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Abstract	
Introduction:	The	Philippines	is	plagued	with	natural	disasters	and	resulting	
precipitating	factors	for	disease	outbreaks.	The	developing	country	has	a	strong	
disease	surveillance	program	during	and	post-disaster	phases;	however,	latent	
disease	contracted	during	these	emergency	situations	emerges	once	the	Filipinos	
return	to	their	homes.	Coined	the	social	media	capital	of	the	world,	the	Philippines	
provides	an	opportunity	to	evaluate	the	potential	of	social	media	use	in	disease	
surveillance	during	the	post-recovery	period.	By	developing	and	defining	a	non-
traditional	method	for	enhancing	detection	of	infectious	diseases	post-natural	
disaster	recovery	in	the	Philippines,	this	research	aims	to	increase	the	resilience	of	
affected	developing	countries	through	advanced	passive	disease	surveillance	with	
minimal	cost	and	high	impact.	
	
Methods:	We	collected	50	million	geo-tagged	tweets,	weekly	case	counts	for	six	
diseases,	and	all	natural	disasters	from	the	Philippines	between	2012	and	2013.	We	
compared	the	predictive	capability	of	various	disease	lexicon-based	time	series	
models	(e.g.,	Twitter’s	BreakoutDetection,	Autoregressive	Integrated	Moving	
Average	with	Explanatory	Variable	[ARIMAX],	Multilinear	regression,	and	Logistic	
regression)	and	document	embeddings	(Gensim’s	Doc2Vec).	
	
Results:	The	analyses	show	that	the	use	of	only	tweets	to	predict	disease	outbreaks	
in	the	Philippines	has	varying	results	depending	on	which	technique	is	applied,	the	
disease	type,	and	location.	Overall,	the	most	consistent	predictive	results	were	from	
the	ARIMAX	model	which	showed	the	significance	in	tweet	value	for	prediction	and	
a	role	of	disaster	in	specific	instances.		
	
Discussion:	Overall,	the	use	of	disease/sick	lexicon-filtered	tweets	as	a	predictor	of	
disease	in	the	Philippines	appears	promising.	Due	to	the	consistent	and	large	
increase	use	of	Twitter	within	the	country,	it	would	be	informative	to	repeat	
analysis	on	more	recent	years	to	confirm	the	top	method	for	prediction.	In	addition,	
we	suggest	that	a	combination	disease-specific	model	would	produce	the	best	
results.	The	model	would	be	one	where	the	case	counts	of	a	disease	are	updated	
periodically	along	with	the	continuous	monitoring	of	lexicon-based	tweets	plus	or	
minus	the	time	from	disaster.	
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Introduction	
Located	in	Southeast	Asia	on	the	Pacific	Ring	of	Fire,	the	Philippines	consists	of	
more	than	7,000	islands,	which	are	prone	to	meteorological	(e.g.,	storms),	
hydrological	(e.g.,	floods),	and	geophysical	disasters	(e.g.,	earthquakes	and	
volcanoes).	The	latest	intergovernmental	panel	on	climate	change	(2014)	reports	
with	confidence	that	in	Southeast	Asia	there	will	be	a	continued	increase	in	1)	
extreme	weather	conditions,	involving	strong	variability	in	precipitation	and	
increasing	temperature,	2)	compounded	stress	and	adversity	to	sustainable	
development	capabilities,	3)	decrease	in	food	production	and	security,	4)	decrease	
in	fresh	water	availability	and	security,	and	5)	rising	sea	level	flooding	affecting	
millions	of	people	inhabiting	the	coastline	[1].	Unfortunately,	an	increase	in	natural	
disasters	and	displacement	of	large	proportions	of	the	population	combined	with	a	
decrease	in	food	and	water	security	will	lead	to	a	higher	risk	of	communicable	
disease	outbreaks	after	such	disasters	in	developing	countries	in	Southeast	Asia	[2].		
	
To	increase	the	Philippines’	population	resilience,	the	developing	country	has	
enacted	various	emergency	response	programs,	e.g.,	Surveillance	for	Post	Extreme	
Emergencies	and	Disasters	(SPEED),	aimed	at	continuous	monitoring	of	the	affected	
populations	during	the	emergency	period	[3,	4].	In	these	situations,	evacuation	
centers	are	essential	units	used	to	house	people	for	safety,	provide	medical	
attention,	and	issue	disease	surveillance.	Hundreds	of	thousands	of	people	can	be	
relocated	to	these	centers	for	two	or	more	months	depending	on	the	severity,	
location,	and	type	of	disaster	[5].	Despite	coordinated	efforts	between	local	to	
global-level	support,	the	centers	take	time	to	be	set	up	properly	with	enough	
supplies	to	provide	clean	water	sources	and	proper	sanitation	for	the	often	
overcrowded	masses	[6].	In	response	to	Typhoon	Haiyan,	the	majority	of	SPEED	
surveillance	units	were	not	operational	within	the	recommended	48	hour	window	
post-disaster	[7].	Consequently,	these	periods	of	inadequate	conditions	are	a	perfect	
venue	for	communicable	disease	transmission	in	addition	to	the	post-flooding	
environmental	conditions	creating	an	ideal	habitat	for	disease	vector	population,	
e.g.	mosquito,	surges	[8].	The	result	of	both	conditions	lead	to	disease	outbreaks	
even	weeks	to	months	after	the	original	disaster	occurred	and,	therefore,	should	
play	an	important	role	in	resilience-building	strategies	post-extreme	weather	events	
in	the	Philippines	[9].	
	
Currently,	disease	surveillance	methods	are	effective	only	in	controlling	disease	
spread	during	the	immediate	aftermath	of	a	disaster	[10].	While	social	media	posts,	
including	Twitter	data	have	been	examined	in	the	context	of	the	immediate	
aftermath	of	a	disaster	[11],	relatively	little	attention	is	invested	to	predict	where	
disease	outbreaks	may	occur	after	the	emergency	response	phase,	i.e.,	post-
recovery.	For	developing	countries,	continuous	monitoring	and	resources	for	health	
professionals,	medical	diagnostics,	and	disease	surveillance	is	not	available	or	
practical,	especially	after	a	devastating	natural	disaster	disruption.	To	help	prevent	
disease	outbreaks	in	high-risk	areas,	we	need	a	method	to	increase	the	detection	of	
disease	post-natural	disaster	recovery,	i.e.,	once	the	affected	people	are	released	
from	the	evacuation	centers.	Previous	research	identifies	social	media	as	an	
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informal	source	of	near-real-time	health	data	that	may	add	valuable	information	to	
disease	surveillance	systems	[11].		Social	media	provides	broader	access	to	health	
data	across	hard-to-reach	populations	[12].	This	indirect	health	monitoring	may	
improve	public	health	professionals’	ability	to	detect	disease	outbreaks	faster	than	
traditional	methods	and	to	enhance	outbreak	response	[13].		
	
Coined	the	social	media	capital	of	the	world,	the	Philippines	provides	a	perfect	
opportunity	to	evaluate	the	potential	of	social	media	use	in	disease	surveillance	
[14].	The	objectives	of	this	research	are:		

1) Determine	the	potential	of	publicly	available	Twitter	data	as	an	early	
warning	of	a	likely	communicable	disease	outbreak	following	a	natural	
disaster	in	the	Philippines	

2) Given	the	data,	compare	various	mathematical	methods	(e.g.,	statistical	time	
series	to	machine	learning	neural	networks)	to	identify	the	open-source	
algorithm	that	provides	the	best	early	warning	capability	to	augment	current	
disease	surveillance	capabilities.		

By	developing	and	defining	a	non-traditional	method	for	enhancing	detection	of	
infectious	diseases	post-natural	disaster	recovery	in	the	Philippines,	this	research	
aims	to	increase	the	long-term	resilience	of	affected	developing	countries	through	
advanced	passive	disease	surveillance	with	minimal	cost	and	high	impact.	
	
Materials	and	Methods	
This	research	was	reviewed	and	approved	by	the	Pacific	Northwest	National	
Laboratory	(PNNL)	Institutional	Review	Board.	
	
DATA	
Twitter	Data	
We	labeled	geo-tagged	tweets	from	the	Philippines	(2012-2013)	based	on	the	17	
regional	boundaries	and	categorized	them	into	the	three	island	groups	(Table	1).	
Filipino	tweet	language	includes	English,	Tagalog,	Taglish,	and	nearly	100	native	
dialects	with	locale-based	cultural	practices.	
	
Selected	Disease	Data	
Disease	case	counts	per	week	per	region	were	obtained	from	the	Philippines	
Department	of	Health	for	the	following	infectious	diseases:	cholera	(CHOL),	dengue	
(DEN),	influenza-like	illness	(ILI),	leptospirosis	(LEPT),	measles	(MEA),	and	typhoid	
(TY).		
	
Natural	Disaster	Data	
The	date,	regional	location,	and	type	of	natural	disaster	that	occurred	in	the	
Philippines	during	2012	and	2013	were	collected	from	the	websites	of	the	
Nationwide	Operational	Assessment	of	Hazards	(NOAH;	
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http://noah.dost.gov.ph/#/)	and	the	Emergency	Events	Database	(EM-DAT;	
www.emdat.be).	
	
ANALYSIS	
Disease	Lexicon	
A	lexicon	for	sickness	specific	to	the	Philippines	was	devised	based	on	the	2012-
2013	tweets	through	visual	inspection,	topic	modeling,	and	input	from	native	
Filipinos	(Fig.	1).	Topic	modeling	included	Latent	Dirichlet	allocation	(LDA)	
modeling	using	Gibbs	sampling	and	n-grams	methods	along	with	keyword	
extraction	and	theme	creation	using	PNNL-developed	Rapid	Automatic	Keyword	
Extraction	and	Computational	and	Analysis	of	Significant	Themes.	The	final	lexicon	
was	curated	through	a	combination	of	these	methods’	outputs	and	visual	inspection	
of	resulting	tweets.	
	
Outbreak	Labels	from	Case	Counts	
To	determine	the	reference	parameter	for	disease	outbreaks	from	weekly	case	
count	data,	we	ran	a	hidden	markov	model	(HMM)	for	each	of	the	diseases	per	
region	over	2012-2013.	To	identify	the	best-fit	model,	we	ran	mixed	HMMs	with	two	
hidden	states	(R	depmix	library)	for	multiple	families	(i.e.,	Gaussian,	Poisson,	
binomial,	and	multinomial)	using	the	normal,	log	10,	and	square	root	of	the	disease	
count	data	with	parameters	optimized	(R	Viterbi	function)	in	each	case.	In	general,	
cholera,	leptospirosis,	and	measles	were	best	modeled	with	a	Poisson	distribution,	
and	dengue,	ILI,	and	typhoid	best	fit	a	Gaussian	distribution.	
	
Lexical-based	Models	
Time	series	data	used	in	statistical	models	consisted	of	the	number	of	tweets	
filtered	by	the	disease	lexicon	by	week	and	labeled	with	individual	regions.	
	
a.	BreakoutDetection	Model	(Twitter	R	Program)	
Twitter’s	outbreak	detection	R	program,	BreakoutDetection,	was	used	to	identify	
time	points	in	the	data	where	there	has	been	a	significant	change	in	the	time	series	
median	indicative	of	an	outbreak.	Models	and	parameters	were	assessed	by	the	
weekly	disease	case	counts	per	location.	The	program	was	run	for	individual	island	
groups,	regions,	diseases,	and	diseases	by	region.	The	results	are	reported	as	
positive	and	negative	predictive	values	(PPV/NPV),	sensitivity	and	specificity,	and	
positive	and	negative	likelihood	ratios	(PLR/NLR)	of	the	outbreaks	defined	by	
BreakoutDetection	compared	to	those	predicted	by	HMM.	
	
b.	Autoregressive	Integrated	Moving	Average	with	Explanatory	Variable	(ARIMAX)	
Model	
An	ARIMAX	model	was	created	for	each	disease	by	region	using	2012	lexicon-
filtered	tweets	and	disease	count	data.	A	forecast	ARIMAX	model	was	run	using	the	
2013	lexicon-filtered	tweets	and	the	2012	model	as	its	base.	Accuracy	
measurements	(i.e.,	mean	error	(ME),	root	mean	squared	error	(RMSE),	mean	
absolute	error	(MAE)	and	mean	absolute	scaled	error	(MASE))	of	the	forecasted	
model	were	calculated	based	on	the	actual	2013	disease	counts	for	that	disease-
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region	pair.	To	be	able	to	compare	between	datasets,	the	RMSE	was	normalized	
(NRMSE)	to	a	percent	by	dividing	by	the	difference	between	the	maximum	and	
minimum	dependent	values.	
	
c.	Regression	Models	
Multilinear	regression	(MLR)	was	used	to	model	the	disease	case	counts	(dependent	
variable)	using	the	number	of	lexicon-filtered	tweets,	province,	region,	year	week,	
number	of	weeks	from	a	disaster	in	that	region,	and	disaster	type.	Depending	on	the	
distribution	of	the	disease	data,	either	a	Poisson	model	or	a	generalized	linear	
model	was	applied.	Logistic	Regression	(LR)	was	used	to	model	the	HMM	outbreak	
status	(dependent	variable)	using	the	number	of	lexicon-filtered	tweets,	province,	
region,	year	week,	number	of	weeks	from	a	disaster	in	that	region,	and	disaster	type.	
For	both	MLR	and	LR,	a	model	was	created	for	all	of	the	Philippines	data	for	all	
diseases,	all	of	the	Philippines’	data	for	each	disease	individually,	each	island	group	
by	disease,	and	each	region	by	disease.	The	best	model	was	determined	by	the	
lowest	Akaike	information	criterion	(AIC)	value,	and	predictors	were	considered	
significant	for	p-values	<0.05.	Note:	Week	here	was	treated	as	a	number	to	proxy	for	
the	inherent	time	series	correlation	between	weeks.	
	
Document	Embedding	Models	(Fig.	2)	
a.	Disease	State	Model	Building	
Gensim’s	Doc2Vec	was	used	to	create	four	embeddings	consisting	of	tweet	text	
grouped	by	location	and	labeled	with	tweet	information	(i.e.,	language	and	unique	
user),	time	of	tweet	(i.e.,	year	week	and	month),	location	data	(i.e.,	region	and	island	
group),	regional	disease	data	(i.e.,	disease	type	and	week	count,	HMM	outbreak	state	
and	corresponding	disease	type	in	outbreak),	and	regional	disaster	data	(i.e.,	
disaster	types	and	weeks	from	disaster).	Distributed	memory	(PV-DM)	models	were	
parameterized	using	various	windows	(distance	between	predicted	word	and	
context	words)	and	size	(dimensionality	of	the	feature	vectors).	The	workers	were	
set	to	the	maximum	available	and	the	minimum	count	to	one	(i.e.,	all	words	are	
important).	By	comparing	model	output	to	real	data,	the	sliding	window	size	was	set	
to	10	and	size	of	vector	space	to	100.	The	saved	models	were	trained	on	all	2012	
and	2013	data	through	random	shuffling	of	10	epochs.		
	
b.	Disease	State	Model	Analysis	
The	accuracy	of	the	individual	document	embedding	models	were	tested	against	all	
2012–2013	tweets	by	day	and	summarized	by	week.	The	method	was	designed	to	
test	the	implementation	of	the	network	to	geo-tagged	tweets	collected	daily.	
However,	to	compare	to	the	weekly	disease	data,	the	results	were	summarized	by	
week.	The	final	evaluation	examined	PPV,	NPV,	sensitivity,	specificity,	PLR,	and	NLR	
of	the	models	by	island	group,	region,	disease	type,	and	disease	by	region	compared	
to	the	HMM	outbreak	status	(similar	to	the	BreakoutDetection	results)	over	the	full	
two	years	of	data.	
	
To	produce	these	results,	the	tweets	were	converted	into	Doc2Vec	format	
containing	the	tweet	text	and	tagged	with	tweet	information	(language	and	unique	
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user),	time	of	tweet	(month,	year	week,	and	region_day),	location	data	(region	and	
island	group),	and	disaster	information	(type	and	weeks	from	disaster;	optional).	
Then,	each	tweet	was	vectorized	based	on	the	network	model	for	the	same	location.	
The	cosine	similarity	value	(i.e.,	the	cosine	between	two	vectors)	was	computed	for	
the	individual	tweet	vector	and	specific	vectors	within	the	larger	network	model,	
i.e.,	those	that	are	labeled	with	disease	outbreak,	no	outbreak,	and	the	type	of	
disease.	A	positive	cosine	similarity	value	(0-1)	indicates	that	the	vectors	are	
similar,	whereas	a	negative	value	implies	the	vectors	are	different.	
	
Results	
Tweets	
Between	2012	and	2013,	50	million	tweets	geo-tagged	were	collected	from	the	
Philippines.	There	were	about	80,700	tweets	across	the	17	regions	(0.1%	-	0.2%	of	
total	tweets	per	region)	filtered	by	the	disease	lexicon	(Table	1).	The	total	number	
of	tweets	and,	subsequently,	the	lexicon-filtered	tweets	varied	highly	by	location	
and	ranged	from	50,565	in	the	Autonomous	Region	in	Muslim	Mindanao	(ARMM)	to	
22,725,791	in	the	National	Capitol	Region	(NCR).		
	
Diseases		
Through	the	HMM	models,	the	disease	outbreaks	by	region	varied	by	location	and	
disease	(Table	2).	Typhoid,	dengue,	and	ILI	outbreaks	occurred	most	frequently	
throughout	the	time	period	and	regions	V,	VI,	and	NCR	(Fig.	3)	[15].	Summary	
statistics	for	the	case	counts	per	region	are	shown	in	Table	3.		
	
Disasters	
During	2012–2013,	there	were	instances	of	tropical	cyclones	(n	=	16;	n	=	29),	
flooding	(n	=	26;	n	=	23),	landslides	(n	=	5;	n	=	12),	earthquakes	of	significant	
magnitude	(n	=	9;	n	=	9),	tornados	(n	=	3;	n	=	7),	and	volcanic	explosions	(n	=	1;	n	=	
1).		
	
BreakoutDetection	Model	
Overall,	the	models	had	a	high	negative	predictive	value	(mean	=	0.70	+/-	0.20)	and	
a	low	positive	predictive	value	(mean	=	0.33	+/-	.31).	Along	the	same	lines,	the	
models	had	a	high	specificity	(mean	=	0.95	+/-	0.03)	but	a	low	sensitivity	(mean	=	
0.06	+/-	0.06).	The	overall	PLR	was	1.86	+/-	3.48	with	NLR	of	0.99	+/-	0.07.	
	
In	terms	of	individual	models,	the	region	III	had	the	best	overall	results	with	
highlighted	models	for	ILI	and	typhoid.	The	NCR	region	was	very	similar	in	overall	
results	with	the	top	disease	models	for	that	region	being	for	cholera,	ILI,	and	
typhoid.	Region	V	was	also	comparable	with	specific	top	disease	models	for	cholera,	
leptospirosis,	and	typhoid.	The	last	mentionable	region	is	IVB	with	a	top	cholera	
model.	Other	region-specific	disease	models	that	had	a	high	positive	likelihood	
value,	low	negative	likelihood	value,	and	high	specificity	were	region	VII	cholera,	
region	XI	for	leptospirosis,	and	region	VI	for	ILI.	
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Models	for	ILI	in	regions	II,	III,	VI,	and	cholera	in	region	VII	had	greater	than	0.67	
PPV/NPV,	specificity	greater	than	0.97,	and	PLR	between	4	and	22.	However,	
sensitivity	was	between	0.12	and	0.21	with	an	average	NLR	of	0.85.	Other	models	
are	not	worth	noting	here.	
	
Autoregressive	Integrated	Moving	Average	with	Explanatory	Variable	Model	
As	a	measure	of	over-fitness,	the	difference	between	the	training	and	test	sets	
NRMSE	for	all	models	has	a	median	of	0.42%	with	a	minimum	value	of	0.01%	and	
maximum	value	of	4956%.	In	general,	93%	of	the	models	performed	very	well	with	
an	NRMSE	of	<	3.0%	(95/102);	however,	predictive	models	of	cholera	for	NCR,	II,	
IVA,	VI,	VII,	and	XI	and	typhoid	for	NCR	over-fit	the	data	and	produced	large	
differences	in	errors	between	the	training	and	testing	data	(NRMSE	range	3%	to	
4955%).	For	cholera,	regions	CAR,	I,	and	III	were	not	modeled	due	to	lack	of	data.	
Using	the	MASE	as	the	measurement	of	error	because	it	can	also	be	interpreted	
across	various	types	of	grouped	time	series	models,	the	models	(region-disease)	
that	had	a	MASE	of	one	or	less	are	ARMM-LEPTO,	IVB-CHOL,	and	ARMM-MEAS.	
	
Logistic	Regression	
Logistic	regression	(LR)	was	used	to	model	the	HMM	outbreak	state	based	on	
tweets,	location	(province	and	region),	week,	and	number	of	weeks	from	last	
disaster	and	type.	There	were	16	LR	models	those	top	AIC	value	contained	
significant	tweets	(Table	4).	There	were	four	main	results	seen	in	these	models:	(1)	
dengue	was	the	best	modeled	by	tweets;	(2)	two	models	(dengue)	included	
disasters	as	an	important	predictive	variable;	(3)	eight	of	these	models	contained	
weeks	and	tweets;	and	(4)	five	models	were	based	on	region	location	and	tweets	
only.	
	
Multilinear	Regression	
Multilinear	regression	was	used	to	model	the	disease	case	counts	through	various	
filters	of	disease	type,	province,	and	region	with	predictors	of	lexicon	tweet	counts,	
week	of	year,	disaster	type,	and	weeks	from	last	disaster.	Forty-eight	out	of	the	102	
top	models	(47%)	contained	tweet	counts	as	a	significant	variable	(Table	5).	Of	
these	models,	disasters	were	significant	in	40%	(19/48)	and	weeks	were	significant	
in	79%	(38/48).	There	were	no	common	themes	between	models	and	the	disaster	
types,	weeks	from	last	disaster,	or	direction	of	correlation.	All	three	island	groups	
were	represented	in	each	type	of	disease	model	including	all	diseases	combined,	
except	Visayas	did	not	have	a	tweet	significant	model	for	ILI	and	TY.	AIC	values	
were	fairly	high	for	models	based	on	all	of	the	Philippines	or	a	full	island	group	
(mean	=	16,691;	range	=	777	–	134,898)	but	for	region-specific	models,	the	AIC	is	
lower	(mean	=	989;	range	=	331-3953).	Specific	regions	that	were	best	represented	
by	these	models	are	Luzon-IVA,	Luzon-NCR,	Visayas-VIII,	and	Mindanao-all.	
	
Document	Embeddings	
The	neural	network	was	modeled	on	all	2012–2013	data	and	then	tested	on	
individual	days	combined	into	weeks	for	the	same	time	period.	These	results	were	
compared	to	HMM	outbreak	results	derived	from	case	counts	(Table	6).	For	the	
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comparison	of	data	on	the	island	group	level,	Luzon	was	the	only	region	that	
predicted	any	positive	results	although	the	sensitivity	of	the	model	was	only	0.01	
(PPV	=	0.13;	PLR	=	0.31)	with	a	specificity	of	0.96	(NPV	=	0.66;	NLR	=	1.03).	On	the	
region	level,	only	Luzon’s	CAR	and	NCR	predicted	any	positive	results	both	had	low	
PPV	(0.22/0.13),	sensitivity	(0.01/0.03)	and	PLR	(0.60/0.23)	with	high	specificity	
(0.98/0.88),	respectively.	
	
Discussion	
The	goal	of	this	research	was	to	identify	the	potential	disease	outbreaks	post-
natural	disaster	recovery	in	the	Philippines	with	only	the	use	of	Twitter	data	and	
type/time	since	last	disaster.	This	research	was	complicated	by	the	varying	
language	usage	in	tweets	(English,	Tagalog,	Taglish,	and	more	than	100	native	
dialects),	Twitter	use	in	general	(e.g.,	NCR	had	450	times	the	number	of	tweets	than	
ARMM),	and	the	high	number	of	disasters	present	(141	total).	All	considered,	the	
analyses	show	that	the	use	of	only	tweets	to	predict	disease	outbreaks	in	the	
Philippines	has	varying	results	that	depend	on	which	technique	is	being	applied,	the	
disease	type,	and	location	discussed	below.	However,	the	number	of	tweets	used	in	
this	analysis	from	2012	and	2013	seems	to	be	doubling	in	the	following	years	and,	
therefore,	consistency	in	results	may	increase	in	future	data	analyses.	
	
Data		
Twitter	data,	in	general,	has	been	shown	to	be	very	noisy	when	trying	to	extract	a	
specific	topic,	ex.	Influenza	[16],	which	can	be	cofounded	overtime	by	new	arising	
topics	[17].	Due	to	these	known	issues,	we	focused	our	lexicon-based	analyses	on	
general	disease	state	or	not.	We	only	attempted	to	identify	specific	infectious	
disease	topics	when	using	machine	learning	document	embedded	models	trained	on	
all	available	tweets	(not	lexicon-based).	
	
Disease	count	data,	when	captured	in	real	time,	can	cause	issues	because	of	the	
amount	of	time	it	takes	to	report	a	disease	[18].	To	avoid	this	problem,	we	only	used	
historical	disease	data	to	help	understand	the	disease	trends	in	the	underlying	
population.	However,	an	underlying	issue	that	we	encountered	was	that	we	did	not	
have	the	ground	truth	on	outbreak	status.	We	had	disease	case	counts	by	week	and	
used	HMM	models	to	determine	the	historical	outbreak	status	of	the	region	for	a	
specific	disease.	This	method	enabled	the	most	flexibility	in	algorithm	choice	for	
assessing	the	best	method	for	increased	levels	of	disease	in	a	given	geographic	area.		
	
Modeling	Disease	Outbreaks	
For	those	models	that	detected	the	presence	or	absence	of	an	outbreak	(i.e.,	
BreakoutDetection	and	Doc2Vec)	based	on	the	HMM-derived	outbreaks,	the	validity	
of	the	results	is	best	represented	by	likelihood	ratios	since	the	true	prevalence	and	
outbreak	status	of	the	disease	is	unknown.	A	likelihood	ratio	of	greater	than	one	
indicates	the	test	result	is	associated	with	the	disease.	A	likelihood	ratio	less	than	
one	indicates	that	the	result	is	associated	with	absence	of	the	disease.	Tests	where	
the	likelihood	ratios	lie	close	to	one	have	little	practical	significance.	Other	accuracy	
measurements	used	are	the	PPV	and	NPV	(i.e.,	the	proportions	of	positive	and	
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negative	results	that	are	true	positive	and	true	negative	results,	respectively)	and	
sensitivity	and	specificity	(i.e.,	true	positive	and	true	negative	rates,	respectively).	
	
BreakoutDetection,	which	is	a	lexicon-derived	time	series	model	used	to	predict	
outbreaks,	was	generally	good	at	negative	predictions	of	outbreaks	but	not	as	good	
at	positive	predictions	(i.e.,	high	NPV	and	specificity	but	low	PPV	and	sensitivity).	
These	conclusions	are	similar	to	the	results	from	Gensim’s	Doc2Vec,	a	neural	
network	model	also	used	to	predict	outbreaks.	However,	for	BreakoutDetection,	
there	were	some	very	good	predictive	models	for	each	island	group,	more	
specifically	in	seven	out	of	the	17	regions	(NCR,	III,	IVB,	V,	VI,	VII,	and	XI)	for	cholera	
(n	=	4),	ILI	(n	=	3),	typhoid	(n	=	3),	and	leptospirosis	(n	=	2).	Gensim’s	Doc2Vec	only	
identified	positive	outbreaks	in	two	regions	(NCR	and	CAR)	within	one	island	group	
and	the	models	still	contained	low	PLR,	PPV,	and	sensitivity	with	high	specificity.	
The	poor	results	for	the	neural	network	are	most	likely	due	to	the	complexity	in	
language	and	diversity	in	topics	in	the	Philippines	Twitter	dataset.	Although	this	
study	contains	a	much	larger	dataset	than	other	studies	that	used	neural	networks	
to	classify	disease	status	with	text	data	[19-21],	Twitter	data	is	an	indirect	indicator	
of	health	status	and	therefore,	signals	are	more	hidden	than	traditional	diagnostic	
and	medical	report	data.	Here,	the	neural	network	is	unable	to	find	a	disease	
outbreak	signal	in	the	tweets	with	their	inherent	complexity	coupled	with	the	
reduction	in	dataset	dimensionality	created	by	subsetting	tweets	by	location	and	
disease	classification	by	weekly	reports.	By	increasing	the	time	period	of	the	
training	set,	i.e.,	more	tweets	and	disease	weeks,	the	neural	network	should	perform	
better.	
	
To	complement	the	models	above,	which	attempted	to	predict	disease	outbreaks,	LR	
was	used	to	model	the	relationship	between	an	outbreak	and	potential	predictive	
characteristics	(i.e.,	lexicon-filtered	tweets,	location,	week,	and	number	of	weeks	
from	the	last	disaster	in	the	region	and	type).	Out	of	the	102	total	LR	models,	only	
16	contained	tweets	as	a	significant	factor	in	disease	outbreak	status.	Out	of	these	
models,	there	were	eight	region-specific	(i.e.,	II	[n	=	2],	IVA,	IVB,	VIII,	IX,	and	XII	[n	=	
2]),	six	island	group-specific	(i.e.,	Luzon	[n=3],	Mindanao,	and	Visayas	[n=2])	and	
two	disease-specific	(i.e.,	dengue	and	ILI)	models.	Note:	dengue	and	ILI	were	the	
only	diseases	that	had	multiple	outbreaks	per	year	in	every	region	and	island	group	
(Table	2).	Also,	only	two	of	these	tweet-significant	models	identified	disaster	type	as	
another	significant	factor	and,	therefore,	may	not	play	a	large	role	in	disease	
outbreak	prediction	when	using	lexicon-filtered	tweets.		
	
Modeling	Disease	Case	Counts	
For	comparison,	the	empirical	disease	case	counts	were	directly	used	in	both	time	
series	models	(ARIMAX)	and	regression	models	(MLR).		These	models	seemed	to	
perform	better	than	those	using	outbreaks	as	the	dependent	variable.	This	may	be	
due	to	the	discrete	versus	continuous	nature	of	the	variables	or	the	statistical	
methods	used	to	model	the	data.	
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For	the	2012	date,	disease	case	counts	and	filtered	tweets	were	used	to	train	the	
ARIMAX	time	series	model	and	then	only	filtered	tweets	from	2013	were	used	to	
test	it.	These	models	performed	extremely	well	except	for	cholera	(9/17	regions)	
and	typhoid	(1	region),	which	is	the	opposite	of	the	outbreak	time	series	findings	
with	BreakoutDetection	where	cholera	and	typhoid	had	the	best	predictive	models.		
	
Multilinear	regression	on	case	counts	seemed	to	perform	better	than	LR	models	
using	HMM	outbreak	status,	similar	to	Culotta	[22]	and	Bodnar	and	Salathé	[23].	
Here,	47%	of	the	models	incorporated	filtered	tweets	as	a	significant	factor.	Disaster	
seemed	to	play	a	larger	role	as	a	correlation	factor	for	case	counts	than	outbreaks.	
However,	the	actual	specific	types	of	disasters,	weeks	from	disaster,	and	direction	of	
correlation	varied	widely	causing	the	interpretation	of	these	results	to	be	confusing.	
Of	these	models,	all	island	groups	and	almost	all	regions	were	represented	in	a	
region-disease	specific	model	except	region	CAR,	V,	and	VII.	In	addition,	at	the	
country	level	for	all	diseases,	the	top	model	contained	tweets	and	weeks	both	at	a	p-
value	<	0.05.	 
	
Conclusion	
This	study	aimed	to	assess	the	utility	of	social	media	for	identification	of	potential	
disease	outbreak	situations	in	the	Philippines	after	natural	disaster	events.	We	have	
shown	that	publicly	available	Twitter	data	in	various	location-specific	disease	pairs	
is	a	significant	factor	in	disease	prediction.	Our	results	also	show	that	the	time	
period	since	the	last	natural	disaster	may	also	play	a	role.	However,	there	is	high	
variability	in	the	number	of	tweets	by	location	and	the	types	of	diseases	present,	
which	is	most	likely	affecting	the	predictive	power	of	the	tweets	and	time	to	
disaster.	In	this	case,	the	dataset	should	be	split	by	disease	type	and	tweet	
geolocation	for	better	predictions.		
	
We	have	compared	various	mathematical	methods	(e.g.,	statistical	time	series	to	
machine	learning	neural	networks)	in	effort	to	identify	the	algorithm	with	the	best	
prediction	capability.	Based	on	our	data,	the	“best”	method	varies	by	location	and	
disease	type.	The	neural	network	should	have	identified	the	location,	disaster,	and	
Twitter-specific	attributes	but	most	likely	due	to	the	minimal	size	and	complexity	of	
the	dataset,	our	results	were	not	as	accurate	as	we	expected.	In	terms	of	time	series	
statistical	models,	the	ARIMAX	model	outperformed	the	other	models	in	most	
instances.		We	want	to	note	that	the	input	of	disease	case	counts	showed	a	
promising	improvement	to	the	predictive	capability	of	the	model,	i.e.,	the	farther	
away	from	the	trained	model,	the	worse	the	predictive	capability	of	just	tweets.	
Therefore,	we	suggest	that	a	combination	disease-specific	model	─where	the	case	
counts	of	a	disease	are	updated	periodically	along	with	the	continuous	monitoring	
of	lexicon-based	tweets	plus	or	minus	the	time	from	disaster─	would	produce	the	
best	results.	
	
Overall,	the	use	of	disease/sick	lexicon-filtered	tweets	as	a	predictor	of	disease	in	
the	Philippines	seems	promising.	Due	to	the	consistency	and	rise	of	Twitter	within	
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the	country,	it	would	be	informative	to	repeat	analysis	on	more	recent	years	to	
confirm	the	top	method	for	prediction.		
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Table	1:	The	total	number	of	tweets	collected	from	the	Philippines,	the	number	
filtered	by	the	disease	lexicon,	and	the	percent	of	tweets	filtered	by	the	lexicon	
shown	by	region	and	by	Island	group	for	all	of	2012	and	2013.	
	

Island	Group	 	Region	 Lexicon	Tweets	 All	Tweets	 %	Lexicon	

Luzon	

NCR	 39,088	 22,725,791	 0.17	
CAR	 569	 386,743	 0.15	
I	 1,287	 892,001	 0.14	
II	 387	 274,222	 0.14	
III	 6,912	 4,975,733	 0.14	
IVA	 14,247	 8,136,469	 0.18	
IVB	 282	 195,070	 0.14	
V	 1064	 610,959	 0.17	

Total	 63,836	 38,196,988	 0.17	

Visayas	

VI	 2,679	 1,718,326	 0.16	
VII	 3,680	 2,589,752	 0.14	
VIII	 363	 269,283	 0.13	

Total	 6,722	 4,577,361	 0.15	

Mindanao	

IX	 654	 414,230	 0.16	
X	 1,125	 708,999	 0.16	
XI	 1,974	 1,322,610	 0.15	
XII	 522	 361,504	 0.14	
XIII	 171	 108,810	 0.16	
ARMM	 104	 50,565	 0.21	

Total	 4,550	 2,966,718	 0.15	
	
	
Table	2:	Number	of	weeks	a	disease	outbreak	was	predicted	by	HMM	in	a	given	
region	over	the	2-year	period	(104	weeks)	between	2012-2013	in	the	Philippines.	
	

	Island	Group	 	Region	 CHOL	 DEN	 ILI	 LEPT	 MEAS	 TY	 Total	

Luzon	

NCR	 3	 41	 61	 35	 13	 83	 236	
CAR	 0	 47	 35	 21	 24	 71	 198	
I	 0	 52	 37	 23	 0	 63	 175	
II	 0	 35	 46	 40	 4	 71	 196	
III	 1	 64	 43	 30	 9	 41	 188	
IVA	 12	 49	 37	 9	 16	 67	 190	
IVB	 10	 16	 74	 0	 8	 32	 140	
V	 39	 44	 12	 71	 1	 72	 239	

Visayas	 VI	 19	 31	 40	 13	 70	 72	 245	
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VII	 24	 60	 61	 4	 17	 4	 170	
VIII	 5	 53	 47	 50	 6	 58	 219	

Mindanao	

IX	 4	 45	 64	 18	 8	 87	 226	
X			 37	 12	 16	 4	 0	 58	 127	
XI	 0	 47	 46	 18	 1	 1	 113	
XII	 1	 37	 48	 16	 3	 66	 171	
XIII	 67	 77	 25	 6	 1	 29	 205	
ARMM	 1	 29	 42	 2	 0	 87	 161	

Total	 223	 739	 734	 360	 181	 962	 	
	
	
Table	3.	Mean	+/-	standard	deviation	(row	1),	median,	mode	(row	2),	range	of	cases	
between	2012	and	2013	for	the	six	diseases	over	the	all	regions.	
	
	Island	
Group	 Region	 CHOL	 DEN	 ILI	 LEPT	 MEAS	 TY	

Lu
zo
n 	

NCR	

0.04+/-
0.2	
0,	0	
0-2	

570+/-351	
479,	253	
133-1608	

64+/-33	
59,	53	
12-183	

33+/-118	
5,	3	
0-1064	

41+/-108	
9,	8	
1-647	

11+/-7	
11,	0	
0-29	

CAR	
	
	
NA	

139+/-141	
61,	35	
12-580	

198+/-79	
185,	155	
20-404	

0.4+/-0.7	
0,	0	
0-2	

3+/-4	
1,	0	
0-21	

48+/-31	
48,	0	
0-136	

I	
	
	
NA	

252+/-282	
113,	35	
23-1224	

129+/-59	
124,	99	
17-296	

5+/-9	
1,	0	
0-38	

2+/-3	
1,	0	
0-15	

47+/-30	
48,	0	
0-199	

II	
.01+/-.1	
0,	0	
0-1	

229+/-207	
140,	140	
25-832	

49+/-28	
44,	23	
0-160	

5+/-4	
4,	2	
0-31	

3+/-4	
2,	0	
0-27	

33+/-24	
34,	0	
0-95	

III	
.01+/-.1	
0,	0	
0-1	

471+/-315	
442,	104	
74-1334	

95+/-41	
86,	141	
26-242	

29+/-77	
7,	2	
0-719	

7+/-8	
5,	4	
0-64	

52+/-33	
52,	0	
0-146	

IVA	
0.9+/-3	
0,	0	
0-18	

578+/-379	
382,	210	
131-1427	

281+/-113	
263,	141	
115-596	

7+/-19	
1,	0	
0-139	

20+/-20	
14,	7	
0-104	

58+/-35	
68,	0	
0-130	

IVB	

0.06+/-
0.3	
0,	0	
0-2	

72+/-69	
48,	15	
1-286	

81+/-40	
80,	69	
1-164	

0.3+/-0.6	
0,	0	
0-2	

3+/-5	
1,	1	
0-39	

20+/-15	
19,	0	
0-66	

V	
45+/-66	
15,	12	
0-367	

65+/-34	
56,	31	
12-149	

2+/-3	
1,	0	
0-14	

3+/-2	
3,	1	
0-10	

2+/-3	
1,	0	
0-21	

11+/-7	
13,	0	
0-27	

Vi
sa
ya
s 	

VI	
0.3+/-1	
0,	0	
0-7	

330+/-327	
223,	52	
41-1520	

40+/-34	
33,	5	
0-179	

16+/-21	
9,	5	
0-108	

16+/-15	
12,	4	
0-75	

70+/-35	
80,	0	
0-123	

VII	
0.4+/-0.9	
0,	0	
0-5	

337+/-169	
310,	140	
118-724	

6+/-4	
6,	3	
0-17	

2+/-4	
1,	0	
0-36	

7+/-9	
4,	1	
0-49	

42+/-70	
35,	0	
0-545	

VIII	 1+/-5	
0,	0		

52+/-	39	
44,	9	

58+/-37	
48,	44	

1	+/-2	
1,	0	

1+/-2	
1,	0	

19+/-15	
19,	0	
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0-41	 5-163	 0-165	 0-10	 0-14	 0-76	

M
in
da
na
o 	

IX	
0.3+/-9	
0,	0	
0-8	

110+/-46	
116,	52	
32-207	

21+/-13	
22,	8	
0-60	

1+/-2	
1,	0	
0-11	

3+/-3	
2,	1	
0-23	

37+/-21	
39,	0	
0-76	

X			
3+/-4	
2,	0	
0-17	

115+/-70	
98,	56	
17-397	

90+/-41	
81,	73	
23-187	

10+/-74	
1,	0	
0-754	

2+/-2	
1,	1	
0-10	

62+/-39	
65,	0	
0-174	

XI	

0.09+/-
0.3	
0,	0	
0-1	

202+/-78	
191,	108	
65-442	

240+/-74	
230,	195	
110-479	

3+/-4	
2,	1	
0-41	

5+/-4	
5,	2	
0-24	

5+/-4	
5,	4	
0-26	

XII	
1+/-9	
0,	0	
0-96	

170+/-116	
129,	92	
25-529	

384+/-98	
360,	360	
226-647	

0.2+/-0.5	
0,	0	
0-3	

3+/-4	
2,	0	
0-32	

52+/-33	
52,	0	
0-176	

XIII	
72+/19	
73,	92	
25-122	

61+/-26	
62,	31	
10-122	

146+/-36	
143,	153	
66-255	

0.6	+/-0.8	
0,	0	
0-4	

2	+/-	2	
1,	0	
0-15	

27+/-18	
25,	0	
0-71	

ARMM	
0.8+/-8	
0,	0	
0-77	

18+/-18	
10,	4	
1-9	

9+/-7	
7,	3	
0-9	

0.07+/-0.3	
0,	0	
0-2	

0.4+/-0.8	
0,	0	
0-3	

11+/-7	
11,	0	
0-9	

	
	
Table	4.	Top	logistic	regression	models	for	disease	outbreak	(dependent	variable)	
based	on	HMM	outbreak	models	and	corresponding	independent	variables	based	on	
stepwise	AIC	selection	and	include	tweet	counts	as	a	significant	variable.	The	“--"	
cells	mean	that	the	variable	was	not	in	the	model;	regions	labeled	with	“Multiple”	
mean	that	there	were	contained	multiple	significant	regions	(n);	bolded	cells	
describe	the	filter	for	the	dependent	variable.	
	

Disease Province Region 
Week  

(p-value) 
Disaster (type; # 
weeks | p-value) 

Tweets 
(p-value) AIC 

CHOL Visayas VII, VIII -- -- 4.96E-06 231.7 

DEN -- Multiple (n=12) 4.51E-04 Flood; 0-5 weeks 3.90E-02 2082.3 

Luzon  III, IVA, IVB, V 1.72E-06 Storm; 0-5 weeks 2.58E-02 939.1 

IVA > 0.05 > 0.05 2.67E-02 123.9 

Mindanao  IX, XI, XIII 5.56E-06 -- 3.14E-03 731.3 

IX 1.55E-02 -- 2.12E-02 140.8 

XII 4.12E-07 -- 1.00E-02 98.6 

Visayas VIII -- -- 2.94E-03 123.9 

ILI -- Multiple (n=7) -- -- 1.61E-05 2231.1 

Luzon NCR, III, IVA/B, V -- -- 3.39E-05 1023.2 

II > 0.05 -- 2.67E-02 128.6 

LEPT Luzon  II, IVA, V > 0.05 -- 8.92E-04 809.7 

II 1.08E-04 -- 1.61E-03 125.3 

MEAS Visayas VII, VIII -- -- 2.98E-02 273 
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TY 
Luzon IVB 4.04E-06 -- 2.92E-02 100.5 

Mindanao XII 8.03E-07 -- 1.34E-02 104.5 

	
	
Table	5.	Top	MLR	models	for	disease	counts	(dependent	variable)	and	
corresponding	independent	variables	based	on	stepwise	AIC	selection	and	include	
tweet	counts	as	a	significant	variable.	The	“--"	cells	mean	that	the	variable	was	not	in	
the	model;	regions	labeled	with	“Multiple”	mean	that	there	were	contained	multiple	
significant	regions	(n);	bolded	cells	describe	the	filter	for	the	dependent	variable;	
for	models	using	Poisson	distribution,	only	AIC	is	reported.	
	
Dis	-
ease	

Province	 Region	 Week		
(p-value)	

Disaster	(type;	
weeks	|	p-value)	

Tweets	
(p-value)	

Adj		
R2	

AIC	

ALL	 --	 Multiple	
(n=14)	

1.94E-02	 --	 1.43E-02	 0.07	 134898	

CHOL	 Luzon	 NCR,	I,	II,	
IVA,	V	

2.48E-05	 Flood;	not	0-2		 1.56E-05	 0.91	 9154	

Visayas	 VIII	 <	2.00E-16	 Random	 <	2.00E-16	 --	 777	
VIII	 2.19E-04	 --	 4.61E-03	 0.12	 620	

Mindanao	 X	 --	 4	types;	0-4,	6,	10	 1.74E-11	 --	 442	
XII	 <	2.00E-16	 --	 <	2.00E-16	 --	 603	
XIII	 1.52E-08	 --	 3.10E-03	 --	 1100	
ARMM	 1.11E-10	 --	 1.02E-07	 --	 611	

DEN	 Luzon	 IVA	 --	 >	0.05	 4.82E-02	 0.41	 1509	
Visayas	 VIII	 --	 --	 1.08E-05	 0.32	 4223	

VI	 --	 --	 1.49E-04	 0.12	 1490	
VIII	 >	0.05	 --	 3.87E-03	 0.19	 1041	

Mindanao	 IX	-	XIII	 1.48E-08	 --	 1.77E-03	 0.48	 7019	
IX	 >	0.05	 --	 1.01E-02	 0.05	 1092	
XII	 8.57E-14	 --	 4.07E-04	 0.21	 956	
XIII	 1.54E-03	 --	 2.84E-02	 0.2	 955	

ILI	 --	 Multiple	
(n=13)	

4.15E-03	 --	 2.47E-03	 0.79	 19109	

Luzon	 NCR,	I	-	V	 --	 --	 3.09E-02	 0.67	 9154	
NCR	 1.66E-14	 --	 3.32E-03	 0.6	 932	
IVA	 1.08E-04	 --	 1.19E-02	 0.14	 1267	

Mindanao	 X	-	XIII	 4.50E-05	 --	 1.26E-03	 0.86	 6735	
XI	 --	 --	 9.49E-05	 0.13	 1180	
ARMM	 3.18E-04	 full	range	 4.01E-02	 0.77	 589	

LEPT	 --	 Multiple	
(n=16)	

<	2.00E-16	 full	range	 <	2.00E-16	 --	 26483	

Luzon	 NCR,	I	-	V	 2.15E-11	 full	range	 <	2.00E-16	 --	 12428	
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NCR	 >	0.05	 full	range		 1.90E-09	 --	 3953	
I	 2.76E-02	 --	 2.23E-02	 --	 1343	
II	 8.74E-11	 --	 2.52E-04	 --	 633	
III	 <	2.00E-16	 full	range	 <	2.00E-16	 --	 1189	
IVA	 <	2.00E-16	 5	types;	0-5,	18+	 <	2.00E-16	 --	 974	

Visayas	 VII,	VIII	 --	 Flood;	1-3,	7-14	 6.28E-03	 0.79	 2138	
VIII	 3.69E-02	 --	 4.14E-02	 --	 331	

Mindanao	 IX,	X,	XI,	
XIII	

3.53E-09	 4	types;	0-3,	17	 <	2.00E-16	 --	 3987	

X	 <	2.00E-16	 6	types;	0-8,	11+	 <	2.00E-16	 --	 829	
MEAS	 --	 NCR,	III,	

IVA,	VI,	
VII	

1.91E-10	 --	 <	2.00E-16	 0.54	 15579	

Luzon	 NCR,	III,	
IVA	

5.82E-06	 --	 <	2.00E-17	 0.55	 7902	

NCR	 1.35E-02	 3	types		 2.86E-12	 0.75	 1160	
III	 --	 5	types		 1.05E-11	 --	 547	
IVA	 --	 Storm;	32-33		 1.23E-14	 0.74	 816	

Visayas	 VIII	 1.42E-02	 full	range	 7.34E-11	 --	 2630	
VI	 <	2.00E-16	 full	range		 3.08E-10	 --	 1038	
VIII	 9.67E-06	 --	 1.95E-03	 0.16	 464	

Mindanao	 IX	-	XIII	 --	 --	 2.60E-02	 0.22	 3102	
XI	 3.65E-10	 None,	19-20		 1.66E-03	 --	 572	

TY	 Luzon	 NCR	 5.38E-08	 --	 1.40E-04	 0.26	 671	
IVB	 3.08E-02	 --	 8.34E-03	 0.05	 853	

Mindanao	 IX	-	XIII	 1.19E-04	 --	 3.12E-02	 0.43	 5727	
IX	 4.99E-07	 --	 1.85E-02	 0.23	 905	

	
	
Table	6.	Doc2Vec	results	from	2012-2013	data	tested	against	HMM	predicted	
outbreaks	from	disease	case	counts.	Only	results	that	contained	both	positive	and	
negative	outbreak	results	to	use	for	calculating	accuracy	measurements	are	shown.	
Positive	likelihood	ratio	(PLR)	=	=Sen/(1-Spec);	Negative	likelihood	ratio	(NLR)	=	
=(1-sen)/spec;	Sensitivity	(Sen)	=	=TP/(TP+FN);	Specificity	(Spec)	=	=TN/(FP+TN);	
Positive	predictive	value	(PPV)	=	TP/(TP+FP);	Negative	predictive	value	(NPV)	=	
TN/(TN+FN);	True	positive	(TP);	False	positive	(FP);	True	negative	(TN);	False	
negative	(FN).	
	

 PLR NLR Sen Spec PPV NPV TP FP TN FN 
Island Group 

Luzon  0.31 1.03 0.01 0.96 0.13 0.66 15 98 2417 1232 

Regions 
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CAR 0.60 1.01 0.01 0.98 0.22 0.68 2 7 429 204 

NCR 0.23 1.10 0.03 0.88 0.13 0.60 13 91 685 459 

Diseases 

DEN 0.00 1.00 0.00 1.00 1.00 0.60 1 0 931 631 

MEAS 0.00 1.00 0.00 1.00 0.12 0.88 13 94 1288 168 

TY 1.06 1.00 0.07 0.93 1.00 0.55 1 0 852 710 

Disease By Region 

NCR 

CHOL 0.00 1.01 0.00 0.99 0.00 0.97 0 0 101 3 

DEN 0.00 1.04 0.00 0.96 0.00 0.61 0 0 63 41 

	
Figure	1:	The	lexicon	of	words	and	phrases	used	to	filter	out	sick/disease	related	
tweets.	*Note	that	“+”	means	the	words	if	they	are	in	the	same	tweet	regardless	of	
order	or	spacing	whereas	“quoted	words”	need	to	be	in	the	given	order	
	
OR	statements	
	antibiotic,	bacteria	+	sick,	bedrest,	biogesic,	bodyache,	bronchitis,	chickenpox,	
chikungunya,	coldbuster,	conjunctivitis,	cough,	coughing,	dehydrated,	dehydration,	
dengue,	dextrose,	diarrhea,	doxycycline,	dysentery,	earache,	edema,	er	+	sick,	
febrile,	feelingsick,	“fever	patch”,	flu,	“head	hurts”,	hemorrhagic,	hepatitis,	imsick,	
influenza,	itchy,	jaundice,	leptospirosis,	“loose	stool”,	lozenges,	malaise,	malaria,	
malnutrition,	measles,	meds,	meningitis,	migraine,	mumps,	nausea,	nauseous,	
notfeelingwell,	paracetamol,	paralisis,	paralyzed,	pneumonia,	rash,	“respiratory	
infection”,	rhinitis,	“runny	nose”,	runnynose,	salmonella,	shivers,	sickleave,	sinusitis,	
sneeze,	sneezing,	tenus,	tetanus,	tonsilitis,	tonsils,	“trouble	breathing”,	“tummy	
aches”,	tummyaches,	typhoid,	virus	+	sick,	vomiting,	wheezing,	hospitalized,	
bedridden,	sipon,	lagnatin,	lagnat,	magkasakit,	paninilaw,	pantal,	trangkaso,	ubuhin,	
umubo,	ubo,	“sakit	ng	ulo”,	hilantan,	karamdaman,	lalamunan,	isuka,	reseta,	
pagkakasakit,	isuka,	gamutin,	“kulang	sa	dugo”,	“nakakahawang	sakit”,	“sakit	ng	
sikmura”,	“sakit	ng	tiyan”	
		
NOT	statements	
“not	sick”,	hangover,	lango,	lasing,	malasing,	mental,	hungover,	drunk,	mmk,	ggv,	
hungover,	drunk	
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Figure	2:	The	neural	network	framework	developed	to	identify	the	location	and	
disease	state	of	the	location	based	on	a	tweet	body,	user,	date,	and	weeks	from	a	
disaster	type.	The	network	was	trained	on	this	information	plus	information	on	
disease	type,	case	counts,	and	regional	location.	
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Figure	3.	Map	of	the	administrative	regions	of	the	Philippines.	Image	reprinted	from	
[15].	
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