) tasks. (a) 
Percentage of the minority class C1, Recall C0, and Recall C1 of each subgroup of the MIMIC 
dataset for the IHM task. Statistics of (b) prediction class distribution, (c) racial group 
distribution, and (d) age group distribution for the MIMIC IHM dataset. The MIMIC IHM 
training set consists of 45.1% female samples and 54.8% male samples. (e) Percentage of the 
minority class C1, Recall C0, and Recall C1 of each subgroup of the SEER dataset for the BCS 
task. Statistics of (f) prediction class distribution, (g) racial group distribution, and (h) age group 
distribution for the SEER BCS dataset. The SEER BCS training set consists of 99.4% female 
samples and 0.6% male samples. 
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Figure 3: Prediction results under the original machine learning models (no bias 
correction) using one optimized threshold for all demographic groups. Rec_C1, Prec_C1, 
PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC, MCC stand for Recall 
Class 1, Precision Class 1, Area Under the Precision-Recall Curve Class 1, F1 score Class 1, 
Recall Class 0, Precision Class 0, Area Under the Precision-Recall Curve Class 0, F1 score Class 
0, Accuracy, Balanced Accuracy, Area under the ROC Curve, Matthews Correlation Coefficient 
(MCC), respectively. (a) Prediction results for the IHM prediction. Class 1, representing death 
after staying 48 hours in intensive care units at the hospital, is the minority prediction class. 
Class 0, representing survival after staying 48 hours in intensive care units, is the majority 
prediction class. (b) Prediction results for the BCS prediction. Class 1, representing death 5 years 
after a breast cancer diagnosis, is the minority prediction class. Class 0, representing survival 
after 5 years, is the majority prediction class.  
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Figure 4: Disparity exists in performance metrics.  Some metrics (i.e., AUC ROC and 
accuracy) are deceptive for the minority class. These deceptive metrics show higher 
performance, whereas, in reality, the performance is not good for the minority class. (a) 
Black subgroup performance for IHM prediction. (b) Age>=90 subgroup performance for IHM 
prediction. (c) Asian subgroup performance for BCS prediction. (d) Age [40,50) subgroup 
performance for BCS prediction. 
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Figure 5: Relative disparity among racial and age groups under various sampling 
conditions, including DP and the original machine learning model without any sampling. 
Relative disparity of MIMIC III IHM prediction in terms of (a) minority class recall, (b) 
balanced accuracy, and (c) Matthews correlation coefficient (MCC). Relative disparity of SEER 
BCS prediction in terms of (d) minority class recall, (e) balanced accuracy, and (f) Matthews 
Correlation Coefficient (MCC). DP performs the best in reducing the relative disparity across 
subgroups (i.e., showing the lowest disparity values) compared to the original model and models 
with other existing sampling methods for both tasks. 
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Figure 6: Performance comparison of DP and two representative sampling techniques 
(namely, random undersampling and SMOTE) over the original model for four 
demographic subgroups with poor performance. Positive values indicate performance 
improvement, and negative values indicate performance degradation from the original 
model.  (a) In terms of Recall C1 for IHM prediction with the MIMIC III dataset. (b) In terms of 
Balanced Accuracy for IHM prediction with the MIMIC III dataset.  (c) In terms of Recall C1 for 
the BCS prediction with the SEER dataset. (d)  In terms of Balanced Accuracy for the BCS 
prediction with the SEER dataset. 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2022. ; https://doi.org/10.1101/2021.03.26.21254401doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254401
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

 

Figure 7: DP and original model performance comparison in terms of minority class recall 
for in-hospital mortality (IHM) prediction and 5-year breast cancer survivability (BCS) 
prediction. Darker red color represents the original model performance using subgroup 
optimized threshold and lighter red color represents DP performance. DP’s improvements 
are stronger when the original recall C1 values are relatively low, partly because DP selects 
machine learning models based on balanced accuracy. Model performance comparison for (a) 
IHM prediction task and (b) BCS prediction task of 6 different racial or age subgroups. For the 
IHM prediction task, the standard deviation values for DP are between 0 and 0.051. For the BCS 
prediction task, the standard deviation values for DP are between 0.017 and 0.033. 
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Figure 8: DP’s cross-group performance under various race and age settings for recall C1 
and balanced accuracy in BCS prediction. In subfigures, each row corresponds to a DP model 
trained for a specific subgroup. Each column represents a subgroup that a model is evaluated on. 
The values on the diagonal are the performance of a matching DP model, i.e., a DP model 
applied to the subgroup that it is designed for. The last rows show the group’s performance in the 
original model. To prevent overfitting, our method chooses optimal thresholds based on whole 
group performance. DP cross-group performance for (a) race subgroups and (b) age subgroups 
for the BCS prediction in terms of recall C1. DP cross-group performance for (c) race subgroups 
and (d) age subgroups for the BCS prediction in terms of balanced accuracy. 
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Supplementary Equations 
 
BCS Class 1: Patient does not survive more than 5 years after breast cancer diagnosis;  
IHM Class 1: Based on the first 48 hours of ICU information, the patient dies in ICU 
LCS Class 1: Patient survives more than 5 years after lung cancer diagnosis 
Decomp Class 1:  Patient’s health deteriorates after 24 hours 

 
Recall C1 or Sensitivity	= 	 		#	$%&'()*&'	+%,&		-./00	1		

#	+%,&	-./00	1
	           (1) 

 
Recall C0 or Specificity	= 	 		#	$%&'()*&'	+%,&	-./00	2		

#	+%,&	-./00	2
         (2) 

 
Precision C1 or Positive Predictive Value =	 		#	$%&'()*&'	+%,&	-./00	1		

#	$%&'()*&'	-./00	1
      (3) 

 
Precision C0 or Negative Predictive Value  =	 			#$%&'()*&'	+%,&	-./00	2		

#	$%&'()*&'	-./00	2
             (4) 

 
Accuracy =	 			#	$%&'()*&'	+%,&	-./00	1	3	#	$%&'()*&'	+%,&	-./00	2			

#+%,&	-./00	1		3		#+%,&	-./00	2
        (5) 

 
Balanced Accuracy =	 			"&)/..	-1	3	"&)/..	-2		

4
          (6) 

 
F1-Score  C1 = 2 ∗ $%&)(0(56	-1	∗	"&)/..	-1

$%&)(0(56	-1	3	"&)/..	-1
          (7) 

 
F1-Score  C0 = 2 ∗ $%&)(0(56	-2	∗	"&)/..	-2

$%&)(0(56	-2	3	"&)/..	-2
           (8) 

 
𝑀𝐶𝐶 =	 #"#$%&'($%	*#+$	,-.//	0×#"#$%&'($%	*#+$	,-.//	23#"#$%&'($%	4.-/$	,-.//	0×#"#$%&'($%	4.-/$	,-.//	2	

√#"#$%&'($%	,-.//	0×#*#+$	,-.//	0×#"#$%&'($%	,-.//	2×#*#+$	,-.//	2
          (9) 
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Supplementary Figures and Tables 

  

 

Supplementary Figure S1: Recall_C1 values for both classes C0 and C1 and training data statistics for the 
decompensation and the 5-year lung cancer survivability (LCS) tasks. (a) Percentage of the minority class C1, 
Recall C0, and Recall C1 of each subgroup of the MIMIC dataset for the Decomp task. Statistics of (b) prediction 
class distribution, (c) racial group distribution, and (d) age group distribution for the MIMIC Decomp dataset. The 
MIMIC Decomp training set consists of 44.3% female samples and 55.7% male samples. (e) Percentage of the 
minority class C1, Recall C0, and Recall C1 of each subgroup of the SEER dataset for the LCS task. Statistics of (f) 
prediction class distribution, (g) racial group distribution, and (h) age group distribution for the SEER LCS dataset. 
The SEER LCS training set consists of 47.0% female samples and 53.0% male samples.  
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Supplementary Figure S2: Difference in performance of the original machine learning models (no bias 
correction) using subgroup thresholds (i.e., different optimized thresholds for different demographic groups) 
and the whole group threshold. Positive values mean that using a subgroup optimized threshold improves the 
performance. Rec_C1, Prec_C1, PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC, MCC 
stand for Recall Class 1, Precision Class 1, Area Under the Precision-Recall Curve Class 1, F1 score Class 1, Recall 
Class 0, Precision Class 0, Area Under the Precision-Recall Curve Class 0, F1 score Class 0, Accuracy, Balanced 
Accuracy, Area under the ROC Curve, Matthews Correlation Coefficient, respectively. The performance difference 
between the two settings (a) for the IHM prediction and (b) for the BCS prediction.  
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Supplementary Figure S3: In-hospital mortality (IHM) prediction and 5-year breast cancer survivability 
(BCS) prediction under various sampling conditions, including DP and the original machine learning model 
without any sampling, in terms of minority class recall, precision, F1 score, AUC-PR, balanced accuracy, and 
Matthews Correlation Coefficient (MCC). Prediction results from the original model and different sampling 
models for (a) Black patients and (b) age>=90 patients in the IHM prediction with the MIMIC III dataset. Prediction 
results from the original model and different sampling models for (c) Asian patients and (d) age [40, 50) patients in 
the BCS prediction with the SEER dataset. 
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Supplementary Figure S4: DP’s cross-group performance under various race and age settings for recall C1 
and balanced accuracy for the IHM prediction. In subfigures, each row corresponds to a DP model trained for a 
specific subgroup. Each column represents a subgroup that a model is evaluated on. The values on the diagonal are 
the performance of a matching DP model, i.e., a DP model applied to the subgroup that it is designed for. The last 
rows show the group’s performance in the original model. To prevent overfitting, our method chooses optimal 
thresholds based on whole group performance. DP cross-group performance for (a) race subgroups and (b) age 
subgroups for the IHM prediction in terms of recall C1. DP cross-group performance for (c) race subgroups and (d) 
age subgroups for the IHM prediction in terms of balanced accuracy. 
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Supplementary Figure S5: Disparity exists in performance metrics.  Some metrics (i.e., AUC ROC and 
accuracy) are deceptive for the minority class. These deceptive metrics show higher performance, whereas, in 
reality, the performance is not good for the minority class. (a) Black subgroup performance for decompensation 
prediction. (b) Age 90+ subgroup performance for decompensation prediction. (c) Black subgroup performance for 
LCS prediction. (d) Age 90+ subgroup performance for LCS prediction. Due to the slow decompensation 
computation, each prediction is executed only once.  
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Supplementary Figure S6: Prediction results under the original machine learning models (no bias correction) 
using one optimized threshold for all demographic groups. Rec_C1, Prec_C1, PR_C1, F1_C1, Rec_C0, 
Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC, MCC stand for Recall Class 1, Precision Class 1, Area Under the 
Precision-Recall Curve Class 1, F1 score Class 1, Recall Class 0, Precision Class 0, Area Under the Precision-Recall 
Curve Class 0, F1 score Class 0, Accuracy, Balanced Accuracy, Area under the ROC Curve, Matthews Correlation 
Coefficient (MCC), respectively. (a) Prediction results for the decompensation prediction. The minority Class 1 
represents patients whose health deteriorates after 24 hours. (b) Prediction results for the Lung cancer survivability 
(LCS) prediction. The minority Class 1 represents patients who survive lung cancer for at least 5 years after the 
diagnosis.  
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Supplementary Figure S7: Difference in performance of the original machine learning models (no bias 
correction) using subgroup thresholds (i.e., different optimized thresholds for different demographic groups) 
and the whole group threshold. Positive values mean that using a subgroup optimized threshold improves the 
performance. Rec_C1, Prec_C1, PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC, MCC 
stand for Recall Class 1, Precision Class 1, Area Under the Precision-Recall Curve Class 1, F1 score Class 1, Recall 
Class 0, Precision Class 0, Area Under the Precision-Recall Curve Class 0, F1 score Class 0, Accuracy, Balanced 
Accuracy, Area under the ROC Curve, and Matthews Correlation Coefficient (MCC), respectively. The performance 
difference between the two settings (a) for the decompensation prediction and (b) for the LCS prediction.  
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Supplementary Figure S8: DP and two representative sampling techniques (random undersampling and 
replicated oversampling for Decomp and random undersampling and SMOTE for LCS) performance 
comparison over the original model for four demographic subgroups with poor performance. Positive values 
indicate performance improvement, and negative values indicate performance degradation from the original 
model.  (a) In terms of Recall C1 for Decomp prediction with the MIMIC III dataset. (b) In terms of Balanced 
Accuracy for Decomp prediction with the MIMIC III dataset.  (c) In terms of Recall C1 for the LCS prediction with 
the SEER dataset. (d)  In terms of Balanced Accuracy for the LCS prediction with the SEER dataset. Due to the 
slow decompensation computation, each prediction is executed only once.  
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Supplementary Figure S9: DP and original model performance comparison in terms of minority class recall 
for Decompensation prediction and 5-year lung cancer survivability (LCS) prediction. Darker red color 
represents the original model performance using subgroup optimized threshold and the lighter red color 
represents DP performance. Overall, DP’s improvements are stronger when the original recall C1 values are 
relatively low. Model performance comparison for (a) Decomp prediction task and (b) LCS prediction task of 6 
different racial or age subgroups. Due to the computation complexity, we only conducted the decompensation 
experiments once. For the LCS task, the standard deviation values for DP are less than 0.04, with the exception of 
the age 90+ group (0.187).  
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Supplementary Figure S10: Relative disparity among racial and age groups under various sampling 
conditions, including DP and the original machine learning model without any sampling. The relative disparity 
of MIMIC III Decomp prediction in terms of (a) minority class recall, (b) balanced accuracy, and (c) Matthews 
Correlation Coefficient (MCC). The relative disparity of SEER LCS prediction in terms of (d) minority class recall, 
(e) balanced accuracy, and (f) Matthews Correlation Coefficient (MCC).   
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Supplementary Figure S11: Decompensation prediction and 5-year lung cancer survivability (LCS) 
prediction under various sampling conditions, including DP and the original machine learning model without 
any sampling, in terms of minority class recall, precision, F1 score, AUC-PR, balanced accuracy, and 
Matthews Correlation Coefficient (MCC). Prediction results from the original model and different sampling 
models for (a) Black patients and (b) age>=90 patients in the Decomp prediction with the MIMIC III dataset. 
Prediction results from the original model and different sampling models for (c) Black patients and (d) age [80, 90) 
patients in the LCS prediction with the SEER dataset. Due to the slow decompensation computation, each prediction 
is executed only once.  
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Supplementary Figure S12: DP’s cross-group performance under various race and age settings for recall C1 
and balanced accuracy for the LCS prediction. In subfigures, each row represents a model trained for a specific 
subgroup using DP. Each column represents a subgroup that a model is evaluated on. The values on the diagonal are 
the performance of a matching DP model, i.e., a DP model applied to the subgroup that it is designed for. The last 
rows show the group’s performance in the original model. To prevent overfitting, our method chooses optimal 
thresholds based on whole group performance. DP cross-group performance for (a) race subgroups and (b) age 
subgroups for the LCS prediction in terms of recall C1. DP cross-group performance for (c) race subgroups and (d) 
age subgroups for the LCS prediction in terms of balanced accuracy. 
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Supplementary Figure S13: DP’s cross-group performance under various race and age settings for recall C1 
and balanced accuracy for the decompensation prediction. In subfigures, each row corresponds to a DP model 
trained for a specific subgroup. Each column represents a subgroup that a model is evaluated on. The values on the 
diagonal are the performance of a matching DP model, i.e., a DP model applied to the subgroup that it is designed 
for. The last rows show the group’s performance in the original model. To prevent overfitting, our method chooses 
optimal thresholds based on whole group performance, as opposed to the (small) minority groups in the validation 
sets. DP cross-group performance for (a) race subgroups and (b) age subgroups for the decompensation prediction in 
terms of recall C1. DP cross-group performance for (c) race subgroups and (d) age subgroups for the 
decompensation prediction in terms of balanced accuracy. 
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Supplementary Figure S14: Performance comparison of the original model (without bias correction), 
standard reweighting, prioritized reweighting, and DP for (a) BCS Asian patients and (b) BCS [40, 50) 
patients. In prioritized reweighting, we dynamically increase the weight of minority class (C1) samples of selected 
subgroups from 1 to 20 and select the best model using the same procedure as DP.  
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Supplementary Figure S15: SHAP-avg feature importance of different BCS experiments. Original stands for 
the original machine learning model without any bias correction. DP stands for our Double Prioritized sampling 
method. Standard reweighting and prioritized reweighting are described in the Methods Section. In SHAP-avg, the 
SHAP importance of columns representing the same variable is averaged. The AJCC (American Joint Committee on 
Cancer) staging system is a system used to describe most types of cancer. SSG stands for the summary stage. ICD 
describes primary tumor site/type. PR and ER status represent a combination of a tumor marker and a site factor. 
Detailed variable and recode definitions can be found on the SEER website (https://seer.cancer.gov/data-
software/documentation/seerstat/nov2016/). Feature importance for BCS prediction in (a) original model, (b) DP 
model for Asian patients, (c) DP model for age [40, 50) patients, (d) standard reweighting model, (e) prioritized 
reweighting model for Asian patients, and (f) prioritized reweighting model for age [40, 50) patients. 
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Supplementary Figure S16: SHAP-avg feature importance of different LCS experiments. Original stands for 
the original machine learning without any bias correction. DP stands for our Double Prioritized sampling method. 
Standard reweighting is described in the Methods section. In SHAP-avg, the importance of columns representing the 
same variable is averaged. The AJCC (American Joint Committee on Cancer) staging system is a system used to 
describe most types of cancer. SSG stands for the summary stage. ICD describes primary tumor site/type. CS Mets 
at DX provides information on distant metastasis, describing the extent of the disease. Detailed variable and recode 
definitions can be found on the SEER website (https://seer.cancer.gov/data-
software/documentation/seerstat/nov2016/). Feature importance for LCS prediction in (a) original model, (b) 
standard reweighting model, (c) DP model for Black patients, and (d) DP model for age>=90 patients. 
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Supplementary Figure S17: SHAP-avg feature importance of different IHM experiments. Original stands for 
the original machine learning model without any bias correction. DP stands for our Double Prioritized sampling 
method. In SHAP-avg, the importance of columns representing the same variable is averaged. Feature importance 
for IHM prediction in (a) original model, (b) DP model for Black patients, and (c) DP model for age>=90 patients. 
 
 

 
 

Supplementary Figure S18: SHAP-avg feature importance of different decompensation experiments. Original 
stands for the original machine learning model without any bias correction. DP stands for our Double Prioritized 
sampling method. In SHAP-avg, the importance of columns representing the same variable is averaged. Feature 
importance for the decompensation prediction in (a) original model, (b) DP model for Black patients, and (c) DP 
model for age [40, 50) patients. 
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Supplementary Figure S19: SHAP-sum feature importance of different IHM experiments. Original stands for 
the original machine learning model without any bias correction. DP stands for our Double Prioritized sampling 
method. In SHAP-sum, the importance of columns representing the same variable is summed up. Feature 
importance for the IHM prediction in (a) original model, (b) DP model for Black patients, and (c) DP model for 
age>=90 patients. 
 
 

 
 
Supplementary Figure S20: In-hospital mortality prediction task performance for original model (a) Whole 
group calibration performances (b) Subgroup calibration performances (c) Difference in the performance 
between whole group and subgroup calibration. A positive value means subgroup calibration improves the 
performance. Rec_C1, Prec_C1, PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC stand for 
Recall Class 1, Precision Class 1, Area Under the Precision-Recall Curve Class 1, F1 score Class 1, Recall Class 0, 
Precision Class 0, Area Under the Precision-Recall Curve Class 0, F1 score Class 0, Accuracy, Balanced Accuracy, 
Area under the ROC Curve, respectively. 
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Supplementary Table 1: Learning Parameters for Four Prediction Models. BCS stands for breast cancer 
survivability. IHM stands for in-hospital mortality. LCS stands for lung cancer survivability. Decomp stands for 
decompensation. ANN stands for the artificial neural network.   
 

Learning 
Parameter 

BCS Prediction IHM Prediction LCS Prediction Decomp Prediction 

Hidden layers (20, 20) (16, 16) (20, 20) (128) 

ANN MLP LSTM MLP LSTM 

Learning Rate 0.001 0.001 0.001 0.001 

Optimizer adam adam adam adam 

Dropout 0.1 0.3 0.1 0.0 

 

For the IHM prediction task with MIMIC III datasets, training involves 100 epochs or stops early 
based on validation performance. For DP, we run for 50 epochs up to 20 additional units. For the 
Decomp prediction task with MIMIC III datasets, training involves 50 epochs or stops early 
based on validation performance. For DP experiments, we run for 10 epochs up to 20 additional 
units. The SEER cancer dataset is smaller, thus for the cancer prediction tasks, we run 25 epochs 
for all experiments. Each epoch produces a machine learning model; to choose the final model, 
we first identify the top three models based on balanced accuracy and then select the one with 
the highest precision-recall curve value of the minority class (denoted as PR_C1). For the SEER 
dataset, 80% is used for training, 10% for validation, and 10% for testing. For MIMIC III, the 
percentages are 70% for training, 15% for validation, and 15% for testing. 
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Supplementary Table 2: Performance comparison of standard reweighting with the original model and DP. 
Performance of the original model, applying DP, and applying standard reweighting for the BCS prediction and LCS 
prediction. For BCS, the minority class (C1) has a weight of 3.94 and the majority class (C0) has a weight of 0.57. 
For LCS, the minority class (C1) has a weight of 3.12 and the majority class (C0) has a weight of 0.60. Orig refers to 
the original model. SR stands for standard reweighting. 

 Recall C1 F1 C1 Balanced Accuracy 

Orig DP SR Orig DP SR Orig DP SR 

BCS Asian 0.617 0.778 0.610 0.590 0.429 0.582 0.785 0.798 0.781 

BCS Age 
[40, 50) 

0.577 0.747 0.577 0.524 0.450 0.524 0.758 0.797 0.758 

LCS Black 0.646 0.830 0.634 0.625 0.555 0.626 0.788 0.818 0.787 

LCS 
Age>=90 

0.300 0.450 0.300 0.269 0.327 0.258 0.645 0.717 0.644 

 
 
Supplementary Table 3: Summary of cross-race-group and cross-age-group results in the IHM, BCS, LCS, 
and Decomp tasks. A key case refers to that the matching DP models (i.e., sample enrichment matches the test 
group’s demographics) achieve the highest recall C1 performance. 
 

Task No. of Key Cases   Race (No.) Age Group (No.) Figure Number 

IHM  3 (out of 6) Black (1) <30, 90+ (2) S4 

BCS 5 (out of 6) Black, Hispanic, Asian (3) <30, [30, 40) (2) 8 

LCS 4 (out of 6) Black, Hispanic, Asian (3) [80, 90) (1) S12 

Decomp 4 (out of 6) Black (1) <30, [30, 40), 90+ (3) S13 

Total 16 (Out of 24) 8 8 --  
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Supplementary Table 4: Performance of MLP models using different structures. The performance of MLP 
models on the BCS and LCS tasks. We evaluate 3 different numbers of layers, 3 different numbers of neurons per 
layer, and 3 different dropout rates, generating 27 models in total for each task. The results are comparable among 
the models. The table shows the subgroup performance of the default model (2 layers with 20 neurons, 0.1 dropout 
rate) compared with two other models (5 layers with 30 neurons, 0.2 dropout rate and 10 layers with 50 neurons, 0.3 
dropout rate). 

 Recall C1 F1 C1 Balanced Accuracy 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

BCS Asian 0.617 0.627 0.643 0.590 0.584 0.591 0.785 0.788 0.795 

BCS Age 
[40, 50) 

0.577 0.571 0.607 0.524 0.518 0.514 0.758 0.755 0.767 

LCS Black 0.646 0.644 0.653 0.625 0.622 0.631 0.788 0.787 0.792 

LCS 
Age>=90 

0.300 0.250 0.300 0.269 0.242 0.310 0.645 0.620 0.646 

 

Supplementary Table 5: Relative disparity of MLP models using different structures. The relative disparity 
among subgroups for the BCS and LCS tasks are shown, including the disparity of the default model (2 layers with 
20 neurons, 0.1 dropout rate) compared with two other models (5 layers with 30 neurons, 0.2 dropout rate and 10 
layers with 50 neurons, 0.3 dropout rate). 

 Recall C1 F1 C1 Balanced Accuracy 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

2-20-0.1 
(default) 

5-30-
0.2 

10-50-
0.3 

BCS Race 1.205 1.237 1.237 1.149 1.159 1.146 1.044 1.050 1.047 

BCS Age 1.580 1.574 1.488 1.567 1.583 1.605 1.139 1.129 1.118 

LCS Race 1.146 1.138 1.127 1.126 1.129 1.109 1.059 1.056 1.052 

LCS Age 3.333 4.000 3.333 3.295 3.717 2.951 1.432 1.485 1.429 
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