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Abstract
Building on the success of the ADReSS Challenge at Inter-
speech 2020, which attracted the participation of 34 teams from
across the world, the ADReSSo Challenge targets three dif-
ficult automatic prediction problems of societal and medical
relevance, namely: detection of Alzheimer’s Dementia, infer-
ence of cognitive testing scores, and prediction of cognitive de-
cline. This paper presents these prediction tasks in detail, de-
scribes the datasets used, and reports the results of the base-
line classification and regression models we developed for each
task. A combination of acoustic and linguistic features ex-
tracted directly from audio recordings, without human interven-
tion, yielded a baseline accuracy of 78.87% for the AD classi-
fication task, an MMSE prediction root mean squared (RMSE)
error of 5.28, and 68.75% accuracy for the cognitive decline
prediction task.
Index Terms: Cognitive Decline Detection, Affective Comput-
ing, Alzheimer’s dementia, computational paralinguistics

1. Introduction
Dementia is a category of neurodegenerative diseases which en-
tail long-term and usually gradual decrease of cognitive func-
tioning. The main risk factor for dementia is age and, hence,
it is increasingly prevalent in our ageing society. Due to the
severity of the disease, institutions and researchers worldwide
are investing considerably on dementia prevention, early detec-
tion and disease progression monitoring [1]. There is a need for
cost-effective and scalable methods for detection of early signs
of Alzheimer’s Dementia (AD) as well as prediction of disease
progression.

Methods for screening and tracking the progression of de-
mentia traditionally involve cognitive tests such as the Mini-
Mental Status Examination (MMSE) [2] and the Montreal Cog-
nitive Assessment (MoCA) [3]. MMSE and MoCA are widely
used because, unlike imaging methods, they are cheap, quick to
administer and easy to score. Despite its shortcomings in speci-
ficity in early stages of dementia, the MMSE is still widely used.
The promise of speech technology in comparison to cognitive
tests is twofold. First, speech can be collected passively, nat-
urally and continuously throughout the day, gathering increas-
ing data points while burdening neither the participant nor the
researcher. Furthermore, the combination of speech technol-
ogy and machine learning creates opportunities for automatic
screening systems and diagnosis support tools for dementia.
The ADReSSo Challenge aims to generate systematic evidence
for these promises towards their clinical implementation.

As with the its predecessor, the overall objective of the
ADReSSo Challenge is to host a shared task for the systematic
comparison of approaches to the detection of cognitive impair-
ment and decline based on spontaneous speech. As has been

pointed out elsewhere [4, 5], the lack of common, standardised
datasets and tasks has hindered the benchmarking of the various
approaches proposed to date, resulting in a lack of translation of
these speech based methods into clinical practice.

The ADReSSo Challenge provides a forum for researchers
working on approaches to cognitive decline detection based on
speech data to test their existing methods or develop novel ap-
proaches on a new shared standardised dataset. The approaches
that performed best on last year’s dataset [4] employed features
extracted from manual transcripts which were provided along
with the audio data [6, 7]. The best performing method [7] made
interesting use of pause and disfluency annotation provided with
the transcripts. While this provided interesting insights into the
predictive power of these paralinguistic features for detection of
cognitive decline, extracting such features, and indeed accurate
transcripts from spontaneous speech remains an open research
issue. This year’s ADReSSo (Alzheimer’s Dementia Recog-
nition through Spontaneous Speech only) tasks provide more
challenging and improved spontaneous speech datasets, requir-
ing the creation of models straight from speech, without manual
transcription, though automatic transcription is allowed and en-
couraged.

The ADReSSo datasets are carefully matched so as to avoid
common biases often overlooked in evaluations of AD detec-
tion methods, including repeated occurrences of speech from
the same participant (common in longitudinal datasets), varia-
tions in audio quality, and imbalances of gender and age distri-
bution. The challenge defines three tasks:

1. an AD classification task, where participants were re-
quired to produce a model to predict the label (AD
or non-AD) for a short speech session. Participants
could use the speech signal directly (acoustic features),
or attempt to convert the speech into text automatically
(ASR) and extract linguistic features from this automat-
ically generated transcript;

2. an MMSE score regression task, where participants were
asked to create models to infer the patients’ MMSE score
based solely on speech data; and

3. a cognitive decline (disease progression) inference task,
where they created models for prediction of changes in
cognitive status over time, for a given speaker, based on
speech data collected at baseline (i.e. the beginning of a
cohort study).

These tasks depart from neuropsychological and clinical
evaluation approaches that have employed speech and language
[8] by focusing on prediction recognition using spontaneous
speech. Spontaneous speech analysis has the potential to en-
able novel applications for speech technology in longitudinal,
unobtrusive monitoring of cognitive health [9], in line with the
theme of this year’s INTERSPEECH, “Speech Everywhere!”.
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This paper describes the ADReSSo dataset and presents
baselines for all ADReSSo tasks, including feature extraction
procedures and models for AD detection, MMSE score regres-
sion and prediction of cognitive decline.

2. Related work
There has been increasing research on speech technology for
dementia detection over the last decade. The majority of this re-
search has focused on AD classification, but some of it targets
MCI detection as well [5]. These objectives are most closely
related with our first task, namely, the AD classification task.
Such related research includes the best performing models pre-
sented in the ADReSS challenge in 2020. These achieved an
85.45% [6] and 89.6% [7] accuracy in AD classification using
acoustic features and text-based features extracted from man-
ual transcripts. Classification based on acoustic features only
was also attempted in [6], and obtained 76.85% accuracy with
IS10-Paralinguistics feature set (a low dimensional version of
ComParE [10]) and Bag-of-Acoustic-Words (BoAW).

Few works rely exclusively on acoustic features or text fea-
tures extracted through ASR. One of these achieved a 78.7%
accuracy on a subset of the Cookie Theft task of the Pitt dataset,
using different comprehensive paralinguistic feature sets and
standard machine learning algorithms [11]. Another, using the
complete Pitt dataset, obtained 68% accuracy using only vocal-
isation features (i.e. speech-silence patterns) [9]. Classification
accuracy of 62.3% has been reported for a different spontaneous
speech dataset using fully automated ASR features [12].

As regards the second task, regression over MMSE scores,
there is less literature available and most of it has been pre-
sented in recent workshops [5]. Several of these works used
the above mentioned Pitt dataset to extract different linguistic
and acoustic features and predict MMSE scores. A recent study
captured different levels of cognitive impairment with a mul-
tiview embedding and obtained a mean absolute error (MAE)
of 3.42 [13]. Another study reported a MAE of 3.1, having re-
lied solely on acoustic features to build their regression model
(a set of 811 features) [14]. Error scores as low as 2.2 (MAE)
have been obtained, but relying on non-spontaneous speech data
such as elicited in semantic verbal fluency (SVF) tasks [15].

Studies addressing the progression task are far less com-
mon. Notable in this category is [16], which incorporated a
comprehensive set of features (i.e. lexicosyntactic, semantic
and acoustic) into Bayesian network with, reporting a MAE
of 3.83 on prediction of MMSE scores throughout different
study visits. Two other studies account for disease progression
in classification experiments. One of them extracted speech-
based from the ISLE dataset achieving 80.4% accuracy to detect
intra-subject cognitive changes, that is, to distinguish healthy
participants who remained healthy from those who developed
some kind of cognitive impairment [17]. The second study uses
SVF scores to build a machine learning classifier able to predict
changes from MCI to AD over a 4-year follow-up, with 84.1%
accuracy [18].

3. The ADReSSo Datasets
We provided two distinct datasets for the ADReSSo Challenge:

1. a dataset consisting of speech recordings of Alzheimer’s
patients performing a category (semantic) fluency task
[19] at their baseline visit, for prediction of cognitive de-
cline over a two year period, and

2. a set of recordings of picture descriptions produced
by cognitively normal subjects and patients with an
AD diagnosis, who were asked to describe the Cookie
Theft picture from the Boston Diagnostic Aphasia Exam
[20, 21].

The recorded data also included speech from different ex-
perimenters who gave instructions to the patients and occasion-
ally interacted with them in short dialogues. No transcripts were
provided with either dataset, but segmentations of the record-
ings into vocalisation sequences with speaker identifiers [22]
were made available for optional use. The ADReSSo chal-
lenge’s participants were asked to specify whether they made
use of these segmentation profiles in their predictive modelling.
Recordings were acoustically enhanced with stationary noise
removal and audio volume normalisation was applied across all
speech segments to control for variation caused by recording
conditions such as microphone placement.

The dataset used for AD and MMSE was matched for age
and gender so as to minimise risk of bias in the prediction tasks.
We matched the data using a propensity score approach [23, 24]
implemented in the R package MatchIt [25]. The final dataset
matched according to propensity scores defined in terms of the
probability of an instance of being treated as AD given covari-
ates age and gender. All standardised mean differences for the
age and gender covariates were < 0.001 and all standardised
mean differences for age2 and two-way interactions between
covariates were well below .1, indicating adequate balance for
the covariates. The propensity score was estimated using a pro-
bit regression of the treatment on the covariates age and gender
as probit generated a better balanced than logistic regression.
The age/gender matching is summarised in Figure 1, which
shows the respective (empirical) quantile-quantile plots for the
original and balanced datasets. As usual, a quantile-quantile
plot showing instances near the diagonal indicates good bal-
ance.

The resulting dataset encompasses 242 audio files. These
were split into training and test sets, with 70% of instances allo-
cated to the former and 30% allocated to the latter. These parti-
tions were generated so as to preserve gender and age matching.

The dataset for the disease prognostics task (prediction of
cognitive decline) was created from a longitudinal cohort study
involving AD patients. The time period for assessment of dis-
ease progression spanned the baseline and the year-2 data col-
lection visits of the patients to the clinic. The task involves
classifying patients into ’decline’ or ’no-decline’ categories,
given speech collected at baseline as part of a category fluency
test. Decline was defined as a difference in MMSE score be-
tween baseline and year-2 greater than or equal 5 points (i.e.
mmse(baseline) − mmse(y2) ≥ 5). This dataset has a to-
tal of 105 audio recordings split into training and test sets as
with the diagnosis dataset (70% and 30% of recordings, respec-
tively).

4. Data representation
4.1. Acoustic features

We applied a sliding window with a length of 100 ms on the au-
dio files of the dataset with no overlap and extracted eGeMAPS
features over such frames. The eGeMAPS feature set [26] re-
sulted from an attempt to reduce the somewhat unwieldy fea-
ture sets above to a basic set of acoustic features based on their
potential to detect physiological changes in voice production, as
well as theoretical significance and proven usefulness in previ-
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Figure 1: Quantile-quantile plots for data before (left) and after
matching (right) by age and gender.

ous studies. It contains the F0 semitone, loudness, spectral flux,
MFCC, jitter, shimmer, F1, F2, F3, alpha ratio, Hammarberg
index and slope V0 features, as well as their most common sta-
tistical functionals, totalling 88 features per 100ms frame. We
then applied the active data representation method (ADR) [11]
to generate a data representation using frame level acoustic in-
formation for each audio recording. The ADR method has been
tested previously for generating representations for large scale
time-series data. It employs self-organising mapping to cluster
the original acoustic features and then computes second-order
features over these cluster to extract new features (see [11] for
details). Note that this method is entirely automatic in that no
speech segmentation of diarisation information is provided to
the algorithm.

4.2. Linguistic Features

We used the Google Cloud-based Speech Recogniser for auto-
matically transcribing the audio files. The transcripts were con-
verted into CHAT format which is compatible with CLAN [27],
a set of programs that allows for automatic analysis of a wide
range of linguistic and discourse structures. Next, we used the
automated MOR function to assign lexical and morphological
descriptions to all the words in the transcripts. Then, we used
two commands: EVAL which creates a composite profile of 34
measures, and FREQ to compute the Moving Average Type To-
ken Ratio [28].

5. Diagnosis baseline
5.1. Task 1: AD Classification

The AD classification experiments were performed using five
different methods, namely decision trees (DT, where the leaf
size is optimised through a grid search within a range of 1 to
20), nearest neighbour (KNN, where K parameter is optimised
through a grid search within a range of 1 to 20), linear discrim-
inant analysis (LDA), Tree Bagger (TB, with 50 trees, where
leaf size is optimised through a grid search within a range of 1
to 20), and support vector machines (SVM, with a linear kernel,
where box constraint is optimised by trying a grid search be-
tween 0.1 to 1.0), and sequential minimal optimisation solver.

The results for accuracy in the AD vs Control (CN) classi-
fication task are summarised in Table 1. As indicated in bold-
face, the best performing classifier in cross-validation was DT,
achieving 78.92% and 72.89% accuracy using acoustic and lin-
guistic features, respectively. On the test set, however, the re-
sults were reversed, with linguistic features producing an over-
all best accuracy of 77.46%, with the SVM classifier. Late fu-
sion of the acoustic and linguistic models improves the accuracy
on the test set further to 78.87% (Figure 2).

Table 1: Task1: AD classification accuracy on leave-one-
subject out cross-validation (CV) and test data.

LDA DT SVM RF KNN mean (sd)

CV Acoustic 62.65 78.92 69.28 65.06 65.06 68.19 (6.4)
Linguistic 72.29 72.89 72.89 75.90 65.06 71.81 (4.0)

Test Acoustic 50.70 60.56 64.79 63.38 53.52 58.59 (6.2)
Linguistic 76.06 74.65 77.46 73.24 59.15 72.11 (7.4)
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Figure 2: Task 1: Late (decision) fusion of the best results of
acoustic and linguistic models. Precision (Pre) , recall (Rec),
accuracy (Accu) and mean F1 scores are shown on the margins.

5.2. Task 2: MMSE prediction

For this regression task we also used five types of regression
models: linear regression (LR), DT, with leaf size of 20 and
CART algorithm, support vector regression (SVR, with a ra-
dial basis function kernel with box constraint of 0.1, and se-
quential minimal optimisation solver), Random Forest regres-
sion ensembles (RF), and Gaussian process regression (GP, with
a squared exponential kernel). The regression methods are im-
plemented in MATLAB [29] using the statistics and machine
learning toolbox.

The results are summarised in Table 2. As with classifi-
cation, DT regression outperformed the other models in cross-
validation, with ASR linguistic features outperforming acoustic
ADR features. This trend persisted in the test set, with linguistic
features producing a minimum RMSE of 5.28 in a SVR model.
We then fused the best results of linguistic and acoustic fea-
tures and took a weighted mean, finding the weights through
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Table 2: Task2: MMSE score prediction error scores (RMSE)
for leave-one-subject out CV and test data.

LR DT SVR RF GP mean (sd)

CV
Acoustic 6.88 6.88 6.96 7.89 6.71 7.06 (0.47)

Linguistic 6.65 5.92 6.42 7.02 6.50 6.50 (0.40)

Test
Acoustic 6.23 6.47 6.09 8.18 6.81 6.75 (0.84)

Linguistic 5.87 6.24 5.28 6.94 5.43 5.95 (0.67)

grid search on the validation results, which resulted in an im-
provement (6.37) on the validation dataset. We then used the
same weights to fuse the test results and obtained an RMSE of
5.29 (r = 0.69).

6. Prognosis baseline
6.1. Task 3: prediction of progression

We tested the same classification methods used in Task 1 for
the task of identifying those patients who went on to exhibit
cognitive decline within two years of the baseline visit in which
the speech samples used in our models were taken. The acous-
tic and linguistic features were generated as described in Sec-
tion 4.The results of this prediction task are summarised in Ta-
ble 3. As the classes for this task are imbalanced we report aver-
age F1 results rather than accuracy, Once again DT performed
best on CV, but the F1 results for the test set was considerably
lower, reaching only a maximum of 66.67%, for linguistic fea-
tures and 61.02% for acoustic features.

Table 3: Task3: cognitive decline progression results (mean of
F1Score) for leave-one-subject-out CV and test data.

LDA DT SVM RF KNN mean (sd)

Val
Acoustic 59.89 84.94 55.64 63.85 65.92 66.05 (11.27)

Linguistic 55.19 76.52 45.24 63.10 55.25 59.06 (11.64)

test
Acoustic 61.02 53.62 40.74 40.74 38.46 46.91 (9.89)

Linguistic 54.29 66.67 40.74 56.56 39.62 51.58 (11.41)

As before, we fused the predictions of the best models for
each feature type, hoping that the diversity of models might im-
prove classification. The confusion matrix for the fusion model
is shown in Figure 3. This time, however, decision fusion did
not yield any improvement in accuracy. However it is noted that
the recall (sensitivity) improved from 40% to 70% for patients
exhibiting cognitive decline.

nd d
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Figure 3: Task 3: Decision fusion of the best results of acoustic
and linguistic features on the test set.

7. Discussion
The AD classification baseline yielded a maximum accuracy of
78.87% on the test set, through the fusion of models based on
linguistic and acoustic features. Despite the fact that the ASR

transcripts had relatively high word error rates, linguistic fea-
tures contributed considerably to the predictions. The overall
baseline results for this task are in fact comparable to results
obtained for similar picture description data using manual tran-
scripts (see Section 2). DT classifiers performed well on the CV
experiments, but accuracy decreased on the test set, indicating
probable overfitting. Overall, however, all models proved fairly
robust.

A similar picture was observed in the MMSE regression
task. Linguistic features contributed appreciably to the predic-
tion, even though the transcripts contained many errors. In this
case, however, late fusion only improved the RMSE score in
CV; the test set RMSE remained practically unchanged.

The prognosis task proved to be the most difficult predic-
tion task. The CV results varied considerably among models,
with a standard deviation of 11.64 for the linguistic models.
The test set results were also varied, reaching a maximum F1

score of 66.67%, even when the best model predictions were
fused. Although the acoustic features produced the best classi-
fication results in CV (F1 = 66.05% vs 59.06% for linguistic
features), these results were not born out by test set evaluation,
suggesting that the acoustic features made the classifiers more
prone to overfitting. It is possible that this could be mitigated
by training the acoustic feature extractor (ADR) on a larger set
of off-task recordings (data augmentation) and fine tuning the
resulting model on the ADReSSo data.

8. Conclusions
The ADReSSo Challenge is the first shared task to target
cognitive status prediction using raw, non-annotated a non-
transcribed speech, and to address prediction of changes in cog-
nition over time. We believe this moves the speech processing
and machine learning methods one step closer to the real-world
of clinical applications. A limitation the AD classification and
the MMSE regression tasks share with most approaches to the
use of these methods in dementia research is that they provide
little insight into disease progression. This has been identi-
fied as the main issue hindering translation of these technolo-
gies into clinical practice [5]. However, these tasks remain
relevant in application scenarios involving automatic cognitive
status monitoring, in combination with wearable and ambient
technology. The addition of the progression task should open
avenues for relevance also in more traditional clinical contexts.
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