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Dynamic Data-Driven Algorithm to Predict the Cumulative COVID-19
Infected Cases Using Susceptible-Infected-Susceptible Model

Abhinav Anand, Saurabh Kumar, and Palash Ghosh

Abstract— In recent times, researchers have used Susceptible-
Infected-Susceptible (SIS) model to understand the spread of pan-
demic COVID-19. The SIS model has two compartments, suscep-
tible and infected. In this model, the interest is to determine the
number of infected people at a given time point. However, it is
also essential to know the cumulative number of infected people
at a given time point, which is not directly available from the SIS
model’s present structure. In this work, we propose a modified
structure of the SIS model to determine the cumulative number of
infected people at a given time point. We develop a dynamic data-
driven algorithm to estimate the model parameters based on an op-
timally chosen training phase to predict the same. We demonstrate
the proposed algorithm’s prediction performance using COVID-19
data from Delhi, India’s capital city.

Index Terms— COVID-19, cumulative infected, Dynamic
Data-Driven Algorithm, Infected, Optimal Training Data, SIS,
Susceptible.

I. INTRODUCTION

The use of epidemiological models to control the spread of disease
and predict the course of an outbreak has a long history. In 1760,
Daniel Bernoulli proposed a mathematical model for smallpox [1].
At the beginning of the 20th century, William Hamer and Ronald
Ross studied the epidemic behavior using the law of mass action [2],
[3]. In recent times, the use of epidemiological models is inevitable
for better management of an infectious disease.

We have seen the use of various epidemiological models to
combat the recent outbreak of Coronavirus disease 2019 (COVID-
19). COVID-19 was first reported in Wuhan city of China but soon
spread to other parts of the world [4]. Many authors have used some
version of Susceptible-Infected-Recovered (SIR) models to predict
the COVID-19 outbreak in different countries or regions [5]–[7].
The basic SIR model assumes that the infected individuals are either
recovered (and immune) from the disease or died [8]. It also assumes
the number of deaths from the disease is negligible compared to the
total population. However, WHO mentioned that “there is currently
no evidence that people who have recovered from COVID-19 and
have antibodies are protected from a second infection” [9]. For
example, health authorities in South Korea noticed that 163 patients
became COVID-19 positive again after a full recovery [10]. Several
studies have found that individuals who are infected by the COVID-
19 may build short-term immunity against the disease, and there is
no long-lasting guaranteed protection [11]–[13]. In this context, when
there is no long-term protection from the disease after infection, the
Susceptible-Infected-Susceptible (SIS) model is appropriate. In an
SIS model, people who recover from the disease are added to the
susceptible compartment as they can be infected again. In this work,
we consider the SIS model to predict the COVID-19 outbreak.

In an SIS model, the main focus is to determine the number of
infected people at a given time point. However, it is also essential
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for planning purposes to know the cumulative number of infected
people at a given time point. One cannot directly find the cumulative
number of infected people from the SIS model’s present structure. In
this work, our main contribution is to provide an SIS model-structure
which can give the cumulative number of infected people easily. We
incorporate a death due to disease compartment in the SIS model
to estimate the model parameters accurately. We develop a dynamic
data-driven algorithm to estimate the model parameters efficiently to
predict the cumulative infected cases. In this process, we show how
to select the optimal training phase to build the model. Finally, the
developed algorithm has been implemented using COVID-19 data
from Delhi, India’s capital city. We also provide an R-package so
that users can easily implement the developed model with their data.

II. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE (SIS)
MODEL

In an SIS model [14], there are only two compartments, Susceptible
and Infected. An SIS model assumes that an individual has not
developed any long-term immune against the disease after infection
and thus is at risk of re-infection; hence, it gets added back to
the susceptible population. In other words, as shown in Figure 1,
after recovering from an infection, an individual again becomes
susceptible. Examples of such infections are the common cold and
influenza.

S I

Fig. 1. Pictorial representation of an SIS Model, where S stands for
susceptible and I for infected.

These equations can well describe an SIS model [8],

dS

dt
= −β SIN + γI, (1)

dI

dt
= +β SIN − γI. (2)

Here t denotes time. In this work, a day is the smallest unit of
time t. However, one can choose other suitable units as necessary. S
and I are the susceptible and the infected number of people in the
population, respectively. The total population size is N , which is the
sum of susceptible (S) and infected (I) populations. The parameter β,
transmission rate, is the product of the contact rates among infected,
and transmission probability [8], [15]. In other words, the parameter
β is the average number of individuals infected per unit time (a day)
from an infected person. Here, by assumption, I infected individuals
can contact some individuals randomly; a fraction of S/N of them
will be susceptible. The parameter γ is the recovery rate. It is assumed
to be 1

T where T is the average duration for which infection lasts in
an infected person [16], [17]. Equation (1) shows the rate of change
in the susceptible (S) population; whereas equation (2) depicts the
rate of change in the infected (I) population. The term β SIN denotes
the number of susceptible people infected daily and is removed from
the susceptible compartment and added to the infected compartment.
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The γI denotes the number of people recovered daily and is added
back to the susceptible compartment and removed from the infected
compartment. Figure 2 shows a simulated SIS model with S+I = N
at all time points. Notice that one cannot get the cumulative infected
cases directly from the above SIS model. The death due to the
disease is not adjusted into this model. It may affect the efficiency
of estimating model parameters when the number of deaths due to
disease is not negligible (as observed in COVID-19). In the next
section, we consider a modified SIS model to address these two
issues.

Fig. 2. A simulated SIS model with the initial values of S, I as S(0) =
1000 and I(0) = 1, respectively. Here, β = 0.2 and γ = 0.05.

A. Model Equations for modified SIS model

The proposed model can be well described in these equations,

dS

dt
= −β SI

N
+ γI, (3)

dI

dt
= +β

SI

N
− γI − µI, (4)

dC

dt
= β

SI

N
, (5)

dD

dt
= µI, (6)

with,
dS

dt
+
dI

dt
+
dD

dt
= 0,

where S, I,N, β and γ are the same as defined earlier. The C is the
cumulative infected cases from the beginning. It includes every person
who is infected or was infected. The D is the deceased population
due to the disease. Note that D does not include death counts from
other causes. We assume that the death rate from other causes not
involving the concerned disease is the same as the birth rate.

Equation (3) is the same as (1). Equation (4) represents the effective
change in the infected compartment. As explained earlier, β SIN
number of susceptible individuals get infected daily and are added
to this compartment. The µ is the mortality rate of the infection.
Thus, γI number of infected individuals are recovered from infection
daily, and µI number of infected cases are fatal daily, are removed
from this compartment. Equation (5) represents the rate of change in
the cumulative infected cases, which is equal to daily infected cases
(β SIN ). Equation (6) represents the rate of change in the deceased
compartment which is equal to µI .

III. DYNAMIC DATA-DRIVEN ALGORITHM TO ESTIMATE
THE β

In general, the SIS model parameters are constant for the entire
duration of the study period. When the disease under consideration is

present in the community for a longer time, the estimated parameter
based on the entire study period may not give the right picture. For
example, the COVID-19 disease outspread is highly unpredictable in
the long term because the contact rates and transmission probabilities
are changing over time. They vary due to various reasons like control
measures implemented by respective governments. Therefore, it may
be appropriate to train an SIS model with a shorter training phase
and make short-term predictions. Here, the ‘dynamic data-driven
algorithm’ means the training phase, used to estimate the model
parameters, is dynamic (not fixed) and optimally chosen based on
the appropriate historical data.

Time

TCurrentTCurrent - TStart +1TCurrent - TStart  -TLimit +1

Validation Period 
(In-Sample)

Training Phase Prediction Phase

TCurrent +TPred

TLimit
TStart

Fig. 3. Different time points of training and prediction phases.

The two phases of the study period are the training and the
prediction phases. Figure 3 shows how the study period is divided
into different parts for estimation purpose. We define the four-time
variables as follows:

• TCurrent: Denotes the date when the training phase ends. After
this date, the prediction phase starts.

• TStart: Denotes the minimum length of the training phase (in
days). The minimum training phase is the interval, [TCurrent−
TStart + 1, TCurrent].

• TPred: Denotes the length of the prediction phase (in days).
The prediction phase is the interval, [TCurrent+1, TCurrent+
TPred].

• TLimit: Denotes the upper limit of the number of additional
days that can be added to the minimum training phase to
optimally choose the training phase. The length of the training
phase keeps increasing with a step of 1 day. Therefore, the
maximum training phase interval can be, [TCurrent−TStart−
TLimit + 1, TCurrent].

Here, our objective is to choose an optimal training phase that can
be used to predict the near future accurately. Note that for each value
of 0 ≤ t ≤ TLimit, there is a different training phase denoted
by [TCurrent − TStart + 1− t, TCurrent]. The minimum training
phase, for t = 0, is [TCurrent−TStart+1, TCurrent], whereas the
maximum training phase, for t = TLimit, is [TCurrent − TStart −
TLimit + 1, TCurrent]. We consider the minimum training phase
as the fixed in-sample validation period to compare different models
based on different training phases. Here, ‘in-sample’ refers that the
validation period is a subset of the considered training phase. The
optimal criteria to choose the appropriate training phase is defined
by the root mean squared error,

L(t, β, µ) =

√
1

TStart

∑
i

(Cp[i; t, β, µ]− Co[i])2,

where TCurrent − TStart + 1 ≤ i ≤ TCurrent; Co[i] denotes the
observed cumulative infected cases on ith day and Cp[i; t, β, µ] de-
notes the predicted cumulative infected cases on ith day considering
[TCurrent − TStart + 1 − t, TCurrent] as the training phase. The
optimal value of t is obtained as

topt = argmin
t
L(t, β, µ).

Finally, we obtain the optimal training phase that can be used for
future prediction as [TCurrent − TStart + 1− topt, TCurrent].
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There are three parameters in the modified SIS model, namely, β,
γ, and µ. As argued earlier, γ = 1

T , where T is the average duration
for which infection lasts in an infected person. In case of COVID-19,
T is taken as 14 [16], [17]. Given a training phase, Algorithm 1 is
used to find the estimates of β and µ by minimizing L(t, β, µ).

Algorithm 1: Dynamic Data-Driven Algorithm to Estimate
the β and µ

Set N .
while 0 ≤ t ≤ TLimit do

Training Phase: [TCurrent − TStart + 1− t, TCurrent];
Set C0, I0, D0 being the starting values of cumulative
infected cases, active infected cases and deceased cases,
respectively, on date TCurrent − TStart + 1− t ;

for βmin ≤ β ≤ βmax and µmin ≤ µ ≤ µmax do
(β̂t, µ̂t) = argmin

β, µ
L(t, β, µ);

Calculate L(t, β̂t, µ̂t) ;
end

end

topt = argmin
t
L(t, β̂t, µ̂t);

µ̂opt = µ̂topt

β̂opt = β̂topt

Algorithm 2: Prediction Algorithm for the Cumulative In-
fected cases (C)

Prediction Phase: [TCurrent + 1, TCurrent + TPred];
Obtain µ̂opt and β̂opt from Algorithm 1;

Set CTCurrent
, ITCurrent

, DTCurrent
being the starting

values of cumulative infected cases, active infected cases
and deceased cases, respectively, on date TCurrent ;

for 1 ≤ j ≤ TPred do

CTCurrent+j
= CTCurrent+j−1

+β̂opt
STCurrent+j−1

ITCurrent+j−1

N
;

end

C = [CTCurrent+1
, · · · , CTCurrent+TPred

]

IV. PREDICTION OF CUMULATIVE INFECTED CASES

The β̂opt and µ̂opt are the optimum values of β and µ, respectively,
using Algorithm 1. Using Algorithm 2, the predicted values of the
cumulative infected cases (C) are obtained for every day starting
from TCurrent+1 to TCurrent+TPred

. Here, the prediction period’s
length depends on the user-supplied value of TPred. For 1 ≤ i ≤
TPred, the root mean squared error for prediction is√

1

TPred

∑
i

(Cp[i; topt, β̂opt, µ̂opt]− Co[i])2.

V. APPLICATION ON REAL DATA

A. R-package
An R-package has been developed to help the users easily im-

plement the developed methodology with their data. The R-package

is available from https://github.com/abh2k/sisd, with detailed instruc-
tions for its use. The package is highly flexible in terms of different
user-supplied values like TCurrent, TStart, TLimit and TPred etc.
Given the appropriate data and other required input parameter values,
the R-package will provide β̂opt and µ̂opt, root mean squared
error (based on ‘in-sample’ validation), predicted cumulative infected
cases.

B. Predicting cumulative infected COVID-19 cases for Delhi
We consider the COVID-19 data from Delhi, India’s capital

city with a population size of around 20 million, to demon-
strate the proposed algorithm’s prediction performance. Delhi ob-
served more than 600 thousands of cumulative COVID-19 infected
cases at the end of 2020. The data is publicly available from
https://www.covid19india.org/.

In Figure 4, we have considered four different TCurrent as 29
May 2020 (in (A)), 24 July 2020 (in (B)), 29 December 2020 (in (C))
and 15 January 2021 (in (D)). This set-up can check the proposed
algorithm’s prediction performance using the modified SIS model
concerning different time periods. Table I shows the β̂opt, µ̂opt,
root mean squared error for prediction and other related information.
From all the four graphs in Figure 4, it is evident that the proposed
algorithm is working well to predict the cumulative infected cases
with two different prediction periods 30 (for (A) and (B)) and 40 (for
(C) and (D)). From Table I, we see that the chosen optimal training
periods’ lengths can be different with different values of β̂opt, µ̂opt.
Notice that β̂opt is decreasing over time from 0.12 to 0.09 for Delhi,
whereas µ̂opt increases for the first three scenarios (from 0.007 to
0.091) then dropped a little to 0.070. These observations support the
idea of estimating the modified SIS model’s parameters based on the
optimal training phase instead of the entire history as the training
phase.

Figure 5 shows what could happen if we include the entire
history as a training phase to estimate the model parameters. The
30-day prediction curve based on the entire history (125 days)
is exponentially higher than the observed curve of the cumulative
infected cases (root mean squared error = 175884.1). The difference
between the two curves is getting much bigger for the latter part of the
prediction period. However, the prediction curve based on the optimal
training phase (total 23 days with 15 days of validation phase) is
closer to the curve of observed cumulative infected cases (root mean
squared error = 3090.25). The estimated model parameter β̂ = 0.24,
µ̂ = 0.09 based on the entire history, whereas the same are 0.1 and
0.06 using the optimal training phase, respectively. The β̂ is quite
higher in the case of entire history compared to the same (β̂opt)
based on the optimal training period. It suggests that the estimation
of β should be based on an optimal training period to capture the
most recent trend rather than the overall trend using entire history.

C. Importance of Deceased Compartment
Incorporating the deceased compartment into the modified SIS

model is crucial because death due to disease may not be negligible.
For example, in COVID-19, the number of deaths to the number of
people infected is significant in many countries. Figure 6 shows the
importance of the deceased compartment in the modified SIS model
in terms of µ for Delhi. The prediction curve with β̂opt = 0.08 and
pre-fixed µ = 0 (no deaths due to disease) is away from the observed
cumulative infected cases, and the difference between the two curves
keeps increasing over time, with root mean squared error 12990.46.
The prediction curve with β̂opt = 0.11 and µ̂opt = 0.071 is much
closer to the observed cumulative infected cases curve with root mean
squared error 5187.47. In the both scenarios, the prediction phase and
the validation phase are of 40 and 15 days, respectively.
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TABLE I
SUMMARY OF PREDICTION PROCESS FOR DELHI

Fig 4: Graphs β̂opt µ̂opt TCurrent Validation Optimal Training Prediction Root Mean
(YYYY-MM-DD) Period (days) Length (days) Length (days) Squared Error

(A) 0.12 0.007 2020-05-29 15 36 30 1639.27
(B) 0.12 0.086 2020-07-24 15 31 30 2678.58
(C) 0.11 0.091 2020-12-29 30 31 40 245.43
(D) 0.09 0.070 2021-01-15 30 34 40 976.25

Fig. 4. Modified SIS Model predictions based on optimal training phases for Delhi at different periods.

Fig. 5. Comparison of the modified SIS Model predictions for Delhi based on the optimal training phase and the entire history period.
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Fig. 6. Shows the importance of the deceased compartment (µ) in the
modified SIS model for better prediction performance.

VI. DISCUSSION

This work has provided a modified SIS model that accounts for
deaths due to disease and predicts cumulative infected cases based on
an optimally chosen training phase. The estimation process described
in this work is beneficial when the disease under study changes its
spreading pattern over time. We have developed the modified SIS
model considering COVID-19 as the disease under focus. However,
the model and algorithms can be applied to predict the cumulative
cases of other infectious diseases.

Even though one can predict for any period-length in the future
using the developed model, we recommend restricting the prediction
to the short-term only. Any prediction with more than 30 days may
not be reliable due to continuous changes in the COVID-19 virus’
characteristics and human behavior (e.g., how social distancing norms
followed from time to time).

The developed open-access R-package
(https://github.com/abh2k/sisd) can be helpful to implement the
modified SIS model without dealing with mathematical details of
the model. One only needs to prepare the input data set as described
in the R-package documentation.

REFERENCES

[1] Herbert W Hethcote. The mathematics of infectious diseases. SIAM
review, 42(4):599–653.

[2] W Hamer et al. Epidemiology old and new. Epidemiology Old and
New., 1928.

[3] Ronald Ross. The prevention of malaria. John Murray, 1911.
[4] Ida Gagliardi, Gemma Patella, Ashour Michael, Raffaele Serra, Michele

Provenzano, and Michele Andreucci. Covid-19 and the kidney: From
epidemiology to clinical practice. Journal of Clinical Medicine,
9(8):2506, 2020.

[5] Debashree Ray, Maxwell Salvatore, Rupam Bhattacharyya, Lili Wang,
Jiacong Du, Shariq Mohammed, Soumik Purkayastha, Aritra Halder,
Alexander Rix, Daniel Barker, Michael Kleinsasser, Yiwang Zhou,
Debraj Bose, Peter Song, Mousumi Banerjee, Veerabhadran Bal-
adandayuthapani, Parikshit Ghosh, and Bhramar Mukherjee. Pre-
dictions, role of interventions and effects of a historic national
lockdown in india’s response to the the covid-19 pandemic: Data
science call to arms. Harvard Data Science Review, 6 2020.
https://hdsr.mitpress.mit.edu/pub/r1qq01kw.

[6] Mathew Leonardi, Andrew W Horne, Katy Vincent, Justin Sinclair,
Kerry A Sherman, Donna Ciccia, George Condous, Neil P Johnson,
and Mike Armour. Self-management strategies to consider to combat
endometriosis symptoms during the covid-19 pandemic. Human Repro-
duction Open, 2020(2):hoaa028, 2020.

[7] Jia Wangping, Han Ke, Song Yang, Cao Wenzhe, Wang Shengshu, Yang
Shanshan, Wang Jianwei, Kou Fuyin, Tai Penggang, Li Jing, et al.
Extended sir prediction of the epidemics trend of covid-19 in italy and
compared with hunan, china. Frontiers in medicine, 7:169, 2020.

[8] Matt J. Keeling and Pejman Rohani. Introduction to Simple Epidemic
Models, pages 15–53. Princeton University Press, 2008.

[9] WHO. “Immunity passports” in the context of COVID-19. https:
//www.who.int/news-room/commentaries/detail/
immunity-passports-in-the-context-of-covid-19,
2020.

[10] NPR. In south korea, a growing number of covid-19 patients test
positive after recovery. https://www.npr.org/sections/
coronavirus-live-updates/2020/04/17/836747242/
in-south-korea-a-growing-number-of-covid-19-patients-test-positive-after-recover,
2020.

[11] Arthur WD Edridge, Joanna Kaczorowska, Alexis CR Hoste, Margreet
Bakker, Michelle Klein, Katherine Loens, Maarten F Jebbink, Amy
Matser, Cormac M Kinsella, Paloma Rueda, et al. Seasonal coronavirus
protective immunity is short-lasting. Nature medicine, pages 1–3, 2020.

[12] Tao Liu, Sanyun Wu, Huangheng Tao, Guang Zeng, Fuling Zhou,
Fangjian Guo, and Xinghuan Wang. Prevalence of igg antibodies to
sars-cov-2 in wuhan-implications for the ability to produce long-lasting
protective antibodies against sars-cov-2. MedRxiv, 2020.

[13] Richard L Tillett, Joel R Sevinsky, Paul D Hartley, Heather Kerwin,
Natalie Crawford, Andrew Gorzalski, Chris Laverdure, Subhash C
Verma, Cyprian C Rossetto, David Jackson, et al. Genomic evidence for
reinfection with sars-cov-2: a case study. The Lancet Infectious Diseases,
2020.

[14] Herbert W Hethcote. Three basic epidemiological models. In Applied
mathematical ecology, pages 119–144. Springer, 1989.

[15] Ottar N Bjørnstad. Population dynamics of pathogens. Handbook of
Infectious Disease Data Analysis, page 13, 2019.

[16] Neil Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai,
Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri,
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