Abstract
COVID-19 mortality increases dramatically with age and is also substantially higher among Black, Indigenous, and People of Color (BIPOC) populations in the United States. These two facts introduce tradeoffs because BIPOC populations are younger than white populations. In analyses of California and Minnesota--demographically divergent states--we show that COVID vaccination schedules based solely on age benefit the older white populations at the expense of younger BIPOC populations with higher risk of death from COVID-19. We find that strategies that prioritize high-risk geographic areas for vaccination at all ages better target mortality risk than age-based strategies alone, although they do not always perform as well as direct prioritization of high-risk racial/ethnic groups.
One-sentence summary Age-based COVID-19 vaccination prioritizes white people above higher-risk others; geographic prioritization improves equity.
Introduction
Distributing COVID-19 vaccines in the United States represents one of the most significant public health challenge in a century (1). National guidelines issued by the CDC in December 2020 (2) are consistent with the evidence that the risk of death from COVID-19 increases starkly with age (3). However, the guidelines ignore evidence that the risk of exposure to and subsequent infection from SARS-CoV-2, the causative agent of COVID-19, is substantially higher for younger Black, Indigenous, and People of Color (BIPOC) (4). As a result, vaccine prioritization based on age may exacerbate racial/ethnic inequities in COVID-19 burden because BIPOC populations are generally younger than the white population, more likely to be infected at younger ages, and at higher risk of dying from COVID-19 at younger ages (4, 5).
In contrast, prioritizations that consider other dimensions of risk alongside age may more effectively target those at greatest risk of COVID-19 death while reducing racial and ethnic inequities. Yet not all targeted approaches are feasible in practice. While BIPOC populations have notably higher COVID-19 age-specific mortality, distributing vaccines based on race and ethnicity may not be legally viable (6) or politically tenable (7–9). Further, a race-based approach may be perceived as discriminatory, given long-standing medical racism (6). Instead, geographic targeting, using indices of health or COVID-19 mortality, may be more practical, more resistant to legal challenges, and still more equitable than strategies based on age alone (10).
Here, we analyze four paired sets of alternative vaccination prioritization strategies and evaluate their sociodemographic and health equity implications. Our framework is based on maximizing the hypothetical COVID-19 mortality risk in the vaccine-eligible group using the observed COVID-19 mortality in 2020 (i.e., prior to mass vaccine rollout) as a proxy measure of risk. Given fixed vaccine supply, maximizing the mortality risk of the eligible should maximize the deaths directly averted through vaccination by directing vaccines to the people at highest risk (11). In addition, maximizing the mortality risk of the eligible also improves equity in the sense that it does not prioritize lower-risk populations above higher-risk populations. Our analyses explore the intersection of this risk equity with the vaccine access of BIPOC populations and socioeconomically deprived neighborhoods. To reflect the COVID-19 mortality risk of the general population, we excluded those already prioritized in Phase 1A (long-term care residents and health care workers). We assumed policymakers and health departments aim to prioritize vaccinations for the groups with highest COVID-19 mortality risk (11) (rather than with highest risk of transmission (12, 13)), in the context of limited vaccine supply. Other COVID-19 vaccine modeling studies consider which age groups to prioritize (14) and various trade-offs between age, comorbidities, and occupations (11, 13, 15–17). Here, we compare strategies for vaccinating the general population based on age, race and ethnicity, and alternative measures of geographic risk.
As concrete examples, we used individual-level death certificate data from California and Minnesota. These two states are socioeconomically and demographically distinct. They have experienced divergent pandemic trajectories and, according to a recent CDC analysis, differential success in vaccinating their most vulnerable residents (18). We can thus compare the health equity implications of the four sets of vaccine prioritization strategies in two different populations, showing how this framework can be flexibly applied across diverse settings.
Age-based prioritization alone results in substantial racial and ethnic disparities in averted deaths
We found that sequential age-based prioritization alone would result in substantial racial/ethnic disparities in deaths averted. For example, vaccinating all people aged 75+ would have prevented about two-thirds of white COVID-19 deaths (CA: 67%; MN: 65%). Yet, for California and Minnesota respectively, this age-based prioritization alone would have prevented only 42% and 34% of Black COVID-19 deaths, 35% and 27% of Latino COVID-19 deaths, and 63% and 32% of Asian and Asian-American COVID-19 deaths (Figure 1, top row; Figure S1). These stark differences reflect both that the white population is substantially older than most BIPOC populations and that COVID-19 mortality reaches high levels at substantially younger ages in BIPOC populations (Figure S2, top row). Age-based prioritization therefore reduces much more of the total risk in white populations compared to BIPOC populations.
A consequence of this multidimensional COVID-19 mortality risk is that structurally disadvantaged groups often have mortality that exceeds the state aggregate rate for age groups that are 10 or even 15 years older. For example, if mortality at ages 65-69 is sufficiently high to merit vaccine priority, the same would be true for (in California) Latinos older than 55 or (in Minnesota) BIPOC as a whole who are older than 50, because their COVID-19 mortality exceeds their state’s aggregate COVID mortality at ages 65-69 (Figure 2, top row; Figure S2).
In the first set of paired, alternative vaccination strategies, we compare sequential age-based vaccination (in five-year age groups) to vaccination schedules that combines the same age thresholds with race/ethnicity-age groups whose COVID-19 mortality exceeds that of the aggregate COVID mortality for the youngest eligible age group (e.g., ages 65-69 vs. ages 65-69 plus BIPOC ages 50-64 in Minnesota). We found that prioritizing vaccination for race-age groups with the highest risk would better target vaccination to high-risk individuals (Figure 3). Yet the legal, political, and practical barriers to such race-based prioritization motivates the research questions addressed in the remaining three comparison sets, which consider to what extent geographic prioritization can achieve similar ends of targeting high-risk individuals and improving racial equity in vaccination, compared to age-based rules that, in practice, prioritize white populations.
Geographic prioritization based on area-level deprivation improves equity and averts more deaths
In the second set of alternative vaccination strategies, we compare sequential age-based vaccination to vaccination schedules that also prioritize geography-age groups whose COVID mortality exceeds that of the aggregate for the youngest eligible age group. While age-based prioritization for the 75+ age group alone would have prevented nearly two-thirds of COVID-19 deaths in advantaged neighborhoods (CA: 67%; MN: 62%), it would have prevented only 34% and 40% of COVID-19 deaths in deprived neighborhoods in major metropolitan areas in California and Minnesota, respectively (Figure 3, Figure S3).
Compared to age-based prioritization alone, prioritizing by area-level deprivation can better target high-risk groups (Figure 3, Table S1). In California, geographic prioritization targets mortality about as effectively as prioritizing BIPOC as a whole, although not as well as prioritizing Latinos (the highest-risk racial group) specifically; in Minnesota, geographic prioritization is less effective than prioritizing BIPOC populations. Geographic prioritization also increases racial equity in Minnesota but does so only very modestly in California.
Universal adult vaccination in the highest-mortality neighborhoods can improve equity and avert more deaths
In the third comparison set, an alternative geographic prioritization strategy would directly identify Census tracts with historically higher COVID-19 mortality rather than proxying risk by area deprivation and major metropolitan status. This strategy mirrors one adopted by some states (19). Compared to statewide sequential age-based prioritization alone, adding vaccination for all adults (ages 20+) in the highest mortality tracts would generally improve the targeting of high-mortality groups in contexts where it also improves vaccine uptake among older people in the high-mortality tracts, but not in contexts where vaccinating the high-mortality tracts adds vaccination only for the youngest (not among those who were already eligible due to their age) (Figure 4; see details in Materials and Methods). Prioritizing high-mortality tracts would also dramatically increase vaccine access for BIPOC communities (Figure 5). These results are qualitatively robust to a sensitivity analysis that assumes that a large portion of “high-mortality tracts” included unidentified long-term care facilities whose deaths should be excluded from the analysis (Figure S4; see details in Materials and Methods).
For illustration, in California, if prioritizing tracts does not increase vaccine uptake among the oldest tract residents (who would already be eligible by age), then vaccinating the 500 highest-mortality tracts would decrease the mortality averted by 9% compared to vaccinating the 65-69-year-olds alone. (The inflection point, where prioritizing all adults in a tract is neutral, occurs at around 250 tracts under the assumption of no improved older-age vaccination.) However, if prioritizing tracts increases vaccine uptake by 50% among the oldest, already-eligible residents of those tracts, then vaccinating the 500 highest-mortality tracts would increase the averted mortality by 22%.
Universally lowering the age of eligibility averts fewer deaths and is less equitable than selectively lowering eligibility age
In the fourth comparison, we consider alternative strategies aimed at increasing racial equity in vaccination: substantially lowering age thresholds across the board, as some states have adopted with this motivation (20), versus selectively lowering age thresholds for high-mortality geographies. We compare these strategies at two critical junctures representing “early” and “late” vaccine rollout points: when vaccinating the 70-74 age group and when vaccinating the 55-59 age group (Figure 6; see details in Materials and Methods). The benefits of selectively lowering the age threshold, for maximizing the extent to which eligibility aligns with those at highest mortality risk, are substantial: for the older ages, selective lowering better targets the aggregate mortality risk of the eligible by 55% (159 vs. 103 deaths per 100,000) in California, and 88% (178 vs. 95 deaths per 100,000) in Minnesota; for the younger ages, selective lowering better targets mortality risk among the eligible by 51% (52 vs. 34 deaths per 100,000) in California, and 40% (32 vs. 23 deaths per 100,000) in Minnesota. However, in California, selective lowering of the age threshold does not meaningfully increase the proportion of vaccine-eligible people who are BIPOC for either early or late rollout. For Minnesota, it increases the proportion of vaccine-eligible who are BIPOC modestly (11% vs. 8% for the older ages; 18% vs. 14% for the younger ages).
An additional shortcoming of broadly lowering age thresholds is obscured by the assumption of random uptake among the eligible: broadly lowering the age threshold can exacerbate the selective uptake of lower-risk individuals to the extent that the size of the eligible group exceeds the available vaccine supply. To capture this phenomenon, we compare the mortality risk among the vaccinated, and proportion BIPOC among the vaccinated, under varying degrees of selective uptake among whites and selective uptake among younger eligible people. We find that, to the extent that creating a larger eligible population might exacerbate selective uptake by badly outstripping vaccine supply (e.g., white people being 25% vs. only 10% more likely than BIPOC people to access vaccines when eligible, the former number in line with observed rates (21)), geographic targeting will be even more effective at targeting high-risk groups and will also produce more equitable vaccination (Figure 6). At these relatively low rates of selective uptake, the difference made by selective uptake is small relative to the differences made by the vaccination schedules even assuming random uptake. Larger rates of selective uptake produce more dramatic divergences between the schedules (Figure S5).
Discussion
Our results showed, first, that strict age-based vaccination strategies disproportionately benefit the white population. For example, in both California and Minnesota, after excluding long-term care populations and health care workers, more than three-quarters of white COVID-19 deaths occurred above age 75, but half or fewer of Black and Latino deaths. This prioritization might be justifiable if older populations were at higher risk than younger populations, irrespective of race, much as prioritizing residents of long-term care facilities in Phase 1a resulted in prioritizing a largely white population at overwhelming risk (22). However, we show that this justification does not apply to age-based vaccination after Phase 1a. For example, when state vaccination eligibility is extended from 75+ to 65+, the mortality rate among the newly eligible is lower than the mortality rate among BIPOC groups that are 10 or 15 years younger yet still ineligible for vaccination. These age-ineligible, yet high-risk, BIPOC groups may have to wait for up to three months longer to be eligible for vaccination (23). These results underscore the implications of prioritizing vaccine allocation based on the 65+ age threshold, as many states implemented in January 2021.
Second, compared to a vaccine eligibility strategy based on age alone, a strategy that combines geographic location based on socioeconomic characteristics with age-based eligibility--such as by extending eligibility to the geographic and age groups with higher mortality than the youngest age-eligible group--better aligns with risk of COVID-19 mortality. The total improvements in risk coverage from this age-geography prioritization are fairly modest (improving the targeting of high-mortality groups by 3-10% across age groups and states) because the populations added through geographic prioritization are small relative to the five-year age groups in each state, so they have only a relatively small effect on aggregate risk among the eligible. However, the small size of the populations that would additionally become eligible also implies that geographic prioritization has a low direct opportunity cost, as only a small number of vaccines need to be allocated to high-risk geographies to achieve the equity gains of targeting.
Third, in the context of vaccine scarcity, efforts to save the most lives possible and to save lives equitably can be at odds (10, 24). Our results suggest that, in some cases, directing vaccination efforts at small, high-risk geographic areas without regard to age can improve on efforts to target older ages throughout the state, especially when such geographically targeted efforts improve vaccine uptake among older residents of high-risk areas. These results suggest that states should consider targeting broad swaths of the population (e.g., all adults) in highly specific geographic contexts when--and, from the perspective of directly reducing mortality, perhaps only when--this targeting allows for tactics that allow older residents to be more effectively reached. Such tactics could include home visits (25, 26), walk-in pop-up clinics (27), assigning appointment slots to all residents (28), and other forms of direct outreach. Such approaches may be especially likely to succeed in increasing uptake among the highest-risk when high-risk populations are vaccine-hesitant but might be more likely to adopt vaccination as others in their networks become vaccinated, and to the extent that such approaches increase framing of vaccination as the local default (28). Such direct outreach might be an effective strategy to vaccinate very high-risk populations quickly.
Moreover, broadly prioritizing all adults in the highest-mortality neighborhoods may be even more effective than the results here suggest. To the extent that groups with disproportionately high mortality also have disproportionate incidence of infection, the mortality-based results here may understate the benefits of better targeting at-risk groups. Because people live in segregated communities, people at heightened risk of COVID-19 death are likely to interact with others at elevated risk. Thus, prioritizing vaccination more effectively by neighborhood can potentially have multiplier effects as vaccinating relatively old residents reduces mortality directly and vaccinating younger residents reduces transmission to high-risk older people (29).
Fourth, several states have recently extended age eligibility to age 50+ (30) and even to all adults (31, 32), with reductions in the age at eligibility sometimes driven by a recognition that BIPOC people die of COVID-19 at younger ages on average (33). However, large universal drops in the age threshold for eligibility have the consequence of targeting risk quite poorly. We show that, compared to such a strategy, an alternative strategy that incorporates only high-risk geographies at younger ages does substantially better at prioritizing people with higher mortality risk. This is especially true in the context of disproportionate vaccine uptake by the advantaged among the eligible. However, our vaccine uptake simulation results suggest that small to moderate rates of selective uptake make relatively little difference in the extent to which each vaccination strategy succeeds in prioritizing high risk people, compared to the large difference made by the choice of strategy itself.
Our results additionally suggest that better-optimized vaccination strategies should consider local demographics, intersectional risks, and both large-scale (e.g., large metro areas) and small-scale (e.g., Census tract disadvantage) geographic stratification. For example, in both states, disadvantaged metropolitan Census tracts had distinctly higher COVID-19 mortality than all other geographies. Yet we found that geographic risk was more stratified by area deprivation index in California and more stratified by major Metro status in Minnesota, implying that a one-size fits all approach may be sub-optimal given vast demographic and geographic heterogeneity across states. Our results underscore the need for each state to individually consider what metrics would be most impactful for vaccine prioritization that both simultaneously maximizes the reduction in deaths due to COVID-19 while also ensuring a fair and equitable approach.
This study has several limitations. First, the calculations reported in this analysis are based on mortality data obtained from January to December 2020. Therefore, to the extent that mortality patterns by age, race/ethnicity, and place have changed over the course of the pandemic (e.g., responses to selective shutdowns or social distancing patterns), our results may not reflect future deaths averted by vaccination. Second, we were only able to evaluate strategies that prioritize based on information included in death certificates, which notably excludes strategies based on comorbidities. Third, in some of our analyses of racial equity, we included all Black, Indigenous, and People of Color (BIPOC) into one racial/ethnic category. Collapsing across diverse racial/ethnic and Indigenous populations poses challenges with respect to generalizability and implies a universal lived experience which does not exist (34, 35). However, combining groups enabled us to make direct comparisons between states (including a smaller, predominantly white state, Minnesota). Fourth, our study focused on vaccine eligibility and considered vaccine access only via selective uptake simulations. Yet access given eligibility may be as important as eligibility per se in determining equitability in COVID-19 vaccination. Moreover, some strategies are easier to implement than others. Geographic prioritization strategies require states to leverage data to determine where to target, whether broad indexes of risk like the area deprivation index or direct measures of where deaths have been concentrated in the state. Strategies that prioritize active outreach in small, high-risk areas require coordination and other resources and, to be effective, may require staff with linguistic competence and community connections that health departments may lack. Finally, vaccination strategies that are not widely perceived as legitimate can undermine social solidarity and increase efforts to flout the rules (36), and we did not evaluate whether geographic prioritization is likely to be widely perceived--or can be made to be widely perceived--as fair.
A central argument for age-based vaccination schedules is that they may minimize administrative burdens that may undermine more targeted schedules by preventing the eligible people who are at highest risk from accessing the vaccine. For example, targeting comorbidities may inadvertently exclude people without primary care doctors (37). Geographic prioritization strategies, like those explored here, may chart a middle path between, on the one hand, broad eligibility criteria that minimize administrative burden and, on the other, highly-targeted criteria that aim to direct vaccines at groups with the highest mortality risk. Geographic prioritization is not free of administrative burden, particularly for those without secure housing, who need to be reached with alternative strategies. And in particular, since few individuals know their Census tract, the prioritization strategies considered here would require individuals to check the eligibility of their addresses (e.g., through an online system or over the phone) or to be proactively contacted by state health systems; merely placing vaccination sites in high-risk neighborhoods does little to ensure that residents of those neighborhoods will be the people vaccinated (38). In many spheres of service provision, there are strong arguments in favor of universalist systems that minimize the burdens of demonstrating eligibility (39). Yet the vaccine rollout is a unique context in which the supply has been inflexibly scarce, making a truly universal approach untenable. Given this, strategies that prioritize residents of the neighborhoods where risk of dying of COVID-19 has been heavily concentrated could protect people whom age-based strategies exclude, in spite of their heightened risk of death.
Data Availability
In accordance with our data use agreement, individual-level data are not publicly available. When possible, we will provide aggregated data upon request and in accordance with our data use agreements.
Author contributions
EWF and MVK conceived and designed the study. EWF, MVK, Y-HC, MB, DVR, KPL, ARR, KBD, JPL acquired, analyzed, and interpreted the data. EWF, MVK, ARR, ECM, MB, KAD, JPL drafted the initial version of the manuscript. All authors provided critical revisions. All authors approve of the final manuscript and take final responsibility for the decision to submit for publication.
EWF and MVK had direct access to and verified the underlying data. In addition, JPL had full access to the Minnesota death certificate data and Y-HC had full access to the California death certificate data.
Data availability statement
In accordance with our data use agreement, individual-level data are not publicly available. When possible, we will provide aggregated data upon request and in accordance with our data use agreements.
Funding
This work is supported in part by the National Institutes of Health. ARR and MB are supported by the National Institute on Aging (ARR: T32AG049663; MB: P30AG012839). EWF, DVR, and JPL are supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P2CHD041023). MVK is supported in part by the National Institute on Drug Abuse (K99DA051534). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. In addition, EWF is supported by a Sustainable Development Goals Rapid Response Grant, a College of Liberal Arts Seed Grant, and during initial data processing stages was supported by the Fesler-Lampert Chair of Aging Studies at the University of Minnesota. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
Competing interests
All authors have no conflicts to declare.
Acknowledgements
We thank Elaine Hernandez, Maria Glymour, Michelle Niemann, Govind Persad, and Matthew Plummer for helpful discussion. We thank the California Department of Public Health and Minnesota Department of Health for access to death certificate data.