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Abstract

Many countries are currently dealing with the COVID-19 epidemic and are searching for
an exit strategy such that life in society can return to normal. To support this search,
computational models are used to predict the spread of the virus and to assess the
efficacy of policy measures before actual implementation. The model output has to be
interpreted carefully though, as computational models are subject to uncertainties.
These can stem from, e.g., limited knowledge about input parameters values or from the
intrinsic stochastic nature of some computational models. They lead to uncertainties in
the model predictions, raising the question what distribution of values the model
produces for key indicators of the severity of the epidemic. Here we show how to tackle
this question using techniques for uncertainty quantification and sensitivity analysis.

We assess the uncertainties and sensitivities of four exit strategies implemented in an
agent-based transmission model with geographical stratification. The exit strategies are
termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased
Opening. We consider two key indicators of the ability of exit strategies to avoid
catastrophic health care overload: the maximum number of prevalent cases in intensive
care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our
results show that uncertainties not directly related to the exit strategies are secondary,
although they should still be considered in comprehensive analysis intended to inform
policy makers. The sensitivity analysis discloses the crucial role of the intervention
uptake by the population and of the capability to trace infected individuals. Finally, we
explore the existence of a safe operating space. For Intermittent Lockdown we find only
a small region in the model parameter space where the key indicators of the model stay
within safe bounds, whereas this region is larger for the other exit strategies.

Author summary

Many countries are currently dealing with the COVID-19 epidemic and are looking for
an exit strategy such that life in society can return to normal. For that purpose
computational models are used to predict the spread of the virus and to assess the
efficacy of policy measures before putting them into practice. These models are subject
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to uncertainties (due to, for instance, limited knowledge of the parameter values), which
can lead to a large variability in model predictions. It is therefore fundamental to assess
which range of values a model produces for key indicators of the severity of the epidemic.

We present here the results of the uncertainty and sensitivity analysis of four exit
strategies simulated with an individual-based model of the COVID-19 transmission. As
key indicators of the severity of the pandemic we consider the maximum number of
cases in intensive care and the total number of intensive care patient-days in excess.
Our results show the crucial role of the intervention uptake by the population, of the
reduction in the level of transmission by intervention and of the capability to trace
infected individuals.

Introduction 1

Many countries are currently dealing with the COVID-19 epidemic and are searching for 2

an exit strategy such that life in society can return to normal. However, in absence of 3

an effective curative treatment and, until recently, of an effective vaccine, 4

non-pharmaceutical interventions have been used to keep case numbers as low as 5

possible. In the past there have been numerous other epidemics during which 6

government actions were required to protect the population. Examples are the influenza 7

pandemic (also known as Spanish flu) in 1918 or the more recent Mexican flu (or swine 8

flu) in 2009 [1]. When an infectious disease outbreak occurs, governments rely on 9

computational models to predict the spread of the disease and to explore the potential 10

impact of interventions [2–4]. Thus, computational models enable decision makers in 11

government and public health institutions to assess the efficacy of policy measures 12

before actual implementation. 13

Since computational modeling of the epidemic has come to play a significant role for 14

informing policy, it is important to assess the uncertainties of the models and of their 15

predictions. Such uncertainties can stem, for instance, from limited knowledge about 16

the values of the input parameters or from the intrinsic stochastic nature of part of the 17

computational models. The presence of any of these uncertainties leads to uncertainties 18

in the model predictions. A central question is therefore what distribution of values is 19

produced by the model for key indicators of the severity of the epidemic and of the 20

intensity of interventions. 21

In this study we present results from an analysis of uncertainties and sensitivities of 22

an agent-based model of the COVID-19 epidemic [5, 6], obtained using techniques of 23

Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) [7, 8]. UQ is an area of 24

mathematics dealing with propagation of uncertainties from model input to model 25

output, and establishing model input uncertainties from observation data. Let us denote 26

with M the computational model and let X and Y be its input parameters and output 27

quantities, respectively, such that Y =M (X). X has probability distribution p (X), 28

reflecting its uncertainty. A central aim of UQ is to determine the probability 29

distribution of Y , i.e. p (Y ), given p (X). With SA, one determines what fraction of the 30

uncertainty of Y (e.g. fraction of the total variance of Y ) is due to individual elements 31

of the vector X, given p (X). Thus, one searches which input parameters generate the 32

most (or the least) variance in Y . It is frequently the case that a large part of the 33

variance of an output quantity is due to a subset of the input parameters involved. 34

The UQ and SA frameworks employ a probability distribution - as opposed to a 35

single value - to describe each input parameter. These distributions are typically 36

determined from available data or from expert knowledge. With proper probability 37

distributions assigned to each input parameter, the UQ and SA frameworks can be used 38

to assess whether exit strategies are robust. A useful criterion for robustness is that, 39

given the model input distributions, the 95th percentile of a chosen output quantity - 40
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usually termed Quantity of Interest (QoI) - remains below a critical threshold. 41

Examples of QoI in the context of epidemic modeling are the peak number of COVID-19 42

patients in intensive care (IC) units and the total number of fatalities due to COVID-19. 43

For other QoIs, e.g. life years gained, a more relevant criterion is that the 5th percentile 44

stays above a minimum value. This can be dealt with in an analogous manner. 45

The aim of this work is to perform a model-based quantitative analysis of 46

uncertainties and sensitivities for the computational representations of four exit 47

strategies, and assess the uncertainties in model simulation results. We show how such 48

analysis can be performed by means of computational methods and concepts from the 49

fields of uncertainty quantification and sensitivity analysis, and what kind of insights 50

can be obtained. In order to perform our analysis we consider the spread of the 51

COVID-19 disease in the Netherlands in the context of an open-source agent-based 52

model with geographical stratification [5,6]. We note that the framework of our analysis 53

is not restricted to this specific model, but can also be applied to other strategies, to 54

more complex models and to other epidemics than COVID-19. 55

Methods and model 56

In what follows, we provide an overview of the computational model used in our 57

analysis and the exit strategies implemented in the model. Next, we summarize some 58

key concepts of uncertainty quantification and describe different sources of uncertainties. 59

We discuss also the chosen SA method and the quantities of interest selected for our 60

study. We conclude this section with a description of the computational UQ and SA 61

framework that we employ. 62

Computational model 63

We employ the publicly available virsim model [6], which is a stylized representation of 64

the COVID-19 epidemic with geographical stratification of both transmission and 65

interventions (i.e., a meta-population model). More specifically, it is an agent-based 66

model with a geographical structure defined by means of clusters (representing for 67

instance towns and villages) and superclusters (e.g. provinces or other administrative 68

units for which policy decisions are made). Individuals are separated into susceptible 69

(S), exposed (E), infectious (I) and recovered (R), and life-long immunity is assumed. 70

Heterogeneity is introduced by varying individual contact rates. For a more detailed 71

model description we refer the reader to de Vlas & Coffeng [5]. For this study, we 72

employed an updated quantification of the model [9]; see Table 1 in the main text and 73

S1 Table for an overview of the parameter values. 74

We consider four exit strategies: Flattening the Curve (FC), Contact Tracing (CT), 75

Intermittent Lockdown (IL) and Phased Opening (PO). Each strategy is part of the 76

model implementation (see S1 Appendix for the computational details) and is defined 77

by a unique set of parameters. More details about the strategies parameters are given in 78

a later section, where we discuss also the input distributions that have been considered 79

to account for the respective uncertainties. 80

Since this study is of conceptual nature and does not aim to model real-world 81

scenarios as accurately as possible, we simulate a population of 1 million individuals and 82

we focus on the first year after the implementation of a strategy (the idea being that 83

governments will regularly evaluate and adapt the strategy in use). All simulated 84

intervention strategies are preceded by a period of lockdown, analogous to the situation 85

in the Netherlands from March to May 2020. During this period, we assume that an 86

intervention package is implemented that heavily reduces transmission. The model 87

parameter for this effect (intervention_effect) is expressed in terms of the level of 88
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transmission that the intervention package still allows, relative to a situation without 89

any interventions (i.e., 100% minus the reduction in the overall transmission rate). 90

Based on a previous quantification of the model using extensive data on the Dutch 91

COVID-19 outbreak [9], we assume that the lockdown reduces transmission to 30% on 92

average for one week and then to 15% on average after the Dutch government 93

introduced stricter measures. In accordance with the Dutch situation, the effect of the 94

lockdown is simulated for 60 days, followed by a period of partial lockdown (assumption: 95

intervention_effect = 25%), analogous to the re-opening of schools in the 96

Netherlands [9]. After another 30 days, one of the exit strategies takes effect in the 97

simulation. Overall we simulate a period of 550 days corresponding to roughly 1.5 years; 98

see S1 Appendix for details about how this is implemented in the model. 99

Uncertainty and its quantification 100

Uncertainties in model output can arise from different sources; we discuss here four 101

main types. The first is parameter uncertainty, referring to uncertainties in model 102

parameters whose values can be set directly by the model user via the inputs of the 103

computational model. An example is the reduction of the transmission rate due to the 104

introduction of an intervention. For the COVID-19 epidemic, a significant decrease in 105

the transmission rate following the adoption of such measures has been recorded [10–13], 106

however the magnitude of this reduction is uncertain. 107

The second type of uncertainty, which we call intrinsic uncertainty, arises when a 108

computational model is inherently stochastic. In epidemiology, many models are 109

agent-based and possess inherent stochasticity, for instance in the randomized 110

interactions between agents. Model users often have little control over such inherent 111

stochasticity as they can typically only set the seed of the random number generator at 112

the start of a simulation [14]. 113

The third type is model-form uncertainty, referring to uncertainty or errors in the 114

structure of the model itself (e.g. due to transmission mechanisms not represented in 115

the model). This type of uncertainty cannot be analyzed by changes in the model 116

inputs but requires a comparison either with independent observation data or with 117

other models - as done for example in climate science [15]. 118

Lastly, initial condition uncertainty is due to the inaccuracies in the specification of 119

the initial state of the model (i.e., the state of the simulated population at the start of 120

the model run). Since we consider here model outputs which are independent from the 121

specific timing of e.g. epidemic peaks, this type of uncertainty is not important in our 122

analysis. 123

In this study we analyze the parameter and intrinsic uncertainties by means of 124

non-intrusive UQ methods, which means that we treat the computational model (i.e., 125

the virsim model) as a black box. We extend the notation from the introduction to 126

Y =M(X, r), where r denotes the seed of the random number generator. By random 127

sampling of the parameter vector X from its distribution p (X) and altering the seed r, 128

followed by executing the model M, we create random samples from the probability 129

distribution of Y . Thus, we can probe the uncertainty of Y and estimate its distribution 130

by repeated model executions. 131

Sensitivity analysis 132

In order to assess which parameters create the most uncertainty in the model output Y 133

under the different strategies, we compute the Sobol indices [16]. This is a form of 134

global sensitivity analysis focusing on the variance of Y . Assuming mutual 135

independence among the input parameters, Var(Y ) is decomposed into fractions which 136

can be attributed either to a single input parameter (first order Sobol indices) or to a 137
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set of parameters (higher order Sobol indices). Given p (X), the first order Sobol index 138

for the i-th input parameter (Xi) is defined as Si := Vari[E∼i(Y |Xi)] /Var(Y ), as 139

explained in S2 Appendix. We use the notation Ei for expectation over Xi and E∼i for 140

expectation over all X1, X2, ... except Xi (and similarly for Vari and Var∼i). If Si is 141

close to 1, it means that the variance of Y is almost entirely due to the variance of Xi. 142

The overall effect on the model output of all parameter combinations involving Xi is 143

given by the total Sobol index STi
:= 1−Var∼i[Ei(Y |X∼i)] /Var(Y ). 144

Regarding the assumed mutual independence of the input parameters, there might 145

be dependencies when parameters are actually estimated from data. However such 146

dependencies are not implemented in the computational model, hence the selected input 147

parameters (see below for more details) are effectively treated as mutually independent. 148

We refer to S2 Appendix for more details about the theory of the Sobol indices. 149

Quantities of Interest 150

In our analysis we consider the model predictions for the number of incident and 151

prevalent individuals in the population that require IC admission. As IC capacity is 152

limited, the question whether the IC capacity will be exceeded (and if so, by how much) 153

according to model predictions is clearly important. To investigate this, for each 154

simulation we consider two quantities of interest (QoI): 155

1. the maximum of the moving average of the prevalent cases in intensive care 156

(averaging window = 30 days) 157

2. the total number of IC patient-days in excess of IC bed capacity (referred to as 158

”IC patient-days in excess” from hereon). 159

The first QoI shows the peak value of the number of COVID-19 patients in IC units, 160

giving an indication of the intensity of an outbreak. We apply a moving average to 161

focus on longer-term trends, filtering out short-term “noisy” variations. When analyzing 162

robustness, a natural threshold for this QoI is the available IC capacity, which may vary 163

from country to country and from month to month. In our analysis we assume the IC 164

capacity to be constant in time and we consider the Netherlands as reference country. 165

De Vlas and Coffeng [5] calculate that during the first epidemic wave in 2020 the Dutch 166

maximum IC capacity for COVID-19 patients was 109 IC beds per million inhabitants. 167

The second QoI quantifies by how much the total IC capacity is overburdened. It is 168

defined as
∑T

t=0 max(0 , p(t)− p∗) where p(t) is the number of IC prevalent cases at day 169

t ∈ {0, 1, 2, ..., T}, p∗ is the maximum IC capacity and the summation runs from the 170

start time of the simulation (t = 0 day) to the final time (t = T days). It shows the 171

extent to which the government may have to rely on other countries, e.g. Germany, to 172

take in IC patients from the Netherlands. Setting a threshold for this QoI is 173

complicated, as many economical and political factors come into play here. 174

We note that the two QoIs as defined here do not depend on time. The first QoI is 175

defined as a maximum over the time interval of simulation, whereas the second QoI is 176

defined as a summation over the same time interval. Thus, a single model simulation 177

yields a single, time-independent value for each QoI. 178

Policy-related uncertainties 179

The implementation of a strategy in the computational model is determined by a set of 180

input parameters for the model. Some of the parameters can be controlled (up to a 181

certain degree) by policy makers. These are parameters related to social aspects of the 182

population - e.g. social distancing - and to the availability of resources, e.g. to test and 183

track infected individuals. They can be controlled to some extent by government 184
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authorities through imposing stricter (or less strict) rules for e.g. social distancing, or 185

through making more (or less) resources available. We call them policy-related 186

parameters and we refer to the uncertainties generated by these parameters as 187

policy-related uncertainties. 188

Below we provide details about which policy-related parameters are treated as 189

uncertain, together with the rationale behind the probability distributions chosen for 190

them. The distributions, together with their mean and 95%-confidence intervals are 191

provided in Table 1; their plot instead is provided in S1 Fig. 192

We use Beta distributions for those parameters that are naturally restricted to 193

values on a finite interval, such as those representing probabilities or percentages. We 194

remark that this allows us to use distributions that are very different from the uniform 195

distribution. With the hyperparameters used here, the probability density of the Beta 196

distribution decreases to zero towards the boundaries of the support. By contrast, the 197

uniform distribution attributes equal probability to any value within the support of the 198

distribution. For parameters defined as a time scale or a rate we choose the Γ 199

distribution as it has one unique peak (with the hyperparameters used here) and a 200

semi-infinite domain (all non-negative values). 201

Characteristics of the four exit strategies 202

Flattening the Curve. The main idea of FC is to gradually resume activities that 203

have been interrupted by the lockdown such that the virus spreads among the 204

population at a lower pace while keeping the pressure on the healthcare system 205

manageable. Here we model only the first intervention after the lockdown with the idea 206

that the evolution of the pandemic can be appropriately reconstructed up to (almost) 207

present time, such that the focus is on the next step to take. In the computational 208

model, this strategy is governed by two parameters: 209

• the effect of the intervention (model parameter intervention_effect). The 210

effect of the intervention package is expressed in terms of the level of transmission 211

it still allows, relative to a situation without any intervention (i.e., one minus the 212

reduction in the overall transmission rate). This parameter is supposed to allow a 213

slight increase in the average contact rate with respect to the situation of general 214

lockdown with schools open. We sample it from a Beta distribution; 215

• the uptake of the intervention by the population, model parameter uptake, which 216

we draw from a Beta distribution. We assume that the majority of the population 217

would adhere to the introduced measures, hence the bulk of the distribution is 218

moved towards values close to 1. 219

Contact Tracing. This strategy consists of tracking potentially infectious contacts 220

such that only infected people drastically reduce their interactions with others, thus 221

limiting the spreading of the virus while allowing events and activities to take place 222

nonetheless. Three factors characterize such an approach: 223

• the delay between becoming infectious and being identified as such (if at all); 224

represented by the inverse of the model parameter trace_rate_I. A fast 225

identification is technologically very challenging, hence we give higher probabilities 226

to identifications requiring more than 20 hours. We employ a Γ distribution for 227

the inverse of the delay; 228

• the probability of an infected contact to be identified before the person turns 229

infectious; represented by the model parameter trace_prob_E. Such a 230

classification is challenging as tracking data might be incomplete or there might 231
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not be enough capacity to process them. Therefore we choose a Beta distribution 232

with relatively large variance and mean shifted towards lower values; 233

• the quality of the isolation and its effect on transmission; represented by the 234

model parameter trace_contact_reduction. We assume that whoever is being 235

tracked would adopt every possible measure to avoid transmitting the virus 236

further. For this parameter we use a Beta distribution. 237

Intermittent Lockdown. The idea here is to alternate periods of lockdown and 238

periods of complete opening at preset intervals (at the time of writing the virsim model 239

did not include a dynamic trigger for the start of the lockdown/opening based on, e.g., 240

the number of infected). When such a strategy is to be modeled, the following 241

parameters have to be chosen: 242

• the duration of the lockdown and of the following lift of measures represented by 243

the model parameters lock_length and lift_length. Since a long lockdown 244

might have a heavy impact on the psychological health of the population with 245

more people, for instance, becoming depressed, we try to keep a balance between 246

the lockdown and the lift period. We consider Γ distributions both for the 247

lockdown and for the lift periods; 248

• the effect of the lockdown (model parameter lock_effect) expressed in terms of 249

the level of transmission it still allows, relative to a situation without any 250

intervention. We assume it to have (on average) an effect in contact reduction 251

similar to a general lockdown with schools open. We sample it from a Beta 252

distribution; 253

• the uptake of the intervention by the population. For this parameter we use the 254

same Beta distribution assumed in case of FC. 255

Phased Opening. The approach of the Phased Opening strategy is to release the 256

general lockdown at the regional level and distribute the patients in need of hospital 257

care at the national level. In this way the spread of the virus is limited to a smaller 258

portion of the population and the burden on the healthcare system is reduced [5]. In 259

our simulations we consider a number of phases equal to the number of superclusters, so 260

at each phase only one supercluster lifts the lockdown. Other important features 261

defining the strategy are: 262

• the time interval between one phase and the next, determined by 263

intervention_lift_interval. A too short period would lead the strategy to be 264

rather inefficient and to a strong overburden on the healthcare system in a short 265

time. On the other hand a too long period would lead to a rather long waiting for 266

some regions and hence to growing discontent among the population. We try to 267

find a compromise in the choice of the Γ distribution for this parameter; 268

• the effect of the measures in the areas where the lift has not been applied yet, 269

represented by the model parameter pl_intervention_effect_hi and expressed 270

in terms of the level of transmission it still allows, relative to a situation without 271

any intervention. In these areas we assume that the reduction in the average 272

contact rate is analogous to the reduction obtained during the periods of lockdown 273

in case of the IL strategy, hence we use the same Beta distribution; 274

• the uptake of the intervention by the population, model parameter uptake, which 275

is sampled from a Beta distribution, as in the cases of FC and IL. 276
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Table 1. Model parameters varied in the UQ analysis. Values represent the
mean and 95%-confidence interval (95%-CI) of the input distributions.

Input parameter Distribution Mean 95%-CI

intervention

_effect

Beta(α = 38, β = 70) 0.35 [0.27, 0.44]

uptake Beta(α = 16, β = 2) 0.89 [0.71, 0.99]
trace_rate_I Γ(shape = 2, scale = 0.2) 0.40 [0.05, 1.11]
trace_prob_E Beta(α = 2, β = 6) 0.25 [0.04, 0.58]
trace_contact

_reduction

Beta(α = 10, β = 2) 0.83 [0.59, 0.98]

lock_length Γ(shape = 20, scale = 2) 40.0 [24.4, 59.3]
lift_length Γ(shape = 15, scale = 1) 15.0 [8.4, 23.5]
lock_effect Beta(α = 14, β = 42) 0.25 [0.15, 0.37]
intervention

_lift_interval

Γ(shape = 25, scale = 2) 50.0 [32.4, 71.4]

pl_intervention

_effect_hi

Beta(α = 14, β = 42) 0.25 [0.15, 0.37]

avg_duration

_infectiousness

Γ(shape = 25, scale = 0.2) 5.00 [3.24, 7.14]

R0 Γ(shape = 100, scale =
0.025)

2.50 [2.03, 3.01]

intervention

_effect_var-1
Γ(shape = 2, scale = 0.05) 0.10 [0.01, 0.28]

shape

_exposed_time

Γ(shape = 17.5, scale = 1) 17.5 [10.3, 26.6]

Other uncertainties 277

Besides the parameters that can be influenced by policy, discussed in the previous 278

section, the computational model has other parameters that we include in our analysis. 279

Examples are the reproduction number of the virus and the duration of infectiousness. 280

Because these parameters have to be estimated from data, their values can be rather 281

uncertain, especially when available data is scarce (for instance in the early stages of an 282

epidemic with a new virus). For some parameters, care has to be taken when sampling 283

them from probability distributions, since certain basic characteristics, like the doubling 284

time, have to match the time evolution of the epidemic as captured in the (real-world) 285

observation data. 286

Altogether, given the setup of the virsim model, we consider the following 287

non-policy-related uncertain parameters: 288

• the average duration of infectiousness (model parameter avg_duration 289

_infectiousness) has been estimated to be about 5 days. To account for errors 290

and a conceivable lack of data in the estimation process, we sample it from a Γ 291

distribution; 292

• the reproduction number R0 is determined in the model as the product between 293

the average duration of infectiousness and the contact rate. By default it is set at 294

R0 = 2.5 and in what follows we account for uncertainties on how the virus 295

spreads among the Dutch society. Thus we draw R0 from a Γ distribution and 296

derive the average contact rate as the ratio between R0 and the average duration 297

of infectiousness; 298
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• intervention_effect_var represents the inter-individual variation in the effect 299

of the intervention in case of uptake (in the default setup no inter-individual 300

variation is allowed). Such variations might be due, for instance, to the presence 301

of children in the household. intervention_effect_var can assume any positive 302

value and, for simplicity of representation, it is modeled as 1/x where x is sampled 303

from a Γ distribution. Please note that even though the 95%-confidence interval 304

for x itself is narrow, the resulting interval for 1/x is quite large; 305

• in order to consider uncertainties in how the incubation period varies among the 306

population, we sample the shape parameter of the distribution of exposed_time 307

from a Γ distribution. 308

The virsim model is stochastic, and as discussed in an earlier section, this intrinsic 309

stochasticity is a source of uncertainty of the model output. It is not possible to choose 310

the probability distribution of the internal (or latent/hidden) random variables of the 311

model, or to set them by hand to specific values according to some sampling plan. The 312

only form of control as model user is to pick the random seed for the pseudo-random 313

number generator at the start of the simulation. We draw the seed from a discrete 314

uniform distribution with support between 16384 and 65536. This amounts to 315

independent random sampling of the internal random variables of the virsim model. 316

Furthermore, when using models with a geographical structure like the virsim model, 317

uncertainties can arise from the level of geographical mixing that is allowed in the 318

model. For sake of simplicity we do not consider such uncertainties in the present study, 319

but they should be considered in more comprehensive studies if these are intended to 320

inform policy makers. 321

We report in Table 1 the assumed input distributions, their mean and 322

95%-confidence intervals reflecting parameter uncertainty for model parameters that 323

were considered in the UQ analysis. The plot of the distributions themselves is provided 324

in S1 Fig. Finally, in S1 Table we list the model parameters that have fixed values (i.e., 325

the parameters not considered as uncertain) in this study. 326

UQ and SA computational framework 327

If the dependence of the QoIs on the parameters is smooth and the number of uncertain 328

parameters is not too high, the propagation of uncertainties from parameters to QoIs 329

can be assessed with techniques such as Polynomial Chaos Expansion and Stochastic 330

Collocation [7,8, 17], that allow to obtain the relevant information with relatively little 331

computational time. However, due to the presence of intrinsic uncertainty, the 332

continuous relation between QoIs and inputs is lost as the QoIs do not depend 333

continuously on the random seed. When this type of uncertainties is present, the 334

aforementioned methods like Polynomial Chaos Expansion are not suitable. Therefore, 335

we resort to Monte Carlo (MC) sampling as it is guaranteed to return reliable results 336

(albeit with a low convergence rate). We base our UQ results on the evaluation of an 337

MC ensemble with 1000 simulations. More advanced techniques meant to overcome the 338

issue of the internal stochasticity are currently being developed, see for instance [18] but 339

require further investigation before application to high-dimensional systems. 340

For the SA, we compute the first order Sobol indices with the cost effective 341

algorithm of Saltelli [19] (see S2 Appendix), and their 95%-confidence intervals are 342

computed via bootstrapping. By performing an intelligent sampling of the input 343

parameters, this algorithm reduces the computational cost of the calculation of the first 344

order Sobol indices from M2p to M(p+ 2) model simulations, where M is the number 345

of MC samples and p is the number of uncertain parameters (including the random 346

seed). For more details about the practical implementation of the Saltelli algorithm 347
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please see [8]. Due to the specific sampling required by the Saltelli algorithm, the SA 348

cannot be performed on the same set of data employed for UQ. Therefore we run a 349

separate set of simulations, and use M = 2000 MC samples per parameter involved in 350

the implementation of the strategy (SA is in general computationally more demanding 351

than UQ). This results, e.g., in case of FC in a total of M(p+ 2) = 2000(3 + 2) = 10000 352

simulations, where we considered only the random seed and the policy-related 353

parameters. 354

Sampling and post-processing analysis are done using the Monte Carlo sampler of 355

the publicly available Python library EasyVVUQ [20–22]. We run the required model 356

simulations in parallel on a supercomputer at the Poznan Supercomputing and 357

Networking Center. For the job submission to the supercomputer we use the 358

FabSim3 [23,24] and QCG-PilotJob [25] packages. FabSim3, QCG-PilotJob and 359

EasyVVUQ are all part of the open source VECMA Toolkit (VECMAtk) [26,27]. The 360

codes employed for this study can be found on GitHub [28]. 361

Results 362

To provide intuition for the behaviour of the model and the QoIs defined earlier, we 363

show in Figure 1 time series of the number of prevalent cases in IC and of the number of 364

IC patient-days in excess, for four simulations of the virsim model under the Phased 365

Opening strategy. For each simulation, different policy-related parameters are used. It 366

can be seen in the left panel of Fig. 1 that the number of prevalent cases in IC has noisy 367

perturbations on top of the main signal. As discussed earlier, we apply a moving 368

average (averaging window = 30 days) to filter out these short-term noisy perturbations. 369

The resulting smoothed time series are shown in the central panel of Fig. 1. The peak 370

value reached in each smoothed time series is our first QoI. In the right panel of Fig. 1 371

we show the cumulative number of IC patient-days in excess as a function of time.The 372

value reached at the final time, t = T , is our second QoI. 373
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Fig 1. Examples of model outcomes for four independent simulations of the Phased
Opening strategy with different policy-related parameters. Left: time series of the
prevalent cases in intensive care. Middle: the resulting moving average of the number of
IC prevalent cases. Right: the corresponding time series of the total number of IC
patient-days in excess. All values on the vertical axis are per million capita. Black
circles in the middle and right panel indicate the QoIs for the different simulations.

Probability distributions of the QoIs 374

As first step of our UQ analysis, we construct the empirical cumulative distribution 375

functions (cdfs) of our QoIs. For any threshold value q∗, the cdf gives the probability 376
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that the QoI remains below (or at) that threshold, i.e. it gives P(QoI ≤ q∗) for the 377

adopted strategy (and given the specific input parameter ditributions). In Fig. 2 we 378

report the resulting cdfs for the four selected strategies both with and without 379

uncertainties in non-policy-related parameters (in the latter case, we fix these 380

parameters at the mean values listed in Table 1, except for shape_exposed_time which 381

is set to 20, see also S1 Table, and for the seed which is never fixed). We further display 382

the 95%-confidence interval of the empirical cdfs using the Dvoretzky-Kiefer-Wolfowitz 383

inequality [29,30], which gives an indication on how reliable the empirical cdfs are. 384
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Fig 2. Empirical cdfs for Flattening the Curve, Contact Tracing, Intermittent
Lockdown and Phased Opening. Top row: results with policy-related and
non-policy-related uncertainties. Bottom row: outcomes with uncertainties only in the
policy-related parameters and in the random seed. The vertical dotted black line
indicates the maximum IC capacity, while the thinner colored lines denote the 95%-CI
given by the Dvoretzky-Kiefer-Wolfowitz inequality. Note that the cdfs for the second
QoI (right column) do not start from zero probability because the distributions have a
non-zero probability that the number of IC patient-days in excess is zero.

We observe the important fact that, with the given distributions of the input 385

parameters, none of the analyzed strategies is robust. The probability that the number 386

of prevalent patients in intensive care is larger than the IC capacity is rather high and 387

only Contact Tracing gets close to a probability of 50%. This shows that the assumed 388

input distributions for Flattening the Curve, Intermittent Lockdown and Phased 389

Opening correspond to interventions that are not sufficiently restrictive to stay below 390

the threshold, as far as the model is concerned. 391

We note that the cdfs of the first QoI for CT and IL increase more gradually 392

compared to FC and PO (implying that the variance of the first QoI is larger for CT 393

and IL than it is for FC and PO). Furthermore, it can be seen that the shape of the cdfs 394

is only weakly affected by non-policy-related parameters. Therefore, when searching for 395

the parameters responsible for most of the output variability, i.e. for the sensitivity 396

analysis, these parameters might be kept fixed to reduce the computational burden. 397

They should be included however when determining the minimum level of e.g. 398

intervention or uptake, required for the QoIs to stay below their threshold with 95% 399

probability. 400
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Sensitivity analysis 401

In Fig. 3 we report, for the first QoI, the 95%-confidence interval of the first order Sobol 402

indices for the policy-related parameters and for the seed. This information allows us to 403

identify which factors of the strategies most affect the model output, such that 404

measures targeting these factors can be adopted in order to make the strategy robust. 405

The Sobol indices for the second QoI show qualitatively similar results and are therefore 406

not reported here. 407
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Fig 3. First order Sobol indices of the first QoI (the maximum number of patients in
IC). The length of the bars indicate the mean values, while the thinner lines display the
95% confidence interval. We color in orange the uptake parameter, and in green seed.

From the width of the intervals, it can be seen that the number of MC samples 408

(M = 2000) is too small to estimate the Sobol indices very accurately. Nonetheless a 409

qualitative ranking of the parameters with respect to the generated output variance can 410

be made, based on the results in Fig. 3. It is therefore possible to distinguish 411

intervention_effect, trace_rate_I, uptake and pl_intervention_effect_hi as 412

the parameters responsible for most of the output uncertainty, and should thus be 413

targeted (e.g. through policy measures) in order to obtain more desirable outcomes. For 414

more accurate estimates of the Sobol indices, M must be increased substantially, thereby 415

greatly increasing also the computational cost. We refrain from doing so in this study. 416

The uptake by the population of the interventions plays a crucial role whenever this 417

parameter is part of the strategy. In these strategies (i.e. FC, IL, PO), the uptake 418

parameter is responsible for at least 30% of the QoI variance and, in case of 419

Intermittent Lockdown it is responsible for about 70% of the variance. The 420

intervention_effect, lock_effect and pl_intervention_effect_hi parameters 421

are also important, although they are not always the main driving factor. For 422

Flattening the Curve its Sobol index is higher than that of uptake, whereas for 423

Intermittent Lockdown uptake has a much higher Sobol index (indicating that is it 424

more important) than lock_effect. The population uptake and the effect of the 425

lockdown seem to be of similar importance for the Phased Opening strategy. 426

In case of Contact Tracing circa 50% of the QoI variance is determined by the delay 427

between becoming infectious and being identified as such (if at all), i.e. the inverse of 428

the rate per day at which infected individuals are being traced (parameter 429
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trace_rate_I). After infected agents have been identified, the reduction of their 430

average contact rate is also important. 431

The probability of tracing exposed individuals (CT strategy) and the interval 432

between subsequent lifts (PO strategy) give only a small contribution to the model 433

output variability. The intrinsic stochasticity of the model instead does not induce 434

much variability in the model output as the 95%-CI of its Sobol index always includes 0 435

and does not take values above 5%. Similar conclusions hold for the lengths of the 436

lockdowns and subsequent lift periods in the IL strategy. 437

The total Sobol indices give qualitatively the same outcomes but highlight higher 438

order interactions involving lock_effect and trace_prob_E (see S2 Fig). The 439

differences between the first order and the total Sobol indices suggest that the most 440

important second-order interactions appear to be those between lock_effect and 441

uptake in the IL strategy, and between trace_prob_E and trace_rate_I in CT. 442

However, to assess these interaction effects in detail, more MC samples are needed. 443

Safe operating space 444

Given the knowledge on the main driving factors of each strategy, we want to know 445

which combinations of values for these input parameters result in, for instance, a 446

number of prevalent cases in IC (first QoI) below the IC capacity. This information can 447

be used to devise policy measures that would effectively move the corresponding input 448

distributions towards an area in the parameter space where the strategy is robust, i.e. 449

towards the safe operating space. The information can be obtained by means of a 450

scatter plot of the QoIs as functions of the values of the two or three input parameters 451

with the highest Sobol indices. 452
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Fig 4. Heat map of the maximum values of patients in IC (left) and the total amount
of IC patient-days in excess (right) per million capita as functions of the input
parameters for the FC strategy with seed and policy-related uncertainties. The black
dots show the simulations whose QoI value is below or equal to the IC capacity or there
are no IC patient-days in excess.

In case of Flattening the Curve we visualize the two selected QoIs as functions of the 453

most important parameters according to the Sobol indices, i.e. intervention_effect 454

and uptake, see Fig. 4. The first QoI stays below the IC capacity for high population 455

uptake and strong intervention (recall that stronger intervention is associated with lower 456

values of intervention_effect) . If uptake is less than circa 85% or if 457
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intervention_effect is higher than 35%, an exceedance of the IC capacity is to be 458

expected in the model. 459
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Fig 5. Heat map of the maximum values of patients in IC per million capita as a
function of the input parameters for the CT strategy with seed and policy-related
uncertainties. The black dots show the simulations whose maximum value is below or
equal to the IC capacity. The plots correspond to quartiles of trace_prob_E (top left:
very low; top right: low; bottom left: high; bottom right: very high).

The two main drivers of the strategy Contact Tracing are trace_rate_I and 460

trace_contact_reduction, while trace_prob_E has higher relevance when considered 461

in combination with the other parameters. Therefore, we ignore the seed parameter as 462

the variance it induces is small (the 95%-CI of its Sobol index being very tight around 463

0) and split our data into quartiles (very low, low, high and very high) of 464

trace_prob_E. The scatter plots of the resulting sub-sets of data of the first QoI are 465

provided in Fig. 5. The same analysis for the second QoI reveals the same qualitative 466

results and is therefore not reported here. 467

At low values of trace_rate_I (i.e. in case of a long delay in the identification 468

process), the first QoI is predicted to be above the threshold independently from 469

trace_contact_reduction. This is slightly mitigated in the plots corresponding to the 470

high and very high quartiles of trace_prob_E, revealing the important interaction 471
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between these two parameters captured by the total Sobol index. It is therefore 472

paramount to have an efficient tracing system for this strategy to be effective. 473
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Fig 6. Heat map of the maximum values of patients in IC (left) and the total amount
of IC patient-days in excess (right) per million capita as functions of the input
parameters for the IL strategy with seed and policy-related uncertainties. The black
dots show the simulations whose maximum value is below or equal to the IC capacity or
there are no IC patient-days in excess.

Out of the five considered parameters of the strategy Intermittent Lockdown, only 474

two are important according to the estimated Sobol indices. These are uptake and 475

lock_effect. The scatter plots of the QoIs as functions of these two parameters (see 476

Fig. 6) confirm that high levels of uptake are necessary when adopting this strategy. 477

They also show that, as the level of transmission allowed by the lockdown increases (i.e. 478

higher values of lock_effect), high levels of uptake are not enough to keep the first 479

QoI below its threshold. Very little variability is induced by the other parameters. 480

Similar to Contact Tracing, the Phased Opening strategy has two parameters 481

responsible for most of the output variance: uptake and pl_intervention_effect_hi. 482

The interval between consecutive phases, i.e. intervention_lift_interval, has a 483

small Sobol index, whereas the Sobol index of the random seed is very close to zero. We 484

therefore apply a similar approach: we ignore the random seed and divide the data into 485

quartiles of intervention_lift_interval. We show the scatter plots of the resulting 486

sub-sets of the first QoI in Fig. 7. The same analysis for the other QoI reveals the same 487

qualitative insights and is therefore not reported here. 488

There is a clear gradient visible in Fig. 7 with lowest QoI values obtained for high 489

values of uptake and for low values of pl_intervention_effect_hi (corresponding to 490

more restrictive lockdowns). Higher QoI values are obtained when either the population 491

uptake or the rigor of the lockdown decreases. These two factors alone though are not 492

enough to ensure that the IC capacity is not exceeded. In fact all of our simulations in 493

the quartile corresponding to very low values of intervention_lift_interval go 494

beyond the IC capacity (top left panel in Fig. 7). By increasing 495

intervention_lift_interval, more simulations stay below the IC capacity threshold. 496
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Fig 7. Heat map of the maximum values of patients in IC per million capita as a
function of the input parameters for the PO strategy with seed and policy-related
uncertainties. The black dots show the simulations whose maximum value is below or
equal to the IC capacity. The plots correspond to quartiles (top left: very low; top right:
low; bottom left: high; bottom right: very high) of intervention_lift_interval.

Discussion 497

The aim of this work was to perform a model-based quantitative analysis of the 498

uncertainties and sensitivities of a number of selected exit strategies for the COVID-19 499

epidemic. We discussed how such an analysis can be approached using methods and 500

concepts from the field of Uncertainty Quantification and Sensitivity Analysis. We 501

demonstrated computational techniques that can be employed to assess the uncertainties 502

and identify the sensitivities of each strategy. In particular, we examined the empirical 503

cumulative distribution function of two quantities of interest obtained from the model 504

output: the maximum number of prevalent cases in IC and the total amount of IC 505

patient-days in excess of IC bed capacity. We also identified the input parameters 506

responsible for most of the output uncertainty (namely intervention_effect, 507

trace_rate_I, uptake and pl_intervention_effect_hi) via the computation of the 508

Sobol indices of variance. Lastly we explored the shape of the safe operating space in 509
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the parameter space of the different strategies by means of scatter plots. 510

Given the probability distributions that we chose for the uncertain model 511

parameters, the Contact Tracing strategy appears to be the most effective in the model 512

(see Fig. 2), but it requires high tracing capacity. Furthermore, the output uncertainty 513

is highly driven by the uncertainty in the population uptake of, and adherence to 514

interventions (see Fig. 3), with the number of IC patients increasing as the value of 515

uptake decreases and vice versa. The effect of interventions and the tracing capability 516

also play a crucial role, whereas the intrinsic stochasticity of the model always has a low 517

Sobol index so it gives only a minor contribution to the output uncertainty. 518

None of the strategies analyzed here satisfied our criterion of robustness with the 519

given input distributions. This means that the probability that the number of prevalent 520

patients in IC is larger than the IC capacity is rather high for all four exit strategies. To 521

achieve more satisfactory performance (as far as the model and the chosen QoIs are 522

concerned), parameter distributions corresponding to stricter interventions are needed. 523

This would require that the effects of policy measures can “push” the bulk of the 524

parameter distributions to more favorable values compared to the distributions used in 525

our analysis here. In particular the insights about the safe operating space can be useful 526

to determine how the parameters distributions might need to be modified in order to 527

obtain more desirable outcomes, e.g. towards stricter interventions in case of Flattening 528

the Curve or towards longer intervals between consecutive phases for Phased Opening. 529

The analysis presented here can be extended to a broader set of models and diseases. 530

Since we used non-intrusive methods, the same type of analysis can be applied to a 531

different transmission model for COVID-19 or to a computational model for a different 532

epidemic. Furthermore, the set of methods used for analysis can be enlarged in several 533

ways. In cases where the input parameters are not mutually independent, one can 534

perform SA by computing the Kucherenko indices [31] instead of the Sobol indices. 535

Also, Bayesian inference can be used to estimate the distributions of (some of) the input 536

parameters from data, or update these distributions as more data become available [7,8]. 537

Finally, with Bayesian model averaging [32,33] one can address model-form 538

uncertainties (sometimes referred to as model structure uncertainties), and therefore 539

compare the outcome of different models for the same epidemic. 540

A similar model-based analysis of uncertainties has been performed by Davies et 541

al [34], who used multiple realizations of their stochastic model in combination with 542

variations in the basic reproduction number. Yet our analysis comprehends a larger set 543

of uncertainties and is mathematically more rigorous as it is based on the theory and 544

concepts of uncertainty quantification and sensitivity analysis. UQ techniques are not 545

often applied to epidemiological models; an exception is the recent study by Edeling et 546

al [35]. However the analysis presented there has a different scope from our study: the 547

analyzed model and the UQ methods differ, moreover our study encompasses a broader 548

set of strategies and addresses extensively the intrinsic model uncertainty. 549

It is important to realise that UQ and SA results are conditioned on the choices of 550

parameter distributions and should therefore be interpreted with caution. As such, our 551

results should not be interpreted as a definitive formal ranking of the analyzed exit 552

strategies, as these strategies might show better or worse performance when considering 553

different distributions. We aimed at picking plausible distributions, however we do not 554

claim a homogeneous level of rigor among the choices that were made. On a related 555

note, we assumed in this study that once the strategy is started it is not changed, 556

implying that input parameters (or their distributions) do not change over time. 557

Furthermore, we limited the scope of our analysis to a small number of key parameters 558

for which we assumed specific probability distributions. However, the computational 559

model has additional parameters (relating both to policies and to other aspects), which 560

were kept fixed here but could be added to the set of uncertain parameters in a more 561
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comprehensive UQ analysis. 562

For the policy-related parameters, the chosen distributions correspond to the 563

(assumed) effects of policy measures in the real world. The feasibility of implementing 564

such measures is a different matter, beyond the realm of mathematical and 565

computational modeling and therefore not considered here, but important nonetheless. 566

As a concrete example, Fig. 5 shows that the delay in the identification of infected 567

individuals must be short for the number of IC patients to stay below IC capacity. This 568

result agrees well with Hellewell et al. [36], who found that when the delay between 569

symptoms onset and isolation increases, the probability to keep the spread of the virus 570

under control decreases. However, achieving such high levels of effectiveness may prove 571

challenging in reality, given the increasing level of population fatigue with regard to 572

policy adherence. 573

We conclude with some remarks about scaling up the analysis performed here to 574

more extensive assessments and to more complex models (with higher computational 575

cost). Scaling up will enable fast, frequent and comprehensive analysis of uncertainties 576

and sensitivities in epidemiological models. Executing such analysis in a timely fashion 577

is essential for it to be useful for policy makers. In this study we limited the analysis to 578

a handful of uncertain parameters (less than 10), keeping all other parameters fixed. A 579

more comprehensive study, on a larger set of parameters, will be computationally more 580

demanding as it typically requires more model runs. Thus, access to sufficient 581

computational resources is important to scale up. 582

For the analysis reported here, we had access to a supercomputer of the Poznan 583

Supercomputing and Networking Center. A single campaign with circa 10000 runs for 584

the SA of an exit strategy took several hours in total (including the time needed for the 585

job submission to the supercomputer, parallel execution of the model runs on a single 586

node with 28 cores, and retrieval of the results). If quantification of uncertainties is to 587

be performed frequently and rapidly (e.g. in an ”operational” setting with a daily or 588

weekly cycle of producing forecasts with quantified uncertainties, or for weekly 589

re-evaluation of a multitude of policy options), a dedicated computational infrastructure 590

is recommendable to have uninterrupted access and to avoid long queuing times for 591

compute jobs. 592

Besides access to computational resources, software suitable for efficient UQ and SA 593

is needed. The open source VECMA toolkit used in this study is developed for use on 594

high-performance computing platforms. Last but not least, a dedicated team with 595

combined expertise (UQ and SA; epidemiology and computational modeling; 596

high-performance computing and software) will be central to successful upscaling and 597

thereby to support policy making with timely information about uncertainties and 598

sensitivities of model results. 599

Conclusions 600

In this study we analyzed the uncertainties and sensitivities of an agent-based 601

transmission model for the COVID-19 epidemic under four different exit strategies. Our 602

analysis showed that the uncertainties in the model simulation results for each 603

considered exit strategy are substantial. They were found to be mostly generated by 604

uncertainties in the parameters directly related to the strategy itself (such as 605

implementation and uptake of the strategy) rather than uncertainties due to other 606

factors (such as duration of infectiousness). With the parameter distributions that we 607

choose, the Contact Tracing strategy was the most effective. Finally, because we used 608

non-intrusive methods, our analysis can easily be extended to other strategies as well as 609

to other computational models and epidemics. 610
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Supporting information 611

S1 Appendix. Numerical implementation of the strategies. All strategies 612

share the initial sequence of interventions which represent 613

• the spreading of the virus among the population 614

• the beginning of the general lockdown 615

• the imposition of a stricter lockdown 616

• the reopening of the schools 617

• the application of the proposed exit strategy. 618

The start of the epidemic is simulated by randomly seeding 10 infections. When the 619

amount of infected agents reaches a certain value (model parameter inc_cum_cond), a 620

general lockdown is established. One week later a stricter lockdown is imposed (roughly 621

mimicking the history of the Dutch lockdown in spring 2020) until schools are reopened 622

53 days later. Thirty days later the selected strategy is applied. 623

From a numerical point of view, the interventions are described by the parameters 624

intervention_t (a vector of time points at which interventions change) and 625

intervention_effect (a vector of the time-specific effect of interventions - i.e. a 626

multiplier - for the average transmission rate in the population). These two parameters 627

have to be defined for all strategies and additional strategy-dependent variables might 628

be required (see Methods and model section in the main text). 629

The initial sequence of interventions shared by all strategies is implemented as 630

follows: 631

• intervention_t = cumsum([0, 10, 7, 53, 30, α]) where cumsum indicates that 632

the components of the resulting vector are the cumulative sums and the second 633

component is dynamically adapted such that the lockdown starts when there are 634

inc_cum_cond infected individuals; 635

• intervention_effect = [1, 0.3, 0.15, 0.25, β]. 636

We use the Greek letters α and β to indicate either single values or sequences of values 637

that define the strategies. More details about their specific definition in the cases 638

considered follow below. α is necessary only in case of Intermittent Lockdown or Phased 639

Opening and can be omitted in Flattening the Curve or in Contact Tracing. 640

641

Flattening the Curve. For this strategy it is not necessary to extend further the time 642

series of interventions, i.e. intervention_t = cumsum([0, 10, 7, 53, 30]), and β is 643

modelled by the uncertain parameter int_effect such that intervention_effect = 644

[1, 0.3, 0.15, 0.25, int_effect]. We assume that the population uptake is constant in 645

time, hence uptake is kept unchanged for the whole simulation, i.e. 646

intervention_uptake = rep(uptake, len(intervention_t)) where uptake is repeated 647

as many times as the length of intervention_t 648

649

Contact Tracing. Also in this strategy we do not require α and the time series of 650

interventions is given by intervention_t = cumsum([0, 10, 7, 53, 30]). Since the 651

restrictions imposed by CT are determined by the variables trace_rate_I, 652

trace_prob_E and trace_contact_reduction and not by intervention_effect, we 653

set β = 1, i.e. intervention_effect = [1, 0.3, 0.15, 0.25, 1]. We assume that the CT 654

measures are not active before the actual start of the strategy, hence we have 655

trace_prob_E = [0, 0, 0, 0, trace_E], trace_rate_I = [0, 0, 0, 0, trace_I] and 656
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trace_contact_reduction = [0, 0, 0, 0, trace_cr] where trace_E, trace_I and 657

trace_cr are the uncertain parameters discussed in the main text. 658

659

Intermittent Lockdown. The interchange between lockdowns and lifts is modelled by 660

intervention_t and intervention_effect. In particular, α consists in a phase of lift 661

after the opening of the schools - necessary to let the virus spread again among the 662

population - and the repetition of the length of the lockdown and subsequent lift. The 663

duration of the very first lift phase after the general lockdown is largely determined by 664

the initial state of the epidemic at the start of the strategy, thus it is not useful to 665

consider it as uncertain and we set it to 25 days for our analyses. The final time series 666

of the interventions reads intervention_t = cumsum([0, 10, 7, 53, 30, 25, 667

rep((lockdown_length, lift_length),10)]) where (lockdown_length, lift_length) 668

is being repeated 10 times. 669

Similarly β consists in the alternation of the effect on the average contact rate due 670

to the lockdown or the opening, i.e. intervention_effect = [1, 0.3, 0.15, 0.25, rep((1, 671

lockdown_effect),11)] where (1, lockdown_effect) is repeated 11 times to match the 672

length of intervention_t. As for Flattening the Curve, uptake is assumed not to vary 673

during the simulation, i.e. intervention_uptake = rep(uptake, 674

len(intervention_t)). 675

676

Phased Opening. The phased lift plan is generated by the function gen_phased_lift 677

and does not require extra ad-hoc numerical coding. This function includes several 678

input parameters, of which only some have been considered here as uncertain, i.e. 679

pl_intervention_effect_hi, intervention_lift_interval and uptake. We refer 680

the reader to the documentation of the virsim model provided in its GitLab 681

repository [6] (script gen_intervention.r in the R folder) for a detailed description of 682

the gen_phased_lift function, its inputs and its outputs. 683

S1 Table. Fixed model parameters values. Values of the virsim parameters 684

used in our simulations but that were not varied in the UQ analysis. 685

Parameter Description Value or distribution

runtime total running time in days 550
n_agent total number of agents 106

n_cluster number of clusters of agents 103

n_supercluster number of subdivisions of the
country

20

cluster_size_sd standard deviation of the
softmax-transformed cluster-level
sampling weights for the multi-
nomial distribution of cluster
sizes

0.95

supercluster

_size_sd

standard deviation of the
softmax-transformed cluster-
level sampling weights for the
multinomial distribution of the
expected number of clusters per
supercluster

0

efoi external force of infection as-
sumed to be continuously present
over time

50/(365 · n_agent) for FC
and CT; 0 for IL and PO
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infection_init initial number of infected cases 50
inc_cum_cond scalar value for cumulative inci-

dence of cases after which inter-
ventions are started

9500

contact_rate overall contact rate (per day) be-
tween agents

0.5

contact_shape shape of Gamma distribution for
inter-individual variation in con-
tact rate

3.4

contact_assort degree of assortative mixing, i.e.
correlation between individual
contact rate and cluster member-
ship

0.26

population_mixing degree of mixing in entire popu-
lation

0.05

supercluster

_mixing

degree of mixing within superclus-
ter

0.05

exposed_time value or distribution for the time
(days) until an infected individual
becomes symptomatic

Weibull(shape=20,
scale=exp(log(4.6) -
lgamma(1 + 1 / shape)),
where 4.6 is the average
duration

infected_time value or distribution for the du-
ration of symptoms

Weibull(shape=1, scale=
exp(log(avg duration
infectiousness) -

lgamma(1 + 1 / shape))

S2 Appendix. Theory of Sobol indices. 686

Here we will briefly outline the theory and the algorithm by which we compute the
Sobol indices. For a more detailed description we refer to [19]. Let Y =M(X1, · · · , Xp)
be the output of a computational model, with p independent inputs such that the joint
pdf p(X) is given by

∏p
i=1 p(Xi). Then, the output variance, conditional on a fixed

value Xj = X̃j (where j ∈ {1, · · · , p}), is written as

Var∼j

[
Y | Xj = X̃j

]
=∫

Ω∼j

M2
(
X1, · · · , X̃j , · · · , Xp

) p∏
i=1
i 6=j

p (Xi) dXi − E2
∼j

[
Y | Xj = X̃j

]
. (1)

Note that Ω∼j indicates integration over the support of all inputs pdfs, except that of 687

p(Xj). Similarly, Ωj denotes integration over only the support of p(Xj), and we will use 688

Ω to denote integration over the entire stochastic input domain. Also, similar to the 689

main text, we write Ei and Vari for expectation and variance over Xi only, E∼i and 690

Var∼i for expectation and variance over all X1, X2, ..., Xp except Xi, and E and Var for 691

expectation and variance over all X1, X2, ..., Xp. 692

Expression (1) allows one to gauge the effect that keeping one input fixed has on the
output variance. Sobol indices, defined later on, are global sensitivity measures however,

so we wish to eliminate the dependence on the specific, local value X̃j . We therefore
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integrate the conditional variance (1) over all X̃j values, i.e.

Ej [Var∼j [Y | Xj ]] =∫
Ωj

∫
Ω∼j

M2
(
X1, · · · , X̃j , · · · , Xp

) p∏
i=1
i6=j

p (Xi) dXi

 p
(
X̃j

)
dX̃j

−
∫

Ωj

E2
∼j

[
Y | Xj = X̃j

]
p
(
X̃j

)
dX̃j

=

∫
Ω

M2
(
X1, · · · , X̃j , · · · , Xp

) p∏
i=1

p (Xi) dXi −
∫

Ωj

E2
∼j

[
Y | Xj = X̃j

]
p
(
X̃j

)
dX̃j .

Again, this is the expected value of the variance of Y , while keeping one input (Xj)
fixed. Hence, if we subtract this from the total variance of Y , we get the contribution to
the variance due to Xj alone:

Var [Y ]− Ej [Var∼j [Y | Xj ]] =

∫
Ωj

E2
∼j

[
Y | Xj = X̃j

]
p
(
X̃j

)
dX̃j − E2 [Y ] , (2)

where Var[Y ] := E[Y 2]−E2[Y ]. We can write the above difference between the variance 693

and the expectation of the conditional variance, as the variance of the conditional 694

expectation: 695

Varj [E∼j [Y | Xj ]] :=∫
Ωj

(
E∼j

[
Y | Xj = X̃j

]
− Ej

[
E∼j

[
Y | Xj = X̃j

]])2

p(X̃i)dX̃j =∫
Ωj

E2
∼j

[
Y | Xj = X̃j

]
p
(
X̃j

)
dX̃j − E2 [Y ] ,

which equals (2). The first-order Sobol indices Sj are defined as the ratio of the
variance due to Xj alone, i.e. (3), over the total variance. This gives

Sj :=
Varj [E∼j [Y | Xj ]]

Var [Y ]
. (3)

Note that this is the expression found in the main text. The appearance of the term
Varj [E∼j [Y | Xj ]] might suggest an implementation involving a double loop, where the

inner loop computes E2
∼j

[
Y | Xj = X̃j

]
, and the outer loop computes the outer

integral. If we denote M as the number of MC samples, the involved cost would be M2.
However, Saltelli [19] developed an algorithm, through which the cost of computing the
first-order indices is reduced to M (p+ 1). Briefly, several input matrices are
constructed, of which the first two are filled with independent draws from p (X):

A =

 x11 · · · x1p

...
. . .

...
xM1 · · · xMp

 and B =

 x
′
11 · · · x′1p
...

. . .
...

x′M1 · · · x′Mp

 (4)

We can think of A as the ‘sample’ matrix, and B as the ‘resample’ matrix. Next, p
matrices are constructed, where the j-th column of B is replaced by the j-th column
vector of A:

Bj =

 x
′
11 · · · x1j · · · x′1p
...

...
...

x′M1 · · · xMj · · · x′Mp

 , j = 1, · · · , p. (5)
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We can now approximate the first-order Sobol indices as follows:

Sj :=
Varj [E∼j [Y | Xj ]]

Var [Y ]
=

∫
Ωj

E2
∼j

[
Y | Xj = X̃j

]
p
(
X̃j

)
dX̃j − E2 [Y ]

Var[Y ]
≈

Ûj − E2[Y ]

Var[Y ]
, (6)

where

Ûj =
1

M − 1

M∑
r=1

M(xr1, · · · , xrp)M(x′r1, · · · , xrj , · · · , x′rp). (7)

This single-loop MC approximation corresponds to the integral 696∫
Ωj

E2
∼j [Y | Xj = X̃j ]p(X̃j)dX̃j , see [19] for details. 697

We can estimate the unconditional mean and variance in (6) by evaluating the model 698

M on the M samples of A. To estimate the Uj , we can see from (7) that this requires 699

evaluating the model on the rows of Bj , j = 1, · · · , p, where all inputs except Xj are 700

resampled. This brings the total cost up to M(1 + p). If one wishes to also compute the 701

total-order indices, the cost will be increased to M(p+ 2), see [19] for details. 702

S1 Fig. Distributions of the uncertain input parameters. 703
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Fig 8. Distributions for the uncertain input parameters in case of Flattening the Curve
(top left), Contact Tracing (top right), Intermittent Lockdown and Phased Opening
(middle), and for the biology-related parameters (bottom).
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S2 Fig. Total Sobol indices of the first QoI.
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Fig 9. Total Sobol indices of the first QoI (the maximum number of patients in IC).
The length of the bars indicate the mean values, while the thinner lines display the 95%
confidence interval. We color in orange the uptake parameter, and in green seed.
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