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Abstract 

Background  

More than 100 million cases of COVID-19 have been reported worldwide. A number of risk factors for 

infection or severe infection have been identified, however observational studies were subject to confounding 

bias. In addition, there is still limited knowledge about the complications or medical consequences of the 

disease.  

 

Methods  

Here we performed bi-directional Mendelian randomization (MR) analysis to evaluate causal relationships 

between liability to COVID-19 (and severe/critical infection) and a wide range of around 30 cardiometabolic 

disorders (CMD) or traits. Genetic correlation (rg) was assessed by LD score regression(LDSC). The latest 

GWAS summary statistics from the COVID-19 Host Genetics Initiative was used, which comprised 

comparisons of general population controls with critically ill, hospitalized and any infected cases.  

 

Results  

Overall we observed evidence that liability to COVID-19 or severe infection may be causally associated with 

higher risks of type 2 diabetes mellitus(T2DM), chronic kidney disease(CKD), ischemic stroke (especially 

large artery stroke[LAS]) and heart failure(HF) when compared to the general population. On the other hand, 

our findings suggested that liability to atrial fibrillation (AF), stroke (especially LAS), obesity, diabetes 

(T1DM and T2DM), low insulin sensitivity and impaired renal function (low eGFR and diabetic kidney 

disease) may be causal risk factors for COVID-19 or severe disease. In genetic correlation analysis, T2DM, 

CAD, obesity, fasting insulin, CKD, gout, stroke and urate showed positive rg with critical or hospitalized 

infection. All above findings passed multiple testing correction at a false discovery rate (FDR)<0.05.   

 

Conclusions 

In summary, this study provides evidence for tentative bi-directional causal associations between liability to  

COVID-19 and severe disease and a number of CM disorders. Further replications and prospective studies are 

required to verify the findings.  
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Introduction  

More than 100 million cases of COVID-19 has been reported worldwide, and the pandemic has resulted in 

>2.4 million fatalities as at 17 Feb 2020. A number of risk factors for infection or severe infection have been 

identified, such as age, sex (male), obesity, diabetes mellitus, renal impairment, multi-comorbidities, among 

others 1-5. However, an important limitation is that most evidence came from observational studies, which 

were subject to risk of (residual) confounding, making it difficult to infer causality. In addition, there is still 

limited knowledge about the complications and medium- or long-term consequences of the disease. Similar to 

the study of risk factors, observational studies for disease consequences may be subject to confounding, such 

as confounding by the use of medications. Reverse causality is also possible. For example, a patient with a 

pre-existing but undiagnosed condition may be more prone to the infection, but the condition may only 

become diagnosed after check-ups in hospital. The condition may therefore be mistaken as a consequence of 

the infection.  

 

Here we employed Mendelian randomization (MR) to explore potential causal relationships between 

COVID-19 and cardiometabolic disorders (CMD), including the effect of COVID-19 on CMD and CMD as 

risk factors for COVID-19. Intuitively, MR studies the genetically predicted exposure and its association with 

the outcome, and is much less susceptible to confounding and reverse causality. MR can therefore shed light 

on potential causal relationships between the exposure and the outcome. By studying genetic predisposition to 

COVID-19 or CMD as exposure, there is much lower risk that the studied effects are due to confounding 

factors alone.  

 

We focused on cardiometabolic abnormalities and disorders here as a number of observational studies 

have shown such disorders may increase the risk or severity of infection 6,7. Although less widely studied, 

several studies also raised the possibility that COVID-19 may be associated with cardiovascular consequences 

8-11, either in the short term or over longer periods of time. For example, it has been suggested that COVID-19 

infection may be associated with increased risks of myocarditis, arrhythmias, heart failure and venous 

thromboembolism. In a German study of 100 subjects 12who have recently recovered from the disease, 78% had 

abnormal cardiovascular magnetic resonance (CMR) findings, and 60% had evidence of ongoing inflammation. 

Interestingly, the risks of cardiac abnormalities were independent of underlying comorbidities or severity of 

infection. Another similar study on athletes with mild or asymptomatic infections showed CMR evidence of 

myocarditis or prior myocardial injury in ~15% and 30.8% of patients respectively 13. While the clinical 

importance of these findings is uncertain and the long-term consequences cannot be derived from the above 

studies, they showed that cardiovascular consequences are possible among those recovered from the infection. 

 

   The link between COVID-19 infection and diabetes is another topic of high interest. Diabetes has been 

shown in numerous studies as a risk factor for susceptibility to and severity of infection 14,15. On the other 

hand, studies have raised the possibility of new-onset diabetes among infected patients 16-19. A recent 
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systematic review and meta-analysis19 aggregated data over 8 studies and estimated a pooled proportion of 

14.4% (95% CI: 5.9%-25.8%) of newly diagnosed diabetes in hospitalized COVID-19 patients. It remains to 

be investigated whether the phenomenon is temporary or long-lasting 16,20  

 

   While long-term follow-up (FU) for COVID-19 is not possible yet as it is a new disease, a study on 

hospitalized pneumonia patients showed elevated risk of cardiovascular diseases in both short-term (30 days 

to 1 year after hospitalization) and long term (up to 10 years), although the elevated risk was more marked 

within the 1st year of illness 21.  

 

  The above studies suggested possible associations between CM disorders and COVID-19, but as mentioned 

earlier, confounding and reverse causality may render causal interpretations difficult. Here we conducted a 

comprehensive study using a variety of MR methods and settings, with inclusion of a wide range of CM 

disorders, and employed the latest GWAS results from the COVID-19 Host Genetics Initiative (HGI). As a 

novel aspect of this study, we not only investigated CMD as risk factors as in previous studies (e.g. 22), but 

also investigated how liability to COVID-19 may causally increase the risk of CMD.  

 

 

Methods  

GWAS data 

COVID-19 data 

We extracted GWAS summary statistics from the COVID-19 Host Genetics Initiative, release 5 (updated Jan 

18 2021). For details please refer to the website 23and 24. The latest GWAS analysis methodology is available 

at https://docs.google.com/document/d/16ethjgi4MzlQeO0KAW_yDYyUHdB9kKbtfuGW4XYVKQg/edit.  

 We mainly considered three sets of summary statistics which compared very severe/critically ill, hospitalized, 

and any COVID-19 cases against unscreened population controls (analysis A2, B2, C2 respectively). The 

detailed definitions of the COVID-19 phenotypes are available at 

https://docs.google.com/document/d/1okamrqYmJfa35ClLvCt_vEe4PkvrTwggHq7T3jbeyCI/edit. Briefly, 

very severe or critically ill cases are defined as hospitalized laboratory-confirmed cases who required 

respiratory support or with cause of mortality related to the infection. “Hospitalized cases” are defined as 

those with laboratory-confirmed infection and hospitalized due to related symptoms. For analysis C2, 

“infected cases” included those with laboratory-confirmed infection, physician or electronic health 

record-confirmed infection or self-reported positive cases. These three datasets were chosen mainly because 

the sample sizes were among the largest which improves the power for MR analysis (A2: 5870 

cases/1,155,203 controls; B2, 11,829 cases/1,725,210 controls; C2: 42,557 cases/1,424,707 controls). We 

chose the summary results excluding UK Biobank study to avoid sample overlap with GWAS results of 

cardiometabolic traits which often included UKBB subjects.  
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Cardiometabolic disorders 

The list of cardiometabolic (CM) disorders under study is presented in Table 1. In brief, we included mainly 

disease traits including atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), stroke 

(including different subtypes), venous thromboembolism (VTE), Type 1 diabetes mellitus (T1DM), Type 2 

diabetes mellitus (T2DM), chronic kidney disease (CKD) including diabetic kidney disease (DKD) [and 

related measures such as estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), Urine 

Albumin-to-Creatinine Ratio (UACR)], gout, and several measures related to glycemic control or insulin 

resistance. We are including a number of diabetes-related phenotypes as DM is established to be associated 

with COVID-19 infection and severity{Lim, 2021 #72}, and our previous MR study of pulmonary ACE2 

expression{Rao, 2020 #73} also suggested DM and related traits may be a causal risk factors for infection. 

The majority of the samples are European in ancestry but we also included meta-analysis of trans-ethnic 

samples for larger sample sizes. All GWAS summary statistics were corrected for population stratification.  

 

Mendelian randomization methods  

Here we performed two-sample MR, in which the instrument-exposure and instrument-outcome associations 

were estimated in different samples.  

 

  We conducted MR with several different MR approaches based on different assumptions, including (1) 

‘inverse-variance weighted’ (MR-IVW)25 ; (2) Egger regression (MR-Egger)26; (3) weighted median (WM); 

(4) GSMR; and (5) MR-RAPS. Multiple testing due to use of different methods was accounted for by false 

discovery rate (FDR) correction.  

  

 The IVW approach is one of the most widely employed approaches for MR which assumes balanced 

pleiotropic effects. Horizontal pleiotropy is one of the concerns of MR, in which the genetic instruments have 

effects on the outcome other than through effects on the exposure. The Egger regression approach allows 

imbalanced pleiotropy and can produce valid estimate of the causal effects in such cases. MR-Egger (and also 

IVW) requires 27 the InSIDE assumption, i.e. the SNP-exposure effects are independent of the horizontal 

pleiotropic effects. The weighted median approach assumes at least half of the instruments are valid, and 

employs a median estimator to avoid influence by outliers. We employed the “TwoSampleMR” R package for 

the above methods. The method GSMR also takes into account of horizontal pleiotropy; it operates based on 

the exclusion of ‘outlier’ or heterogeneous genetic instruments that are likely pleiotropic (known as the 

‘HEIDI-outlier’ method)28. The GSMR framework also employed a slightly different formula from the 

conventional IVW approach by modelling variance of both SNP-exposure and SNP-outcome coefficients. 

Correlated variants can be accommodated. We employed the GSMR R package from 

http://cnsgenomics.com/software/gsmr/. Please refer to ref28 for details.  

 

The robust adjusted profile score (MR-RAPS) 29 is a recently developed approach that also considers the 

measurement error in SNP-exposure effects and was shown to be unbiased in the presence of many weak 
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instruments. MR-RAPS allows both systematic and idiosyncratic pleiotropy. In other words, most pleiotropic 

effects are assumed to be distributed normally (with mean zero) but a few large pleiotropic effects can be 

present. For details please refer to 30. The “mr-raps” R package was used with default settings, allowing for 

overdispersion and shrinkage estimates.   

 

Inclusion of a larger number of SNPs as instruments 

  One main difficulty of MR analysis here, especially for the study of causal effects of COVID-19 on other 

traits, is that the number of SNP instruments passing genome-wide significance is in general small, which 

limits the power of detecting causal associations. Small number of instruments also makes the assessment of 

horizontal pleiotropy difficult. Conventionally, only SNPs with genome-wide significance were included in 

MR. However, recent studies have proposed the use of a large number of ‘weak instruments’ 30.  

 

A main concern of using a liberal p-value threshold is weak instrument bias, which tends to bias towards 

the null in two-sample MR 31. Since this bias is conservative, type I error control should not be affected. This 

is supported by several previous studies. Simulation studies by Wang et al. showed that that type I error 

control (for the null hypothesis of causal effect=0) is maintained for very weak instruments with F-statistics 

down to ~1 (see Figure 132). Another study30 also showed largely maintained type I error rates in simulations, 

when MR is conducted with liberal inclusion of variants (no. of instruments ~900) not passing genome-wide 

significance.  

 

To further verify that type I error (false positive rate) rate is maintained with a more liberal p-value 

threshold, we also performed additional simulation studies, based on the code and simulation method 

described in Qi et al. 33. We conducted simulations under two sample sizes (N=50,000 or 100,000 for exposure 

trait and halved for outcome), several liberal p-value thresholds (p=1e-4, 1e-3, 1e-2) and different proportion 

of invalid instruments (10% or 30%) with horizontal pleiotropy, under zero causal effect. We performed 1000 

replications; balanced pleiotropy and InSIDE assumption were assumed. The five MR methods employed 

were tested. We observed that type I error rate were generally maintained (at ~5% when p<0.05 regarded as 

significant) even when instruments were selected at liberal p-value levels (see Results and Table S1).  

  

On the other hand, the causal effect estimate based on weak instruments tends to bias towards zero with 

many MR methods, which should be noted in the interpretation of results. To ameliorate this issue, the 

MR-RAPS approach can correct for such bias and the authors 29 showed valid estimation of causal effects up 

to a p-value threshold of 0.01. In another recent work 30, it was proposed that a ‘genome-wide’ MR design (the 

authors used ~1100 top SNPs in their working examples) with MR-RAPS can improve statistical power and 

provide unbiased estimates of causal effects despite weak instruments. The same study and previous works 34 

also showed MR-Egger with SIMEX correction could (partially) reduce the conservative bias of effect 

estimates, which we also employed in this study.  
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   Based on the above studies and recent advances, here we adopted a more complex design considering 

more liberal p-value thresholds (pthres) for instruments to improve power. To avoid the arbitrariness of 

considering only one or two thresholds, we considered a range of thresholds [p=5e-8, 1e-7, 1e-6, 1e-5, 1e-4, 

1e-3, 1e-2] and accounted for multiple testing by FDR.  

 

Modelling correlated SNPs  

  Independent SNPs (r2 clumping threshold=0.001) were used as input for all methods. For IVW and GSMR, 

methodologies have been developed to handle correlated SNPs as well, which can improve the power of 

detecting causal associations. However, as raised by 35, if the SNPs are too highly correlated, the resulting 

estimates may be unstable and subject to inflation of type I error. This is because the SNP correlation matrix 

may be near-singular, which can also occur when a large number of SNPs are modelled due to haplotypes or 

linear combination of SNPs being correlated with other SNPs. Simulation studies by Burgess et al. 35 showed 

adequate type I error control at moderate correlations (rho) up to 0.4 to 0.6 with ~320 variants. Based on the 

simulation findings, to prevent unstable estimates, for correlated-SNP analyses we set an r2 threshold of 0.2 

and a threshold for the number of SNPs at 350. To avoid arbitrariness of setting a single LD-clumping cut-off, 

we performed MR analysis with correlated SNPs at four levels of r2 (0.05, 0.1, 0.15 and 0.2) and assessed the 

consistency of results, with correction of multiple testing by FDR 35. With the above settings, we did not 

observe abnormally low p-values or small SE signifying near-singularity of genetic correlation matrix. We 

employed the R packages “MendelianRandomization” and “gmsr” for MR-IVW and GSMR of correlated 

SNPs respectively.  

  

  Here we briefly described the IVW approach that is able to account for SNP correlations as described in 

Burgess et al.36. Briefly, assume ˆ
YG  to be the vector of estimated regression coefficients when the outcome 

is regressed on genetic instruments and YG  to be the corresponding standard errors (SE), and ˆ
XG  to be 

the estimated coefficients when the risk factor is regressed on the genetic instruments with SE XG . We also 

assume the correlation between two genetic variants G1 and G2 to be 1 2G G , and 
1 2 1 2 1 2G G G G YG YG    . 

The estimate from a weighted generalized linear regression can be formulated by  

 
1

1ˆ ˆ ˆ ˆ ˆ
XG XG XG YG    


     

with SE  

  
1

ˆ ˆ ˆ( ) XG XGSE   


   

  GSMR can also handle correlated SNPs based on a similar principle. Please refer to 28 for technical details.  
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Interpretation of MR causal estimate for binary exposure  

For exposures that are binary (e.g. disease traits), the MR causal estimate should be regarded as the change in 

the outcome per log-odds change of the exposure. In other words, the causal estimate reflect the change of 

outcome for every 2.72-fold increase in the odds of the exposure. Assuming the exposure is not common, it is 

roughly equivalent to 2.72-fold increase in the probability of exposure trait, e.g. a change of disease/infection 

risk from 1% to 2.72%. Alternatively, we may consider the exposure as “disease liability” under a liability 

threshold model (measured on logit scale); the purpose is to evaluate the effect on outcome per unit increase 

in liability 37.  

   

Steiger test of directionality 

In brief, this test examines whether the instrument SNPs explain more variance for exposure than for the 

outcome 38. This serves to further confirm whether the causal direction is correct. We employed the mr_steiger 

function in “TwoSampleMR” for this test. We filtered away results whose causal direction is indicated as 

“FALSE” by the function.  

 

Multiple testing control by FDR 

  Multiple testing was controlled by the false discovery rate (FDR) approach according to the 

Benjamini-Hochberg method39, which controls the expected proportion of false positives among the rejected 

hypotheses. In this study we set a FDR threshold of 0.05 to declare significance. FDR calculation was 

stratified by each combination of MR method and CM trait. Note that FDR control by the 

Benjamini-Hochberg method is also valid under positive (regression) dependency of hypothesis tests40.  

 

Genetic correlation analysis  

Genetic correlation analysis with the LD score regression program 41 following default settings. The method 

evaluates genetic overlap between pairs of disorders, although it is not designed for inferring causality.  

 

Results  

Simulation results  

Full results are shown in Table S1. We observed adequate type I error control (~5% when p<0.05 regarded as 

significant) across most scenarios at the three liberal p-value thresholds (pthres=1e-4, 1e-3, 1e-2). The results 

were similar with different samples sizes and proportion of invalid instruments. There was a slight increase in 

type I error (up to ~8%) for MR-Egger at pthres=1e-2 when the proportion of invalid of instruments was high 

(30%); for GSMR, there was increase in type I error when N=100,000 at pthres=1e-4 with 30% invalid 

instruments. (GSMR adopts an ‘outlier-removal’ approach and therefore may require a larger proportion of 

valid instruments). However, in almost all other scenarios type I errors were maintained, and in this study we 

considered evidence across different methods instead of focusing a single approach. Overall, in addition to the 

previous literature, the results provides further support for the use of a larger number of less significant SNPs 

as instruments. 
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MR results: liability to COVID-19 as exposure and cardiometabolic disorders as outcome 

Here we highlight results which survive multiple testing correction at FDR<0.05. Results are presented in 

Tables 2-4 and S2. If significant results are observed across multiple pthres and/or r2-clumping thresholds, for 

simplicity we would present the one with the most stringent pthres and lowest r2 in main tables.  

 

Independent SNPs analysis 

In our primary analysis independent SNPs were used as instruments and MR was performed with each of the 

five methods across several pthres (Tables 2 and 3).  

 

Across all CM disorders, type 2 DM (T2DM) showed highly consistent and significant causal relationships 

with COVID-19 in our analysis with independent SNPs (Table 3). We observed that liability to COVID-19 

was causally linked to an increased risk of T2DM. This association was observed regardless of the type of 

infection (any COVID-19 infection[C2], hospitalized [B2] or critical illness[A2]), and across all five methods 

and multiple p-value thresholds. The effect size (coefficient) tends to be smaller with higher p-value 

thresholds, which may be the result of weak instruments bias and/or winner’s curse. Here we reported the 

effect size at the most stringent (lowest) p-value threshold since it is less subject to the above biases (same for 

other traits unless otherwise specified). For T2DM, with A2 (critical illness) as exposure, the OR per log-odds 

increase in exposure (roughly equivalent to 2.72-fold increase in the exposure risk) was 1.035 (CI: 

1.006-1.065; pthres=5e-8; MR-IVW); with B2 (hospitalized infection) as exposure, the OR was 1.045, CI 

1.009-1.081; pthres=1e-5; MR-IVW); with C2 (any infection) as outcome, the OR was 1.089 (CI 1.017-1.167 ; 

pthres=1e-5; MR-IVW). For the estimates by other methods and at other pthres, please refer to Table 3. Note 

that these figures are not directly comparable as the baseline risks for A2, B2 and C2 are not the same.  

 

Besides T2DM, we also observed that liability to COVID-19 (hospitalized) infection may be causally 

associated with higher risk of chronic kidney disease (CKD) and several subtypes of stroke (Table 2). For 

CKD, the MR estimates were significant across multiple MR methods and for both European and trans-ethnic 

samples, when hospitalized infection (B2) was considered as exposure. The OR estimate was 1.030 based on 

MR-IVW (CI: 1.018-1.041; MR-pthres=1e-3) and slightly different with other methods (MR-Egger, 

OR=1.071; MR-RAPS, OR=1.034; weighted median[WM], OR=1.026; all at pthres=1e-3). For stroke, 

consistent associations were found for large artery stroke (LAS), mainly for B2 as exposure (MR-IVW, 

OR=1.057, CI 1.020-1.096; MR-RAPS, OR=1.063 CI 1.022-1.105; all at pthres=1e-3). The estimates from 

MR-Egger was larger (OR= 1.189, CI 1.073-1.316; pthres=1e-3). We also observed evidence of causal 

associations of hospitalized and general infection with cardioembolic stroke (CES) and small vessel stroke 

(SVS), but the significant results were restricted to the MR-Egger approach. 

 

Several other results also passed FDR correction (FDR<0.05) and are briefly highlighted here. Hospitalized 

infection (B2) was observed to be causally linked to higher risk of heart failure (HF) across three MR methods. 
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We also observed causal associations of any infection (C2) with lower fasting insulin and higher risk of atrial 

fibrillation (AF). 

 

Correlated SNP analysis   

   The results of MR analysis with correlated SNPs are shown in Table 4 and Table S2. In general similar 

causal associations were observed with similar CM traits as above, using MR-IVW and GSMR. Note that to 

avoid instability of causal estimates, we restrict the number of SNPs and level of r2 so the results obtained 

here may not be fully comparable with those from independent SNP analysis.  

We observed causal associations of A2 with T2DM and B2 with CKD and LAS, which were also 

observed in MR with independent instruments. We also observed causal links of C2 with higher risks of any 

stroke (AS) (MR-IVW, OR= 1.053, CI 1.018-1.089; pthres=1e-4; r2= 0.05), any ischaemic stroke (AIS) 

(MR-IVW, OR= 1.085, CI 1.047-1.125; pthres=1e-4; r2= 0.05) and LAS (MR-IVW, OR= 1.726, CI 

1.166-2.553; pthres=5e-8; r2= 0.05) , as well as lower fasting insulin (FI).  

 

MR results with COVID-19 as outcome and liability to cardiometabolic disorders as exposure 

Independent SNPs analysis 

Results are shown in Table 5 and S2. We observed that atrial fibrillation (AF) was causally associated with 

higher risks of critical (MR-IVW, OR= 1.098, CI 1.011-1.193; pthres=1e-5) and hospitalized infections. As 

for stroke, we observed that LAS was consistently associated with higher risks of critical, hospitalized or any 

infection (MR-IVW, OR= 1.019, CI 1.007-1.031; pthres=1e-4). Association with other types of stroke, 

including CES and SVS, were also observed but less consistent. For diabetes-related traits, T2DM was 

associated with higher risk of hospitalized infection, which was consistent across 3 MR approaches (IVW, 

MR-RAPS, GSMR) [MR-IVW, OR= 1.068, CI 1.019-1.119; pthres=1e-4]. Besides, we observed that T1DM 

(MR-IVW, OR= 1.027, CI 1.011-1.043; pthres=1e-2) and lower Insulin Sensitivity Index (ISI; adjusted for 

age and sex) were associated with higher probability of hospitalized infections [MR-IVW, beta= -0.090, CI 

(-0.145 - -0.036); pthres=1e-3]. Finally, we observed highly consistent causal associations of obesity with 

very severe, hospitalized or any infection across multiple MR approaches.  

 

Correlated SNP analysis 

The results are shown in Table 6 and S2. Similar to analysis with independent SNPs, we also observed 

significant causal associations of AF, stroke (LAS and any stroke), T1DM and obesity with any infection or 

severe infection. In addition, we also observed evidence of causal links of heart failure with 

infection/hospitalized infection. We also observed that early diabetic kidney disease (DKD) in T1DM and 

history of venous-thromboembolism were linked to higher susceptibility to infection and hospitalized disease. 

An inverse causal link between eGFR and severe or general infection was also observed.   

 

Genetic correlation (rg) by LD score regression  
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Results which survive multiple testing correction (FDR<0.05) are shown in Table 7. Most of the CM traits 

implicated in MR analysis also showed significant genetic correlation. T2DM showed strongly statistical 

significant genetic correlation with both critical (rg=0.255, p=6.41e-7) and hospitalized infection (0.291, 

p=1.02e-7). CAD and obesity were also strongly genetically correlated with severe and hospitalized infection. 

Other disorders/traits showing significant and positive rg (FDR<0.05) included fasting insulin, CKD, gout, 

stroke (all stroke and any ischemic stroke) and urate levels. We note that all the significant results were 

restricted to A2 or B2 (critical or hospitalized disease) but not C2 (infection in general). Apart from the above, 

the intercept of rg analysis by LDSC can show the extent of sample overlap. We observed that intercept were 

mostly around zero (out of 116 pairs of traits with intercept estimates, only one has |intercept|>=0.02); the bias 

due to sample overlap is therefore likely small.  

 

Discussion  

Overview 

Here we have performed bi-directional MR analysis to uncover causal relationships between COVID-19 

infection (and severe infection) with a wide range of cardiometabolic disorders. Overall we observed evidence 

that liability to COVID-19 or severe infection may be causally associated with higher risks of T2DM, CKD, 

stroke (especially LAS) and heart failure when compared to the general population. On the other hand, our 

MR results suggested that liability to AF, stroke (especially LAS), obesity, diabetes (T1DM and T2DM), 

insulin resistance and impaired renal function (low eGFR and DKD) may be causal risk factors for COVID-19 

or severe disease.  

 

   This study has a number of strengths. A major novelty of this study is that we not only investigate causal 

risk factors for the infection, but also potential consequences as a result of COVID-19. The latter topic has 

been rarely addressed by causal inference methods such as MR. In addition, since COVID-19 is a new disease, 

many of its medium- or long-term consequences are difficult (or not possible) to be assessed by conventional 

observational studies. MR provides an alternative approach to uncover potential consequences of COVID-19 

for further studies. We have employed the latest GWAS meta-analysis results from COVID-19 Host Genetics 

Initiative and a large variety of CM disorders and disease subtypes. We employed a variety of MR 

methodologies with strategies to improve statistical power, reducing the risk of false negative findings. At the 

same time, we also performed proper multiple testing correction (FDR) to control the expected proportion of 

false positives.  

 

Related MR studies  

 A few MR studies have been performed to investigate causal links between CM disorders and COVID-19. 

A very recent study 22 employed MR and found BMI as the only CM risk factor associated with higher 

probability of being tested positive and COVID-19 hospitalization, but the effect was non-significant after 

controlling for other CM traits including T2DM, CAD, stroke, and CKD. As discussed above, one main 

difference is that we also assess effects of COVID-19 on CM disorders. Here we used the latest release 
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(release 5) of HGI instead of release 4 by Leong et al. 22,24, which contains a larger sample size. The CM 

disorders studied here were partially different from those by Leong et al., as we focused on diseases instead of 

general CM risk factors. We also covered a wider range of disease phenotypes such as stroke subtypes, AF, 

heart failure, DKD, among others. Consistent with Leong et al., we also found in this study that obesity is 

associated with higher risk of being tested positive as well as hospitalized or very severe infection. Here we 

also found that genetic liability to stroke (especially LAS) and T2DM were associated with being tested 

positive or severe infection, which were not reported in the previous work. The discrepancy between our study 

and Leong et al. may be due to different sets of summary statistics used (the latest release by HGI has large 

sample sizes and better power) and different MR methodologies used. Here we intend to improve statistical 

power by more liberal inclusion of SNPs as instruments. Also, we included stroke subtypes as phenotypes 

which may reduce sample heterogeneity and probability of detecting more specific associations. Another 

earlier report revealed that high BMI and smoking may be casually related to risk of COVID-19 and related 

hospitalization 42. Another study on lifestyle risk factors yielded a similar conclusion that genetically predicted 

BMI and smoking and also lower level of physical activities were associated with severe or hospitalized 

disease. 43. Yet another smaller-scale study (N~1211) showed genetically predicted BMI and LDL were 

associated with infection risk 
44.  

 

Relevance to other observational studies  

Many of our findings are also supported by previous observational studies, which we shall highlight here. 

As for cardiometabolic consequences of COVID-19, as mentioned in the introduction, there has been reports 

of new-onset diabetes in COVID-19 and a recent meta-analysis showed a relatively high proportion of 

hospitalized patients (~14.4%) had newly diagnosed diabetes. In addition, it was reported that COVID-19 may 

cause ketosis and ketoacidosis, and induced diabetic ketoacidosis in those with DM 45. There were also reports 

that COVID-19 may be linked to new-onset T1DM 46,47. Besides, in a recent Greek study, COVID-19 patients 

with and without diabetes showed admission hyperglycemia and those who were critically ill also showed 

reduced insulin secretion and poorer insulin sensitivity 48.  

 

In this study we observed that liability to COVID-19 and hospitalized/critical infection were causally 

associated with T2DM. A number of mechanisms have been proposed for diabetogenic effect of COVID-19 

(eg see 17). For instance, SAR-CoV-2 can attach to angiotensin-converting enzyme-2 (ACE2) receptors in beta 

cells of the pancreas, leading to acute impairment in insulin secretion. 17. An organoid study suggested that the 

virus can enter and damage the pancreatic beta cells 49. In addition, infection or severe infection may be 

associated insulin resistance 50. Conversely, both T1DM and T2DM have been shown to increase the 

morbidity and mortality from COVID-19 50-52. Our study provides further support for a causal role of diabetes 

for severe infection.   

 

 There was also evidence that COVID-19 may be associated cardiac abnormalities and inflammation 12, 

and there were suggestions that COVID-19 can lead to worsening existing HF or new-onset HF 53. However, 
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further prospective studies are required to establish association between the two entities and underlying 

mechanisms. 

 

We also observed evidence that liability to (hospitalized) COVID-19 was causally associated with CKD. 

When comparing hospitalized patients with and without COVID-19, those with the infection were more likely 

to develop acute kidney injury (AKI) and require renal replacement therapy (RRT). AKI is an established risk 

factor for incident CKD 54. Another prospective study{Nugent, 2021 #74} reported that AKI patients with 

COVID-19, when compared to those without infection, had a steeper decline in renal function after discharge, 

even after controlling for comorbidities or severity of AKI. Conversely, we also found in our MR analysis 

(with correlated SNPs) that genetically predicted lower eGFR and T1DM-related DKD were associated with 

COVID-19. Observational studies 55,56 have shown a consistent link between renal failure and poorer 

prognosis and mortality from COVID-19.  

 

As for stroke, our MR analysis suggested that liability to COVID-19 infection may be casually related to 

higher risks of ischemic stroke, especially LAS and possibly CES. On the reverse side, LAS was found to be 

associated with all COVID-19 phenotypes (A2, B2 and C2). Based on a recent systematic review by Fridman 

et al 57, stroke occurs at a relatively frequency (~1.8%) among infected patients and carries a high mortality 

(34.4%). The risk of stroke was substantially higher (OR=7.6) when compared to patients with influenza, 

according to another study 58.  Large vessel occlusion (LVO) was of high prevalence (46.9%) among all 

ischemic stroke patients with COVID-19, which is ~1.5 times higher than the proportion of LVO in a 

population-based study (~29.2%). The authors also found a very high prevalence of LVO (68.8%) in young 

patients (age<50) with relatively good past health (42.9% had no risk factors or related comorbidities), and 

proposed that hypercoagulability is a main cause of arterial thrombosis leading to stroke. Our finding 

suggested a bidirectional causal relationship between stroke (particularly LAS) and COVID-19 infection or 

severe infection, and is in line with findings from the above and other clinical studies. The possible 

mechanisms underlying the association between stroke and COVID-19 were reviewed elsewhere (eg 59-61).  

 

We also found evidence that liability to AF was causally associated with critical illness or infection 

requiring hospitalization (A2/B2). Meta-analysis 62 showed that AF was associated with elevated risk of 

adverse outcome among COVID-19 patients, including mortality. Another study 63 also showed decreased 

survival in patients with AF. On the other hand, AF may also be a consequence of COVID-19 infection 64,65. 

From our MR analysis, we did find liability to infection (C2) was associated with increased AF risk 

(OR=1.100, CI 1.040 -1.163, pval=8.93E-04), supported by the GSMR approach, although we did not observe 

consistent significant (FDR<0.05) associations across other methods or thresholds. Besides, it is also 

intriguing to note that we found tentative evidence that the infection may be associated with cardio-embolic 

stroke (CES), mainly supported by MR-Egger analysis. AF is a known and strong risk factor for CES 66 and 

may represent one of the mechanisms of increased stroke incidence in infected patients.  
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Limitations  

There are several limitations for this study. We have employed the latest and largest GWAS summary 

statistics to date for COVID-19, however the data is based on meta-analysis of a large number of separate 

studies, and the samples may be heterogeneous. For example, the baseline clinical features, demographics, 

comorbid disease patterns etc. of patients or controls may differ across cohorts. The control population were 

unscreened, and therefore asymptomatic patients or those with mild symptoms may be missed. Hospitalization 

is in general a reasonably good proxy for moderate or severe illness, but the criteria for hospitalization may 

still differ across countries and cohorts. Although the sample size of COVID-19 GWAS is already quite large, 

the number of critically ill and hospitalized cases may still be relatively limited when compared to the current 

standards. As such, a lack of association may be due to lack of power. The same also applies to GWAS of CM 

disorders or traits with smaller sample sizes.  

 

  MR is a highly useful methodology that has been successfully applied in cardiovascular medicine 67 and 

other fields to evaluate causal relationships. However, it is not without limitations. One concern of MR is 

horizontal pleiotropy (an instrument associated with the outcome not through the exposure), which we have 

tried to address with different methodologies of different principles. However, each method has its own 

assumptions (e.g. InSIDE assumption for MR-Egger, systematic and idiosyncratic pleiotropy for MR-RAPS, 

>50% valid instruments for WM etc.), it is not possible to know a priori the pattern of pleiotropy and whether 

assumptions are fully fulfilled. However, many of the associations reported here were relatively robust across 

multiple MR methods. We also note that for binary exposures, the interpretation of MR may not be very 

intuitive 37. The effect estimate cannot be directly interpreted as the OR of developing the outcome when the 

exposure (e.g. a disease) is present, but may be conceptualized as the effect per unit (log-odds) increase in the 

liability to exposure [roughly, every 2.72 times increase in Pr(exposure)]. For rare exposures (e.g. A2), this 

may reflect an increase in prevalence from e.g. 0.3% to 0.82%, and one may not expect this effect to be large. 

As such, although the ORs reported in this study were mostly modest, they should be interpreted with the 

above caveats in mind. Moreover, even if the effect sizes (OR) are modest (e.g. 3% increased risk of T2DM 

due to the infection), given the very large number of people affected by COVID-19 to date, the absolute 

number of people affected and hence public health burden may still be substantial. Another limitation is that 

the MR analysis cannot tell if the potential consequences of COVID-19 will likely occur in the short- or long 

term; it only suggests a causal relationship.  

 

As explained earlier, based on properties of MR and various simulation studies (by us and others), we 

believe the significant MR results are unlikely to be explained by inflated type I error rate, but the effect size 

estimates may be biased towards zero so should be interpreted carefully. In addition to measurement error of 

exposures which may lead to conservative causal estimates, it has been raised that selection bias (winners’ 

curse) may bias estimates of SNP-exposure coefficients away from zero. Previous studies suggested that this 

bias is actually present in all MR studies, even if a stringent p-value threshold is used. However, inclusion of a 

larger number SNPs may exaggerate the problem. This bias is again conservative in two-sample MR. 
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Intuitively, the wald ratio estimate is SNP-outcome coefficient divided by SNP-exposure coefficient; if the 

latter (i.e. denominator) is biased away from zero, the causal estimate will be biased towards the null 68.  

 

Conclusions 

To our knowledge, this is the most comprehensive MR study to date investigating bi-directional causal 

links between COVID-19 and CMD. In summary, this study provides evidence for tentative causal 

relationships between liability to (severe) COVID-19 infection and a number of CM disorders. We found that 

the infection may be associated with higher risks of several CM disorders such as T2DM and stroke, while 

many CM disorders may be causal risk factors for infection or severe disease. Due to the limitations described 

above, these findings should not be regarded as confirmatory and needs to be further replicated in larger 

studies and by prospective clinical studies. The underlying mechanisms also require further investigations.  
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Table 1   Overview of disorders/traits included in MR analysis  

Category  Traits 
PMID or 

reference  
Sample size, N 

Ancestry of 

participants 

COVID-19 A2 (Very severe/critical covid vs. population)  32404885 1161073 Mostly European 

 
B2 (Hospitalized covid vs population)  32404885 1737039 Mostly European 

 
C2 (covid vs population)  32404885 1467264 Mostly European 

     
AF Atrial Fibrillation 30061737 1030836 European 

Atrial Fibrillation 29892015 588190 Multi-Ethnic 

CAD Coronary Artery Disease  28714975 148172 European 

   
Heart Failure Heart Failure (HF) 31919418 977323 Mostly European 

   
Obesity Obesity 23563607 344311 European  

  
Stroke  Any Stroke (AS) 29531354 446696 European 

Any Stroke 29531354 521612 Multi-Ethnic 

Any Ischemic Stroke (AIS) 29531354 440328 European 

Any Ischemic Stroke 29531354 514791 Multi-Ethnic 

Cardioembolic Stroke (CES) 29531354 413304 European 

Cardioembolic Stroke  29531354 463456 Multi-Ethnic 

Large Artery Stroke (LAS) 29531354 410484 European 

Large Artery Stroke 29531354 461138 Multi-Ethnic 

Small Vessel Stroke (SVS)  29531354 411497 European 

Small Vessel Stroke 29531354 466160 Multi-Ethnic 

   
CKD-related Blood Urea Nitrogen (BUN) 31152163 243029 European 

Blood Urea Nitrogen 31152163 �416178 Multi-Ethnic 

Chronic Kidney Disease (CKD) 31152163 480698 European 

Chronic Kidney Disease 31152163 625219 Multi-Ethnic 

eGFR 31152163 567460 European 

eGFR 31152163 765348 Multi-Ethnic 

Microalbuminuria 31511532 348954 Multi-Ethnic 

Gout 31578528 763813 Multi-Ethnic 

UACR Diabetes mellitus 31511532 554156 Multi-Ethnic 

UACR 31511532 547361 European 

UACR 31511532 564257 Multi-Ethnic 

Urate 31578528 288649 European 

Urate 31578528 457690 Multi-Ethnic 

   
Glycemic/DKD Fasting Glucose (FG) 33402679 151188 European 

Change in Fasting Glucose Over Time 31263163 13807 Multi-Ethnic 

Fasting Insulin (FI)  33402679 105056 European 
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HbA1c 28898252 159940 European 

Insulin Sensitivity Index (ISI) Model 1 27416945 16753 European 

Insulin Sensitivity Index (ISI) Model 2 27416945 16735 European 

Insulin Sensitivity Index (ISI) Model 3 27416945 16735 European 

T1D_ALL_DKD_EUR 27647854 12251 European 

T1D_Early_DKD_EUR 27647854 5454 European 

T1D_eGFR_EUR 27647854 6335 European 

T1D_Late_DKD_EUR 27647854 6878 European 

T2D_eGFR_EUR 29703844 7056 European 

   
T1DM Type 1 Diabetes 32005708 38712 European 

Type 1 Diabetes  Pan-UKB team 412700 Multi-Ethnic 

   
T2DM Type 2 Diabetes 30297969 898130 European 

   
VTE Venous Thromboembolism 31676865 223597 Multi-Ethnic 

 

Note: PMID: PubMed identifier; UACR: Urinary Albumin-to-creatinine Ratio; eGFR: estimated glomerular filtration 

rate; ISI, modified Stumvoll Insulin Sensitivity Index (Model 1 was adjusted for age and sex; Model 2 was adjusted for 

age, sex, and body mass index; and Model 3 analysed the combined influence of the genotype effect adjusted for 

BMI and the interaction effect between the genotype and BMI on ISI); DKD, diabetic kidney disease.  
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Table 2  MR results with liability to COVID-19 as exposure and cardiometabolic disorders (except Type 2 DM) as 

outcome (independent SNPs as instruments)  

exposure outcome method nsnps b se OR  lowerCI_OR upperCI_OR p_thres pval p.adjust 

C2 AF_TRANS GSMR 27 0.095  0.029  1.100  1.040  1.163  1.00E-05 8.93E-04 1.52E-02 

B2 CES_EUR MR Egger 428 0.115  0.042  1.122  1.033  1.219  1.00E-03 6.67E-03 4.23E-02 

C2 CES_EUR MR Egger 466 0.242  0.066  1.274  1.119  1.450  1.00E-03 2.87E-04 2.73E-03 

B2 CES_TRANS MR Egger 424 0.120  0.041  1.127  1.040  1.222  1.00E-03 3.75E-03 2.38E-02 

C2 CES_TRANS MR Egger 457 0.211  0.063  1.235  1.091  1.398  1.00E-03 9.04E-04 8.59E-03 

B2 CKD_EUR GSMR 427 0.021  0.006  1.021  1.009  1.035  1.00E-03 1.10E-03 9.35E-03 

B2 CKD_EUR SIMEX 427 0.025  0.007  1.026  1.011  1.040  1.00E-03 5.39E-04 6.46E-03 

B2 CKD_TRANS GSMR 430 0.026  0.006  1.026  1.015  1.037  1.00E-03 3.61E-06 3.07E-05 

B2 CKD_TRANS IVW 430 0.029  0.006  1.030  1.018  1.041  1.00E-03 3.50E-07 1.40E-06 

B2 CKD_TRANS MR Egger 430 0.068  0.016  1.071  1.037  1.106  1.00E-03 3.59E-05 1.44E-04 

B2 CKD_TRANS MR-RAPS 430 0.033  0.006  1.034  1.021  1.046  1.00E-03 9.79E-08 3.91E-07 

B2 CKD_TRANS SIMEX 430 0.031  0.006  1.031  1.019  1.043  1.00E-03 8.54E-07 1.02E-05 

B2 CKD_TRANS Wt_median 430 0.025  0.008  1.026  1.010  1.042  1.00E-03 1.31E-03 5.22E-03 

C2 FI_EUR IVW 113 -0.024  0.008  0.977  0.962  0.992  1.00E-04 3.03E-03 4.24E-02 

C2 FI_EUR MR Egger 390 -0.049  0.016  0.952  0.922  0.984  1.00E-03 3.11E-03 4.35E-02 

C2 FI_EUR SIMEX 113 -0.025  0.008  0.975  0.960  0.990  1.00E-04 1.56E-03 3.75E-02 

B2 HeartFailure IVW 846 0.014  0.004  1.014  1.005  1.023  1.00E-02 1.93E-03 3.08E-02 

B2 HeartFailure MR Egger 422 0.045  0.016  1.046  1.014  1.079  1.00E-03 5.38E-03 4.30E-02 

B2 HeartFailure MR-RAPS 846 0.015  0.005  1.015  1.005  1.025  1.00E-02 2.36E-03 3.78E-02 

B2 HeartFailure SIMEX 846 0.015  0.005  1.015  1.006  1.025  1.00E-02 1.81E-03 4.35E-02 

B2 LAS_EUR IVW 430 0.056  0.018  1.057  1.020  1.096  1.00E-03 2.33E-03 2.21E-02 

B2 LAS_EUR MR Egger 430 0.173  0.052  1.189  1.073  1.316  1.00E-03 9.95E-04 9.45E-03 

B2 LAS_EUR MR-RAPS 430 0.061  0.020  1.063  1.022  1.105  1.00E-03 2.23E-03 2.12E-02 

B2 LAS_EUR SIMEX 430 0.058  0.020  1.060  1.020  1.101  1.00E-03 3.13E-03 3.75E-02 

C2 LAS_EUR MR Egger 921 0.215  0.069  1.240  1.084  1.419  1.00E-02 1.76E-03 1.11E-02 

B2 LAS_TRANS MR Egger 844 0.107  0.034  1.113  1.041  1.190  1.00E-02 1.76E-03 3.35E-02 

B2 SVS_EUR MR Egger 851 0.108  0.036  1.114  1.038  1.197  1.00E-02 3.00E-03 2.85E-02 

C2 SVS_EUR MR Egger 920 0.192  0.061  1.212  1.074  1.367  1.00E-02 1.84E-03 2.85E-02 

A2 T2D_eGFR_EUR MR Egger 141 -3.869  1.102  0.021  0.002  0.181  1.00E-04 6.00E-04 1.14E-02 

Please refer to Table 1 for abbreviations of the disorders. A2: critical COVID-19 vs population controls; B2: hospitalized cases vs 

population; C2: any test-positive cases vs population.  

LD-clumping was performed at r
2
=0.001.  

Nsnps: number of SNPs; b, causal effect estimate; se, standard error; OR, odds ratio (for every log odds increase in exposure risk); 

lowerCI_OR and upperCI_OR, lower and upper CI of OR; p_thres, p-value threshold for inclusion as instrument; pval: p-value for 

MR analysis; p.adjust, FDR(false discovery rate)-adjusted p-value.  
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Table 3  MR results with liability to COVID-19 as exposure and Type 2 DM as outcome (independent SNPs as 

instruments)  

 

exposure outcome method nsnps b se OR  lowerCI_OR upperCI_OR pval p_thres p.adjust 

A2 T2DM GSMR 6 0.033  0.015  1.034  1.004  1.064  2.41E-02 1.00E-07 4.55E-02 

A2 T2DM IVW 6 0.034  0.015  1.035  1.006  1.065  1.94E-02 5.00E-08 4.10E-02 

A2 T2DM MR-RAPS 6 0.037  0.015  1.038  1.007  1.069  1.58E-02 5.00E-08 3.76E-02 

A2 T2DM SIMEX 143 0.020  0.007  1.020  1.007  1.033  3.47E-03 1.00E-04 2.23E-02 

A2 T2DM Wt_median 143 0.022  0.007  1.022  1.009  1.036  1.27E-03 1.00E-04 2.41E-02 

B2 T2DM GSMR 33 0.032  0.012  1.033  1.009  1.057  7.36E-03 1.00E-05 2.50E-02 

B2 T2DM IVW 34 0.044  0.017  1.045  1.009  1.081  1.25E-02 1.00E-05 3.86E-02 

B2 T2DM MR-RAPS 34 0.043  0.017  1.044  1.010  1.080  1.02E-02 1.00E-05 3.24E-02 

B2 T2DM SIMEX 143 0.025  0.009  1.025  1.007  1.044  8.17E-03 1.00E-04 3.92E-02 

C2 T2DM GSMR 463 0.020  0.008  1.020  1.005  1.036  1.15E-02 1.00E-03 2.80E-02 

C2 T2DM IVW 28 0.085  0.035  1.089  1.017  1.167  1.50E-02 1.00E-05 3.86E-02 

C2 T2DM MR-RAPS 28 0.077  0.033  1.080  1.011  1.153  2.13E-02 1.00E-05 4.50E-02 

C2 T2DM SIMEX 28 0.099  0.037  1.104  1.027  1.186  1.23E-02 1.00E-05 4.21E-02 

Please refer to Table 1 for abbreviations of the disorders and legends of Table 2. 

 

 

 

 

 

Table 4 MR results with liability to COVID-19 as exposure and cardiometabolic disorders as outcome (correlated 

SNPs as instruments)  

Model Exposure Outcome nsnps b SE OR lowerCI_OR upperCI_OR p_thres r2 Pvalue p.adjust 

IVW B2 CKD_TRANS 204 0.023  0.007  1.023  1.009  1.038  1.00E-04 0.05 1.81E-03 4.41E-02 

IVW B2 LAS_EUR 203 0.068  0.024  1.070  1.021  1.122  1.00E-04 0.05 4.57E-03 3.26E-02 

IVW C2 AIS_EUR 196 0.081  0.018  1.085  1.047  1.125  1.00E-04 0.05 8.51E-06 1.42E-04 

IVW C2 AIS_TRANS 184 0.059  0.016  1.061  1.029  1.094  1.00E-04 0.05 1.50E-04 2.35E-03 

IVW C2 AS_EUR 196 0.051  0.017  1.053  1.018  1.089  1.00E-04 0.05 2.67E-03 4.46E-02 

IVW C2 FI_EUR 144 -0.024  0.007  0.976  0.964  0.989  1.00E-04 0.05 2.73E-04 4.11E-02 

IVW C2 LAS_EUR 196 0.146  0.049  1.157  1.052  1.273  1.00E-04 0.05 2.68E-03 3.10E-02 

IVW C2 LAS_TRANS 6 0.462  0.124  1.587  1.245  2.022  1.00E-07 0.05 1.94E-04 9.10E-03 

Please refer to Table 1 for abbreviations of the disorders and legends of Table 2. To avoid unstable estimates, we only 

present results with LD-clumping r2<=0.2 and nsnps<=350 (please refer to main text).  
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Table 5  MR results with liability to COVID-19 as outcome and cardiometabolic disorders (CMD) as exposure  

(independent SNPs as instruments)  

 

exposure outcome method nsnps b se OR  lowerCI_OR upperCI_OR p_thres pval p.adjust 

AF_TRANS A2 GSMR 517 0.066 0.028 1.069 1.012  1.128  1.00E-03 1.63E-02 4.29E-02 

AF_TRANS A2 IVW 169 0.094 0.042 1.098 1.011  1.193  1.00E-05 2.69E-02 4.84E-02 

AF_TRANS A2 SIMEX 518 0.077 0.029 1.081 1.020  1.145  1.00E-03 8.67E-03 3.53E-02 

AF_TRANS B2 GSMR 85 0.079 0.031 1.082 1.018  1.151  5.00E-08 1.18E-02 3.60E-02 

AF_TRANS B2 IVW 85 0.082 0.034 1.086 1.015  1.162  5.00E-08 1.66E-02 4.68E-02 

AF_TRANS B2 MR-RAPS 168 0.079 0.031 1.083 1.020  1.149  1.00E-05 9.17E-03 4.13E-02 

AF_TRANS B2 SIMEX 124 0.085 0.032 1.088 1.023  1.158  1.00E-06 8.83E-03 3.53E-02 

AF_TRANS C2 IVW 902 0.024 0.011 1.025 1.004  1.046  1.00E-02 2.00E-02 4.68E-02 

CES_TRANS C2 MR Egger 492 0.046 0.014 1.047 1.018  1.076  1.00E-03 1.32E-03 1.85E-02 

LAS_EUR A2 GSMR 195 0.037 0.016 1.038 1.005  1.072  1.00E-04 2.18E-02 4.90E-02 

LAS_EUR A2 IVW 195 0.041 0.016 1.042 1.010  1.075  1.00E-04 1.05E-02 2.11E-02 

LAS_EUR A2 MR-RAPS 195 0.041 0.017 1.042 1.008  1.078  1.00E-04 1.58E-02 3.15E-02 

LAS_EUR A2 SIMEX 195 0.042 0.017 1.043 1.009  1.078  1.00E-04 1.35E-02 3.45E-02 

LAS_EUR B2 GSMR 199 0.034 0.011 1.034 1.013  1.056  1.00E-04 1.69E-03 6.08E-03 

LAS_EUR B2 IVW 199 0.037 0.010 1.038 1.016  1.059  1.00E-04 4.29E-04 1.37E-03 

LAS_EUR B2 MR-RAPS 199 0.038 0.011 1.039 1.016  1.062  1.00E-04 7.65E-04 1.91E-03 

LAS_EUR B2 SIMEX 43 0.043 0.016 1.044 1.012  1.077  1.00E-05 8.99E-03 2.58E-02 

LAS_EUR C2 GSMR 219 0.017 0.006 1.017 1.006  1.029  1.00E-04 3.13E-03 8.04E-03 

LAS_EUR C2 IVW 219 0.019 0.006 1.019 1.007  1.031  1.00E-04 1.49E-03 3.41E-03 

LAS_EUR C2 MR Egger 553 0.021 0.007 1.022 1.007  1.036  1.00E-03 3.55E-03 2.84E-02 

LAS_EUR C2 MR-RAPS 219 0.022 0.006 1.022 1.010  1.034  1.00E-04 4.27E-04 1.37E-03 

LAS_EUR C2 SIMEX 219 0.020 0.006 1.020 1.007  1.033  1.00E-04 2.52E-03 8.27E-03 

LAS_TRANS C2 GSMR 1008 0.012 0.004 1.012 1.004  1.021  1.00E-02 2.93E-03 4.40E-02 

LAS_TRANS C2 IVW 1008 0.014 0.004 1.014 1.006  1.022  1.00E-02 6.09E-04 8.52E-03 

LAS_TRANS C2 MR Egger 1008 0.023 0.008 1.023 1.008  1.038  1.00E-02 2.32E-03 3.25E-02 

LAS_TRANS C2 MR-RAPS 1008 0.015 0.004 1.016 1.007  1.024  1.00E-02 5.27E-04 7.38E-03 

LAS_TRANS C2 SIMEX 1008 0.015 0.004 1.015 1.006  1.023  1.00E-02 8.48E-04 2.04E-02 

ISI_Model_1_AgeSexOnly A2 GSMR 227 -0.120 0.044 0.887 0.814  0.967  1.00E-06 6.34E-03 4.83E-02 

ISI_Model_1_AgeSexOnly B2 GSMR 227 -0.078 0.029 0.925 0.874  0.978  1.00E-03 6.44E-03 4.83E-02 

ISI_Model_1_AgeSexOnly B2 IVW 227 -0.090 0.028 0.914 0.865  0.965  1.00E-03 1.16E-03 1.16E-02 

ISI_Model_1_AgeSexOnly B2 MR-RAPS 227 -0.091 0.031 0.913 0.860  0.970  1.00E-03 3.35E-03 3.35E-02 

ISI_Model_1_AgeSexOnly B2 SIMEX 227 -0.097 0.030 0.907 0.856  0.962  1.00E-03 1.23E-03 1.48E-02 

Obesity A2 GSMR 104 0.104 0.043 1.110 1.019  1.208  1.00E-04 1.62E-02 3.33E-02 

Obesity A2 IVW 273 0.104 0.032 1.109 1.042  1.181  1.00E-03 1.12E-03 2.46E-03 

Obesity A2 MR-RAPS 273 0.107 0.035 1.112 1.039  1.192  1.00E-03 2.37E-03 5.21E-03 

Obesity B2 GSMR 15 0.121 0.051 1.128 1.022  1.246  1.00E-07 1.68E-02 3.33E-02 

Obesity B2 IVW 102 0.118 0.030 1.126 1.062  1.193  1.00E-04 6.36E-05 3.29E-04 
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Obesity B2 MR-RAPS 102 0.126 0.031 1.134 1.067  1.206  1.00E-04 6.14E-05 2.25E-04 

Obesity C2 GSMR 104 0.043 0.016 1.043 1.012  1.076  1.00E-04 7.14E-03 2.14E-02 

Obesity C2 IVW 104 0.046 0.016 1.047 1.016  1.080  1.00E-04 2.98E-03 5.46E-03 

Obesity C2 MR-RAPS 104 0.046 0.017 1.047 1.013  1.081  1.00E-04 5.72E-03 1.05E-02 

SVS_TRANS C2 MR Egger 366 0.083 0.027 1.086 1.029  1.146  1.00E-03 2.68E-03 3.49E-02 

T1D_Late_DKD_EUR B2 IVW 3 0.146 0.049 1.157 1.051  1.274  1.00E-06 2.91E-03 3.79E-02 

T1DM_UKBB_TRANS A2 SIMEX 848 0.036 0.012 1.036 1.012  1.061  1.00E-02 3.30E-03 3.96E-02 

T1DM_UKBB_TRANS B2 IVW 846 0.027 0.008 1.027 1.011  1.043  1.00E-02 5.94E-04 8.91E-03 

T1DM_UKBB_TRANS B2 MR-RAPS 846 0.027 0.009 1.027 1.010  1.045  1.00E-02 2.04E-03 3.06E-02 

T1DM_UKBB_TRANS B2 SIMEX 846 0.031 0.008 1.031 1.014  1.049  1.00E-02 2.85E-04 6.85E-03 

T2DM B2 GSMR 692 0.069 0.021 1.071 1.028  1.116  1.00E-03 1.06E-03 2.23E-02 

T2DM B2 IVW 453 0.066 0.024 1.068 1.019  1.119  1.00E-04 5.75E-03 3.83E-02 

T2DM B2 MR-RAPS 453 0.067 0.025 1.070 1.018  1.124  1.00E-04 7.36E-03 4.91E-02 

T2DM B2 SIMEX 453 0.069 0.025 1.071 1.021  1.124  1.00E-04 5.47E-03 4.38E-02 

Please refer to Table 1 for abbreviations of the disorders and legends of Table 2. 
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Table 6  MR results with liability to COVID-19 as outcome and cardiometabolic disorders (CMD) as exposure  

(correlated SNPs as instruments) 

 

Exposure Outcome Model nsnps b se OR lowerCI_OR upperCI_OR r2 p_thres pval p.adjust 

AF_EUR A2 IVW 287 0.128  0.041  1.137  1.050  1.231  0.1 1.00E-06 1.63E-03 4.55E-02 

AF_EUR B2 IVW 180 0.084  0.030  1.087  1.025  1.154  0.1 5.00E-08 5.51E-03 4.55E-02 

AF_TRANS B2 GSMR 132 0.076  0.027  1.079  1.023  1.138  0.05 5.00E-08 5.39E-03 3.23E-02 

AF_TRANS B2 IVW 132 0.088  0.031  1.092  1.028  1.159  0.05 5.00E-08 4.14E-03 1.61E-02 

AS_EUR C2 IVW 276 0.043  0.014  1.044  1.016  1.074  0.05 1.00E-04 2.42E-03 2.84E-02 

eGFR_EUR A2 IVW 289 -1.910  0.690  0.148  0.038  0.573  0.05 5.00E-08 5.68E-03 8.52E-03 

eGFR_EUR C2 IVW 294 -0.813  0.253  0.443  0.270  0.728  0.05 5.00E-08 1.29E-03 3.86E-03 

HeartFailure B2 IVW 245 0.089  0.032  1.094  1.027  1.165  0.1 1.00E-04 5.61E-03 3.36E-02 

HeartFailure C2 IVW 269 0.069  0.019  1.072  1.032  1.113  0.05 1.00E-04 3.10E-04 4.56E-03 

LAS_EUR A2 IVW 270 0.037  0.015  1.037  1.007  1.068  0.05 1.00E-04 1.45E-02 4.95E-02 

LAS_EUR B2 GSMR 269 0.026  0.010  1.027  1.008  1.046  0.05 1.00E-04 5.90E-03 2.58E-02 

LAS_EUR B2 IVW 269 0.036  0.009  1.037  1.019  1.054  0.05 1.00E-04 3.11E-05 1.59E-04 

LAS_EUR C2 GSMR 320 0.016  0.005  1.016  1.006  1.026  0.05 1.00E-04 1.23E-03 1.07E-02 

LAS_EUR C2 IVW 320 0.025  0.005  1.025  1.015  1.035  0.05 1.00E-04 4.16E-07 8.52E-06 

Obesity A2 GSMR 149 0.109  0.038  1.115  1.035  1.201  0.05 1.00E-04 4.07E-03 3.49E-02 

Obesity A2 IVW 149 0.149  0.041  1.161  1.071  1.258  0.05 1.00E-04 2.88E-04 7.14E-03 

Obesity B2 GSMR 54 0.090  0.035  1.094  1.021  1.172  0.05 1.00E-05 1.08E-02 4.95E-02 

Obesity B2 IVW 146 0.101  0.027  1.106  1.049  1.167  0.05 1.00E-04 1.99E-04 7.14E-03 

Obesity C2 GSMR 149 0.035  0.014  1.036  1.008  1.064  0.05 1.00E-04 1.03E-02 4.95E-02 

Obesity C2 IVW 149 0.043  0.013  1.044  1.017  1.072  0.05 1.00E-04 1.19E-03 1.42E-02 

T1D_Early_DKD_EUR B2 IVW 106 0.015  0.006  1.015  1.003  1.028  0.05 1.00E-04 1.58E-02 3.68E-02 

T1D_Early_DKD_EUR C2 IVW 118 0.008  0.003  1.008  1.002  1.013  0.05 1.00E-04 7.15E-03 3.14E-02 

T1D_Late_DKD_EUR B2 IVW 3 0.146  0.047  1.157  1.054  1.269  0.05 1.00E-06 2.16E-03 4.53E-02 

T1DM_UKBB_TRANS C2 IVW 72 0.033  0.009  1.034  1.016  1.053  0.1 5.00E-08 2.47E-04 1.41E-02 

VTE B2 IVW 337 0.059  0.017  1.061  1.025  1.098  0.15 1.00E-04 6.75E-04 1.99E-02 

VTE C2 GSMR 46 0.046  0.014  1.047  1.018  1.076  0.15 5.00E-08 1.33E-03 4.57E-02 

VTE C2 IVW 48 0.072  0.022  1.075  1.030  1.121  0.15 5.00E-08 8.35E-04 1.99E-02 

Please refer to Table 1 for abbreviations of the disorders and legends of Table 2. To avoid unstable estimates, we only 

present results with LD-clumping r2<=0.2 and nsnps<=350 (please refer to main text).  
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Table 7  Genetic correlation analysis with LD score regression (results with FDR<0.05 are shown) 

 

COVID-trait 

Cardio-metabolic 

trait rg se z pval FDR 

COVID-A2 CAD 0.215  0.063  3.425  6.00E-04 1.30E-02 

COVID-B2 CAD 0.227  0.062  3.631  3.00E-04 8.10E-03 

COVID-A2 CKD_TRANS 0.235  0.084  2.788  5.30E-03 4.40E-02 

COVID-A2 T2DM 0.255  0.051  4.979  6.41E-07 3.46E-05 

COVID-B2 T2DM 0.291  0.055  5.324  1.02E-07 1.10E-05 

COVID-A2 FI_EUR 0.301  0.103  2.917  3.50E-03 3.44E-02 

COVID-A2 GOUT_TRANS 0.200  0.065  3.071  2.10E-03 2.83E-02 

COVID-B2 HeartFailure 0.283  0.092  3.082  2.10E-03 2.52E-02 

COVID-A2 AIS_EUR 0.271  0.097  2.787  5.30E-03 4.09E-02 

COVID-A2 AS_EUR 0.320  0.103  3.096  2.00E-03 3.09E-02 

COVID-B2 AS_EUR 0.255  0.094  2.720  6.50E-03 4.68E-02 

COVID-B2 Obesity 0.302  0.074  4.078  4.54E-05 1.63E-03 

COVID-A2 URATE_EUR 0.128  0.046  2.807  5.00E-03 4.50E-02 

COVID-B2 URATE_EUR 0.157  0.058  2.701  6.90E-03 4.66E-02 

COVID-A2 URATE_TRANS 0.143  0.045  3.172  1.50E-03 2.70E-02 

COVID-B2 URATE_TRANS 0.152  0.052  2.929  3.40E-03 3.67E-02 

Rg, genetic correlation.  
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