ABSTRACT
Introduction Vaccination programs aim to control the COVID-19 pandemic. However, the relative impacts of vaccine coverage, effectiveness, and capacity in the context of nonpharmaceutical interventions such as mask use and physical distancing on the spread of SARS-CoV-2 are unclear. Our objective was to examine the impact of vaccination on the control of SARS-CoV-2 using our previously developed agent-based simulation model.
Methods We applied our agent-based model to replicate COVID-19-related events in 1) Dane County, Wisconsin; 2) Milwaukee metropolitan area, Wisconsin; 3) New York City (NYC). We evaluated the impact of vaccination considering the proportion of the population vaccinated, probability that a vaccinated individual gains immunity, vaccination capacity, and adherence to nonpharmaceutical interventions. The primary outcomes were the number of confirmed COVID-19 cases and the timing of pandemic control, defined as the date after which only a small number of new cases occur. We also estimated the number of cases without vaccination.
Results The timing of pandemic control depends highly on vaccination coverage, effectiveness, and adherence to nonpharmaceutical interventions. In Dane County and Milwaukee, if 50% of the population is vaccinated with a daily vaccination capacity of 0.1% of the population, vaccine effectiveness of 90%, and the adherence to nonpharmaceutical interventions is 85%, controlled spread could be achieved by July 2021 and August 2021, respectively versus in March 2022 in both regions without vaccine. If adherence to nonpharmaceutical interventions increases to 70%, controlled spread could be achieved by May 2021 and April 2021 in Dane County and Milwaukee, respectively.
Discussion In controlling the spread of SARS-CoV-2, the impact of vaccination varies widely depending not only on effectiveness and coverage, but also concurrent adherence to nonpharmaceutical interventions. The effect of SARS-CoV-2 variants was not considered.
Primary Funding Source National Institute of Allergy and Infectious Diseases
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Institutes of Health under National Institute of Allergy and Infectious Diseases (NIAID) Grant 1DP2AI144244-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study does not use any data on human subjects and is therefore exempt for IRB.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Support: This work was supported by the National Institutes of Health under National Institute of Allergy and Infectious Diseases (NIAID) Grant 1DP2AI144244-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Data Availability
All underlying data is included in the manuscript.