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Abstract	

The	 genomic	 characterization	 of	 solid	 tumors	 and	 a	 rapidly	 growing	 repertoire	 of	 target	 drugs	 are	
revolutionizing	cancer	treatment.	Next-generation	sequencing	(NGS)	panels	are	progressively	used	in	clinical	
practice	for	target	therapy	in	high-income	countries.	In	contrast,	limited	access	to	tumor	sequencing,	among	
other	barriers,	precludes	precision	cancer	treatment	in	low-	and	middle-income	countries.	To	build	towards	
the	 implementation	 of	 precision	 oncology	 in	 Chile	 and	 Latin	 America,	 we	 designed	 a	 25-gene	 panel	 that	
contains	 predictive	 biomarkers	 for	 currently	 or	 near-future	 available	 therapies	 in	 Latin	 America.	 Library	
preparation	 was	 optimized	 to	 account	 for	 DNA	 integrity	 variability	 in	 Formalin-Fixed	 Paraffin-Embedded	
(FFPE)	tissue.	The	bioinformatic	pipeline	removes	FFPE-induced	artifacts	and	known	germline	variants;	while	
identifying	possible	discrepancies	in	somatic	mutations	due	to	Latin	Americans'	underrepresentation	in	the	
reference	 genome	 databases.	 Analytic	 sensitivity	 and	 accuracy	were	 assessed	 using	 commercial	 standard	
controls	 for	 FFPE	 DNA	 and	 for	 germline	 BRCA1	 and	 BRCA2	 mutations,	 which	 are	 biomarkers	 for	 PARP	
inhibitors.	Our	panel	detects	small	insertions	and	deletions	and	single	nucleotide	variants	(SNVs)	with	100%	
sensitivity	 and	 specificity	down	 to	allelic	 frequencies	of	 0.05,	 and	with	100%	between-run	and	within-run	
reproducibility	for	non-synonymous	variants.	The	workflow	was	validated	in	265	clinical	samples,	 including	
breast,	colorectal,	gastric,	ovarian,	and	gallbladder	tumors	and	blood,	leading	to	identifying	131	actionable	
variants.	Therefore,	this	NGS	panel	constitutes	an	accurate	and	sensitive	method	for	routine	tumor	biopsies	
that	 could	 replace	 multiple	 non-NGS	 assays	 and	 costly	 large	 NGS	 panels	 in	 the	 Latin	 American	 clinical	
context.	 The	 proposed	 streamlined	 assay	 and	 automated	 analysis	 are	 expected	 to	 facilitate	 the	
implementation	of	precision	medicine	in	Latin	America.	
Keywords:	 NGS-panel,	 oncology,	 target	 therapies,	 predictive	 biomarkers,	 automated	 bioinformatic	 analysis,	 somatic	
variants,	Latin	America.	
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Introduction	

Over	the	last	few	decades,	molecular	pathology	has	substantially	advanced	thanks	to	exponential	
genetic	 sequencing	 technology	 growth.	 The	 introduction	 of	 next-generation	 sequencing	 (NGS)	
opened	 the	 doors	 to	 high-throughput,	multi-gene,	massive	 data	 collection.	 This	 tool's	 ability	 to	
sequence	more,	 faster,	 and	 at	 a	 reduced	 cost	 has	made	 it	 attractive	 for	many	 clinical	 research	
applications.	 In	cancer,	using	 this	 technology	to	 interrogate	solid	 tumor	samples	has	propelled	a	
massive	characterization	of	genes	involved	in	the	disease1,2.	This	rise	in	“oncogenomics”	has	been	
accompanied	 by	 an	 increase	 in	 cancer	 drug	 approval	 and	 development3,4.	 Identifying	 tumor-
specific	 genetic	 signatures	 and	 their	 correlation	 to	 treatment	 outcome	 have	 evolved	 into	 a	
strategy	 coined	 ‘precision	 medicine’,	 a	 new	 diagnose	 and	 treat	 process	 in	 cancer	 based	 on	
approved	genomic	biomarkers4.	

In	Latin	America	and	the	Caribbean,	1.4	million	new	cancer	cases	were	estimated	to	occur	in	2018,	
while	mortality	 rates	 vary	 among	 and	within	 the	 region5,6.	 In	 Latin	 America,	 the	most	 common	
types	of	cancer	with	the	highest	incidence	are	prostate	(Age	Standardized	Rate	(ASR)	60.4),	breast	
(ASR	56.8),	colorectal	 (ASR	18.6),	cervix	uteri	 (ASR	15.2),	 lung	 (ASR	13.1),	and	stomach	(ASR	9.5)	
cancers1.	Overall,	 estimated	 age-standardized	 cancer	 incidence	 rates	 in	 Latin	 America	 are	 lower	
than	those	reported	in	North-America	and	some	European	countries;	however,	the	region	exhibits	
higher	 mortality	 rates7.	 This	 paradox	 reflects	 the	 disparities	 in	 early	 diagnosis	 and	 treatment	
opportunities	in	the	region.		

While	 in	high	and	medium-income	countries,	precision	medicine	 is	making	 its	way	 into	standard	
cancer	 treatment,	 improving	 survival	 and	 investigational	 drug	 trial	 success	 for	many	 patients,	 a	
combination	of	 factors	prevent	 this	helpful	 tool	 from	becoming	accessible	 to	most	of	 the	world	
population.	In	many	countries,	approved	and	available	assays	are	often	designed	to	meet	foreign	
standards	 and	 may	 even	 require	 international	 sample	 shipping	 and/or	 data	 processing.	 These	
standard	designs	often	interrogate	parts	of	the	genome	that	may	be	clinically	irrelevant	for	some	
locations	where	 not	 all	 treatment	 options	 are	 available,	 significantly	 inflating	 sequencing	 costs.	
Besides,	 the	absence	of	 automated	 clinician-ready	 reporting	 for	many	of	 these	approved	panels	
creates	 another	major	 cost	 and	obstacle	 to	widespread	 implementation.	As	 a	 result,	NGS-based	
oncology	panels	do	not	appear	cost-effective	solutions	to	many	governments	and	are	not	getting	
implemented	in	health	and	insurance	systems	despite	local	sequencing	capabilities.	This	scenario	
creates	 an	 urgent	 need	 for	 customized	 validated	 solutions	 and	 data	 interpretation	 in	 a	 clinical	
environment8.	

In	addition,	an	important	caveat	to	interpreting	Latin	American	cancer	patient's	genetic	data	is	the	
under-representation	 of	 Latin	 American	 individuals	 in	 the	 global	 resources	 characterizing	 the	
frequency	of	both	germinal	and	cancer	genome	variants.	Great	cancer	genomics	efforts,	like	TCGA	
and	 ICGC,	 are	 deprived	 of	 minorities	 (including	 subjects	 of	 Hispanic	 ethnicity35),	 limiting	 the	
capacity	to	describe	somatic	mutations	with	a	prevalence	below	10%	and	overcome	the	somatic	
background	mutation	frequency	in	specific	ethnic	groups36.	For	instance,	the	average	Amerindian	
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ancestry	 in	 cancer	 patients	 across	 all	 cohorts	 in	 TCGA	 is	 about	 4%34,35.	 Also,	 the	 Latin	American	
population	 is	 under-represented	 in	 germline	 variant	 repositories,	 which	 may	 induce	 a	 false	
categorization	and	overestimation	of	somatic	variants9–11.	Thus,	an	additional	blood	sample	should	
accompany	the	tumor	sample,	increasing	the	sequencing	costs.	

To	address	 these	 challenges,	our	 team	designed,	optimized,	and	validated	a	hybridization-based	
target	enrichment	workflow	with	multiple	automated	analyses	capable	of	detecting	variants	in	25	
genes	 associated	 with	 approved	 and	 standard	 of	 care	 target	 therapies	 across	 multiple	 sample	
types.	 Although	 this	 panel	 was	 designed	 to	 meet	 current	 and	 near-future	 Chilean	 precision	
oncology	needs,	we	expect	the	panel	and	workflow	to	be	relevant	to	other	countries	in	the	region.	
We	 validated	 this	 workflow	 locally	 using	 breast,	 colorectal,	 gastric,	 ovarian,	 pancreatic,	 and	
gallbladder	tumor	tissue	samples	and	report	the	ability	to	detect	single	nucleotide	variants	(SNVs)	
and	 small	 insertions	 and	 deletions	 with	 100%	 sensitivity	 and	 specificity.	 Additionally,	 100%	
reproducibility	 was	 obtained	 for	 non-synonymous	 variants	 between	 and	within	 runs.	 Finally,	 to	
address	 the	 shortage	 of	 health	 professionals	 trained	 in	 bioinformatics,	 the	 entire	 workflow,	
including	quality	control	of	sequencing	data	and	calling	for	somatic	variants,	was	automated	and	
made	available.	

	

Materials	and	Methods	

Panel	Design	

We	designed	and	constructed	an	NGS	panel	for	predictive	biomarkers	in	solid	tumors	that	target	
hotspots,	selected	exons,	or	complete	coding	regions	for	25	genes.	We	refer	to	this	panel,	plus	its	
associated	workflow	and	analysis,	as	TumorSec™.	For	selecting	targeted	regions,	biomarker	genes	
classified	with	 evidence	 1,	 2,	 3a,	 3b,	 R1,	 and	 R2	were	 selected	 for	 solid	 tumors	 in	 the	 OncoKB	
database	(www.oncokb.org)33.	Next,	biomarker	mutations	with	level	of	clinical	evidence	A,	B,	and	
C	 were	 selected	 in	 the	 Clinical	 Interpretation	 of	 Variants	 in	 Cancer,	 CiVic	 database	
(https://civicdb.org/home)32	and	manually	curated.	Biomarkers	were	selected	based	on	their	level	
of	 evidence	 and	 incidence	 of	 the	 targeted	 tumor	 in	 Latin	 America.	 TP53	 and	ARID1A	 complete	
coding	 regions	 were	 incorporated,	 as	 they	 contain	 prognosis	 and	 predictive	 chemotherapy	
biomarkers.	The	complete	list	of	genes	and	drug	associations	is	provided	in	Table	1.	

Synthesis	 of	 the	 soluble,	 biotinylated	probe	 library	was	done	on	 the	NimbleGen	 cleavable	 array	
platform	 (SeqCap	 EZ	 Choice;	 Roche/NimbleGen,	 Basel,	 Switzerland).	 The	 probe	 design	 was	
optimized	using	 the	NimbleDesign	 software	utility,	which	adjusts	 individual	probe	 lengths	based	
on	 melt	 temperatures	 and	 homopolymer	 repeat	 length	 (NimbleGen,	 Roche;	
http://sequencing.roche.com/products/software/nimbledesign-software.html).	

Sample	Information	

The	 study	was	 approved	by	 the	 “Comité	 de	 Ética	 Científico	 del	 Servicio	Metropolitano	de	 Salud	
Oriente”,	 “Comité	 Ético	 Científico	 o	 de	 Investigación	 del	 Hospital	 Clínico	 de	 la	 Universidad	 de	
Chile”	 (approval	number	N°17-18),	and	the	“Comité	de	Ética	de	 Investigación	en	Seres	Humanos	
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de	la	Facultad	de	Medicina	de	la	Universidad	de	Chile”.	Colorectal	and	gastric	cancer	samples	were	
obtained	 from	 the	 “Biobanco	 de	 Tejidos	 y	 Fluidos	 de	 la	 Universidad	 de	 Chile”.	 To	 capture	 real	
world	 heterogeneity	 in	 sample	 quality,	 breast,	 ovary	 and	 gallbladder	 FFPE	 tissue	 samples	 were	
collected	 from	 the	 pathology	 services	 from	 several	 sites	 along	 the	 country	 (Fundación	 Arturo	
López	Pérez,	Clínica	Dávila,	Clínica	Indisa,	Red	UC	Christus,	Biobanco	de	Tejidos	y	Fluidos,	Hospital	
Padre	Hurtado,	Hospital	Regional	de	Concepción,	Hospital	Regional	de	Talca,	Hospital	de	Puerto	
Montt,	Hospital	 San	 Juan	de	Dios,	Hospital	 Santiago	Oriente	Doctor	 Luis	Tisné	Brousse,	 Instituto	
Nacional	del	Cáncer,	Hospital	del	Salvador,	Hospital	Regional	de	Coquimbo,	Hospital	Regional	de	
Arica,	 Hospital	 Clínico	 San	 Borja	 Arriarán).	 All	 individuals	 were	 informed	 about	 the	 planned	
molecular	testing,	and	signed	an	informed	consent	in	advance	for	the	retrieval	and	processing	of	
their	data	and	samples.	

A	total	of	176	tumor	tissue	samples	were	sequenced	for	this	study.	Nineteen	were	freshly	frozen	
(FF):	 13	 colorectal	 and	 six	 breast;	 157	 were	 formalin-fixed	 paraffin-embedded	 (FFPE)	 blocks:	 9	
breast,	71	ovary,	one	gastric,	36	gallbladder,	and	40	colorectal	tumors.	Additionally,	DNA	from	89	
whole	blood	or	buffy	coat	samples	were	sequenced:	7	from	colorectal	and	72	from	breast	cancer	
patients.	

DNA	Extraction,	quantification,	and	Sample	Quality	Control	

DNA	from	Frozen	Tissues	was	extracted	using	the	QIAamp	DNA	Mini	Kit	(Qiagen).	FFPE	tissue	DNA	
was	 extracted	 using	 GeneJet	 FFPE	 DNA	 Purification	 Kit	 and	 RecoverAll(™)	 Total	 Nucleic	 Acid	
Isolation	 (Invitrogen,	 Thermo	 Fisher	 Scientific),	 following	 the	 manufacturer's	 instructions,	 with	
overnight	lysis	instead	of	the	suggested	1-2	hour	for	FFPE	tissue.	Germline	DNA	was	purified	from	
whole	 blood	 samples	 using	 the	Wizard®	 Genomic	 DNA	 Purification	 Kit	 (Promega),	 according	 to	
manufacturer's	protocol.	

Purified	 DNA	 was	 quantified	 using	 the	 Qubit(™)	 dsDNA	 HS	 Assay	 and	 Quant-IT(™)	 Picogreen®	
dsDNA	 Reagent	 Kit	 (Invitrogen,	 Thermo	 Fisher	 Scientific).	 The	 purity	 of	 DNA	 was	 assessed	 by	
measuring	the	260/280 nm	absorbance	ratio.	For	FFPE	samples,	fragment	length	and	degradation	
were	assessed	using	the	HS	Genomic	DNA	Analysis	Kit	(DNF-488)	in	a	Fragment	Analyzer	(Agilent,	
formerly	 Advanced	 Analytical).	 DNA	 ranged	 from	 >1000bp	 to	 less	 than	 200bp	 	 (Supplementary	
Figure	1).	

Library	preparation.	

100-150ng	of	DNA	 (Blood	 and	 Frozen	 Tissues)	 and	200ng	of	DNA	 (FFPE)	were	used	 as	 input	 for	
sequencing	 library	 preparation.	 NGS	 libraries	 were	 prepared	 using	 KAPA	 HyperPlus	 Library	
Preparation	 Kit	 (Kapa	 Biosystems),	 DNA	 was	 incubated	 with	 the	 HyperPlus	 "Frag	 Enzyme	 mix"	
(KAPA	Biosystems)	with	modifications	for	FFPE	DNA	samples.	End	repair	and	phosphorylation	were	
performed	according	to	the	manufacturer's	protocols.	Ligation	of	barcoded	adaptors	reaction	was	
modified	for	FFPE	DNA.	We	performed	a	double	size	selection	in	libraries	prepared	with	DNA	from	
frozen	 tissue	 and	 blood	 and	 a	 single	 size	 selection	 in	 libraries	 prepared	 with	 DNA	 from	 FFPE.	
Libraries	 were	 quantified	 using	 the	 QubitTM	 dsDNA	 HS	 Assay	 Kit	 (Invitrogen)	 and	 Quant-ITTM	
Picogreen®	 dsDNA	Reagent	 Kit	 (Invitrogen).	 The	 quality	 of	 the	 amplified	 library	was	 checked	 by	
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measuring	 the	 260/280	 absorbance	 ratio	 and	 fragment's	 length,	 using	 the	 HS	 NGS	 Analysis	 Kit	
(DNF-474)	in	a	Fragment	Analyzer	(Agilent,	formerly	Advanced	Analytical).	

Target	Enrichment	

Prepared	 DNA	 libraries	 (1200ng	 total	 mass)	 were	 captured	 by	 hybridization	 probes	 (Roche	
NimbleGen	SeqCap	EZ).	The	number	of	samples	used	 for	pre-capture	multiplexing	was	based	on	
sample	type:	six	were	pooled	for	FFPE	and	blood	samples,	while	fresh	frozen	tumor	samples	were	
pooled	 in	 reactions	 of	 four.	 As	 with	 the	 sample	 libraries,	 captured	 libraries	 were	 assessed	 for	
concentration	and	size	distribution	to	determine	molarity.	

Sequencing	run	Set-up	

Libraries	were	diluted	to	a	concentration	of	4	nmol/L	and	process	for	sequencing,	according	to	the	
manufacturer's	instructions	(Illumina,	San	Diego,	CA).	The	final	captured	library	concentration	for	
sequencing	was	9.4	pM	 -	9.5	pM.	 Libraries	were	 sequenced	 in	an	 Illumina®	MiSeq	System	using	
paired-end,	300	cycles	(MiSeq	Reagent	Kits	v2,	Illumina®).	

Control	Samples	

Three	 reference	 standard	 DNA	 samples	 from	 Horizon	 Discovery	 (Cambridge,	 United	 Kingdom)	
were	 used	 as	 positive	 controls	 for	 variant	 calling:	 HD200	 (FFPE	 somatic),	 HD793,	 and	 HD794	
(germline	BRCA1/2	variants).		

Bioinformatic	Analyses	

TumorSec's	 bioinformatic	 package	 is	 a	 compilation	 of	 open-source	 programs	 that	 are	 executed	
sequentially	and	automatically	from	a	locally	developed	bash	program	to	call	out	somatic	variants		
(SNVs	and	indels)	from	Illumina	sequencing	output	from	FFPE	or	fresh	tumor	samples,	without	the	
need	for	germline	sample	to	detect	somatic	variants	(Figure	1).	
	
Data	pre-processing	
	
The	bioinformatic	workflow	starts	with	 the	demultiplexing	of	 the	basecall	 files	generated	by	 the	
sequencing	cycle	using	the	Illumina	bcl2fastq	v2.20.0	program,	generating	sample-specific	FASTQ	
files.	Filtering	of	reads	and	base	correction	is	done	with	the	fastp	v0.19.11	tool,	which	implements	
a	sliding	window	algorithm	to	remove	low-quality	bases	at	the	ends	of	each	read,	removing	reads	
with	less	than	50	nucleotides	or	with	a	Phred	quality	score	under	20.	The	filtered	reads	align	with	
the	reference	genome	GRCh37/hg19	using	Burrows-Wheeler	Alignment	mem	(BWA	mem	v0.7.12)	
with	the	default	parameters.	Subsequently,	the	MarkDuplicates	tool	of	Picard	v2.20.2-8	is	applied	
to	 identify	 pairs	 of	 reads	 that	 have	 originated	 from	 the	 same	 DNA	 fragment	 product	 of	 the	
clustering	or	PCR	artifact.	Then,	 to	 reduce	 the	number	of	mismatches	 to	 the	 reference	genome,	
the	reads	are	realigned	with	RealignerTargetCreator	and	IndelRealigner	from	GATK	v3.8	12.	Finally,	
the	 quality	 scores	 are	 re-calibrated	 with	 the	 combination	 of	 GATK's	 BaseRecalibrator	 and	
PrintReads	tools	12.	
	
Somatic	Variant	Calling	and	annotation	
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The	SomaticSeq	v.3.3.0	program	was	used	to	call	the	variants	in	single-mode	using	only	the	tumor	
sequence	 data13.	 This	 tool	 maximizes	 the	 sensitivity	 by	 combining	 the	 result	 of	 five	 next-
generation	 variant	 SNV	 callers	 -	 Mutect2	 14,	 VarScan2	 15,	 VarDict	 16,	 LoFreq	 17,	 and	 Strelka	 18	 -	
adding	Scalpel	for	indels.	A	minimum	allelic	frequency	of	0.1	was	set	for	variants	search,	and	the	
rest	of	the	parameters	are	integrated	by	default.	Each	variant	caller	generates	a	separate	VCF	file,	
and	 SomaticSeq	 combines	 these	 files	 to	 detect	 consensus	 variants.	 The	 reported	 SNVs	 are	
identified	by	at	 least	3	out	of	5	SNV	callers,	 and	 the	 reported	 indels	by	at	 least	3	out	of	 the	 six	
callers.	The	consensus	variants	obtained	by	SomatiSeq	were	annotated	using	the	Cancer	Genome	
Interpreter	 (https://www.cancergenomeinterpreter.org/),	 reporting	 validated	 oncogenic	
alterations,	 driver	 mutations,	 and	 also	 associates	 genomic	 biomarkers	 of	 drug	 response	 19.	
Additionally,	 	 the	 variants	 were	 annotated	 with	 ANNOVAR20	 using	 RefGene,	 GnomAD	 v2.1.1	
(genome	 and	 exome),	 ESP6500,	 ExAC	 v0.3,	 1000	 Genomes	 phase	 3,	 CADD	 v1.3,	 dbSNP	 v150,	
COSMIC	v92,	and	CLINVAR.		
	
Variant	filtering	and	sequence	quality	reporting	
	
Variants	with	allele	frequencies	greater	than	0.5	and	with	an	altered	allele	depth	≥12	reads	were	
selected.	These	thresholds	were	established	as	our	Limit	of	Detection	(LOD)	for	the	NGS	TumorSec	
panel	 following	the	recommendations	of	 the	Association	 for	Molecular	Pathology	and	College	of	
American	 Pathologists21.	 Polymorphisms	 were	 eliminated,	 discarding	 alleles	 with	 a	 frequency	
greater	 than	 0.01,	 reported	 in	 1000	 Genomes,	 ESP6500,	 GnomAD	 or	 ExAC20.	 Filtering	 was	
extended	 to	 include	 all	 under-represented	 populations	 that	 have	 information	 in	 GnomAD	 and	
ExAC.	 Additionally,	 a	 local	 repository	was	 built	 using	 germline	 data	 from	 this	 and	 other	 related	
works.	Finally,	since	no	noncoding	or	synonymous	mutations	have	been	reported	as	biomarkers	of	
therapeutic	response	in	cancer,	only	mutations	that	produce	a	protein	change	(non-synonymous)	
were	selected	for	reporting.	

The	bioinformatics	pipeline	 is	executed	automatically,	 creating	pdf	 reports	 that	allow	an	
easy	view	of	quality	metrics	per	sample.	For	this	purpose,	the	programs	FastQC	v	0.11.8,	Qualimap	
v2.2.2a,	 Mosdepth	 v0.2.5,	 and	 MultiQC	 v1.8	 are	 executed	 between	 the	 pre-processing	 of	 the	
bioinformatics	workflow,	and	the	quality	metrics	are	obtained	in	a	pdf	file.	The	main	metrics	are	
the	number	of	initial	raw	reads,	the	percentage	of	filtered	reads,	the	duplication	rate,	the	number	
of	 reads	on	 target	 regions,	 the	average	depth	on-target	 regions,	 the	uniformity	percentage,	and	
the	ratio	of	on-target	regions	with	a	minimum	coverage	of	100X	to	500X.	For	variant	calling	and	
annotation,	we	set	a	coverage	threshold	for	FFPE	and	FF	of	300X	in	at	least	80%	of	target	regions.		
The	bioinformatic	pipeline,	user	manual,	and	tutorials	can	be	found	in	the	GitHub	repository	called	
Pipeline-TumorSec	(https://github.com/u-genoma/Pipeline-TumorSec).		
	
Germline	variant	calling	

Data	were	pre-processed	 following	 the	same	protocol	 for	 somatic	variants	observed	 in	Figure	1.	
From	 the	 BAM	 files	 per	 sample,	 variant	 calls	 were	made	 using	 the	 GATK	 HaplotypeCaller	 tool,	
which	 realigns	 each	 haplotype	 to	 the	 reference	 (hg19)	 using	 the	 Smith-Waterman	 algorithm	 to	
identify	 SNPs	 and	 indels.	 A	 minimum	 confidence	 threshold	 of	 30	 was	 set	 for	 variant	 calling.	
Additionally,	 we	 set	 a	 coverage	 threshold	 of	 200X	 in	 at	 least	 80%	 of	 target	 regions.	 Finally,	 a	
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variant	 calling	 hard-filter	 for	 SNPs	 and	 indels	 was	 applied	 separately	 following	 GATK	
recommendations22.	

	

Results	

Panel	Design	and	Sequencing	metrics.	

A	 total	 of	 25	 genes	were	 included	 in	 this	 target	 enrichment	 panel,	 covering	 98	 kb	 of	 sequence	
length.	Design	details	broken	down	by	gene	are	shown	in	Table	1.	The	decision	to	include	all	exons	
or	only	hot	spots	per	gene	was	based	on	the	number	of	relevant	genomic	features.	79%	(15/19)	of	
fresh	 frozen,	 69%	 (108/157)	 of	 FFPE,	 and	 89%	 (79/89)	 of	 blood	 samples	 processed	 passed	 the	
sequencing	quality	 threshold	capturing	a	minimum	of	80%	of	 target	 regions	at	300X	of	depth.	A	
summary	 of	 relevant	 sequencing	metrics	 for	 all	 202	 passed	 samples	 is	 shown	 in	 Table	 2.	 FFPE	
samples	showed	a	high	percentage	of	duplicate	and	off-target	reads.	Uniformity	was	>	90%	for	all	
sample	types	and	>90%	of	targeted	regions	had	≥300x	coverage	(Figure	2A).	Sequencing	coverage	
across	the	targeted	regions	was	>90%	(Figure	2B).	

	

Automating	bioinformatic	analysis	and	reporting	of	results	

We	developed	a	semi-automated	bioinformatic	pipeline	that	starts	with	raw	data	from	an	Illumina	
sequencer	 in	 fastq	 format,	 and	ends	with	 two	 reports	 as	observed	 in	 Figure	1.	 First,	 a	 technical	
report	 with	 detailed	 information	 on	 data	 quality,	 variant	 calling	 and	 annotation	 is	 generated.	
Additionally,	 a	 second	 report	 containing	only	 information	 regarding	actionable	mutations	 is	 also	
created.	 Human	 interaction	 is	 possible	 at	 various	 stopping	 points	 throughout	 the	 pipeline	 to	
facilitate	 decisions	 regarding	 samples	 that	 may	 need	 to	 be	 repeated	 or	 skipped	 for	 further	
analyses.	Nevertheless,	the	entire	pipeline	can	run	without	human	intervention	until	the	technical	
report.	 The	 pipeline	 is	 available	 in	 a	 docker	 image	
(https://hub.docker.com/repository/docker/labgenomicatumorsec/tumorsec	).	

	

Panel	Performance		

The	panel's	performance	was	calculated	using	the	reference	HD200	(Horizon	Discovery)	standard	
FFPE	 sample	 containing	 characterized	mutations	 in	 the	 following	 genes:	BRAF,	 KIT,	 EGFR,	 KRAS,	
NRAS,	PIK3CA,	ARID1A,	and	BRCA2.	As	observed	 in	 Figure	3A,	 the	assay	 captured	all	 13	positive	
variants.	We	extrapolated	a	0.98	coefficient	of	correlation	(r-squared)	with	a	p-value	of	3.221e-10	
between	expected	variant	allele	frequencies	(VAF)	from	the	positive	control	and	those	reported	by	
our	assay.	VAFs	ranged	from	24.5%	to	as	low	as	1%,	showing	the	assay's	high	analytical	sensitivity.	

Additionally,	 we	 decided	 to	 test	 the	 panel's	 performance	 for	 detecting	 BRCA1/2	 germline	
mutations,	 which	 are	 predictive	 biomarkers	 for	 PARP	 inhibitors	 therapy	 in	 breast,	 ovarian	 and	
prostate	 cancer	 (Table	 1).	 Thus,	 references	 DNA	 HD793	 and	 HD794	 (Horizon	 Discovery),	 which	
contain	 known	germline	 variants	 in	BRCA1	and	BRCA2	at	VAF	of	 50	and	100%	were	 sequenced.	
Figure	 3B	 shows	 that	 11	 out	 of	 11	 reported	 variants	 were	 detected	 at	 the	 expected	 VAF.	 The	
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correlation	 coefficient	 between	 expected	 and	 reported	 VAF	 is	 0.99	 with	 a	 p-value	 of	 2.2e-16.	
Importantly,	 no	 mutations	 were	 detected	 in	 the	 15	 positions	 reported	 as	 "no-mutated"	 (true	
negatives),	showing	the	assay's	high	specificity.	

For	reproducibility	assessment,	three	FFPE	samples	from	different	tumors	(colorectal,	ovary,	and	
gallbladder)	were	used	to	prepare	two	separate	libraries	each.	All	samples	passed	the	sequencing	
metrics	 threshold	 with	 ≥300x	 coverage	 in	 99.6%	 of	 target	 regions	 and	 89%	 uniformity.	 We	
observed	a	100%	concordance	among	non-synonymous	variants	detected	in	the	different	libraries	
(Figure	4A).	

Inter-runs	repeatability	was	assessed	using	four	FFPE	samples	(3	ovaries	and	1	control).	Different	
libraries	were	 sequenced	 in	different	 runs.	Reproducibility	of	 sequencing	metrics	 (94%	of	 target	
regions	with	 ≥300x	 coverage	 and	 ≥87%	 uniformity)	 and	 concordance	 of	 detected	 variants	were	
also	 observed	 (Figure	 4B).	 One	 ovarian	 FFPE	 sample	 was	 assessed	 in	 three	 different	 library	
preparations	 and	 three	 separate	 sequencing	 runs	 (Figure	 4C).	 A	 high	 correlation	 (r=0.99)	 was	
observed	between	VAFs	called	in	all	the	different	settings	(Figure	4D).		

	

Comparison	between	FFPE,	Fresh	frozen	and	blood	gDNA	

In	 order	 to	 assess	 whether	 the	 protocol	 and	 bioinformatic	 workflow	 for	 detecting	 somatic	
mutations	discard	FFPE-induced	artifacts	and	germline	variants,		we	sequenced	FFPE,	fresh	frozen	
tumor	 (FF)	and	blood	 (buffy	 coat)	 samples	 (triad)	 from	six	ductal	breast	 carcinoma	subjects.	 For	
tumor	samples,	biopsies	used	presented	<5%	necrosis	and	a	42-80%	cellularity.	

	 Variants	 detected	 among	 all	 sample	 triads	 for	 each	 of	 the	 six	 subjects	 are	 outlined	 in	
Figure	5.	We	reported	9	variants	in	the	FF	sample	set,	7	of	these	variants	were	also	reported	in	the	
matching	FFPE	samples.	 It	 is	worth	noting	 that	 the	2	variants	detected	 in	a	FF	sample	 (FA6-005)	
were	 found	 in	 the	 FFPE	 sample	 but	 at	 frequencies	 <5%	 (the	 LOD	 established	 for	 the	 assay).	 To	
further	 explore	 FF	 and	 FFPE	 samples'	 concordance,	 we	 plotted	 the	 allele	 frequencies	 of	 both	
synonymous	and	non-synonymous	variants	detected	in	both	sample	types	(Figure	6).	Variants	with	
AF<5%,	 display	 a	 low	 r-value	 (0.68,	 p-value	 of	 2.479e-09).	 However,	 when	 all	 variants	 (73)	 are	
analyzed,	 correlation	 increased	 (r=0.95,	 p-value	of	 <	 2.2e-16).	 Importantly,	 no	 germline	 variants	
and	 no	 variants	 exclusive	 for	 FFPE	 samples	 were	 detected	 using	 the	 pipeline	 for	 somatic	
mutations.	

	

Validation	of	the	assay	in	clinical	samples.		

To	validate	the	assay	and	analysis	capabilities	 in	"real	world"	samples,	we	processed	176	
tumor	biopsies	from	different	clinical	sites.		123	out	of	the	176	were	successfully	sequenced	(108	
FFPE	and	15	FF):	breast	(14),	ovary	(69),	gastric	(1),	gallbladder	(23),	and	colorectal	(16).	

All	 variants	with	allelic	 frequency	over	1%	 reported	 in	at	 least	one	of	 the	 following	 four	
germline	 population	 variant´s	 databases	 (PVDs):	 GnomAD,	 ESP6500,	 ExAC,	 and	 1000	 Genomes,	
were	 eliminated.	 However,	 given	 that	 the	 Latin	 American	 population	 is	 not	well	 represented	 in	
these	 repositories,	 somatic	mutations	 were	 initially	 overestimated	 due	 to	 their	 absence	 or	 low	
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(<1%)	 AF.	 Thus,	 for	 the	 classification	 of	 remaining	 variants,	 we	 used	 the	 algorithm	 depicted	 in	
Supplementary	Figure	2,	based	on	annotations	in	COSMIC,	dbSNP,	CLINVAR,	and	PVDs	databases;	
and	 recommendations	 from	 Sukhai	 et	 al.	 (2019)23.	 Filtering	 was	 extended	 to	 include	 all	 under-
represented	 populations	 that	 have	 information	 in	 GnomAD	 and	 ExAC.	 Additionally,	 a	 local	
repository	 was	 built	 using	 germline	 data	 from	 current	 and	 other	 related	 works.	 The	 resulting	
variants	 were	 classified	 as	 Germline,	 Somatic,	 Putative	 Germline,	 Putative	 Somatic,	 Putative	
Germline	Novel,	or	Putative	Somatic	Novel.		

We	found	a	total	of	245	protein	affecting	variants	in	the	123	samples.	Among	these,	187	
non-synonymous	somatic	and	putative	known	and	novel	 somatic	variants	were	 identified	 in	105	
out	of	the	123	samples	(85%)	(Table	3).	A	hundred	thirty-eight	(138)	were	unique	variants.	Figure	7	
shows	a	breakdown	of	these	mutations	by	variant	and	tumor	type.	Among	the	breakdown	of	these	
variants	are	deletions	and	insertions	(including	those	causing	frameshifts),	missense	and	nonsense	
mutations,	and	variants	positioned	in	splice	sites.	As	depicted	in	Figure	7A,	missense	mutations	are	
the	most	prevalent	 types	of	mutation	among	all	 samples.	 Samples	 from	ovarian	 tumors	 are	 the	
most	abundant	in	this	study	and	have	the	highest	number	of	unique	variants	(Figure	7B).		

	

Identification	of	Biomarkers	for	Targeted	Therapies.	

131	 (70%)	 out	 of	 the	 187	 identified	 somatic	 variants	 are	 described	 as	 a	 biomarker	 for	 drug	
response,	supported	by	different	levels	of	evidence:	FDA	guidelines	(43),	NCCN	guidelines	(9),	late	
trials	 (37),	 early	 trials	 (116),	 case	 report	 (42),	 and	 (108)	pre-clinical	data.	 The	affected	gene	and	
target	 drug	 associations	 with	 supporting	 evidence	 from	 "case	 reports"	 to	 "FDA	 guidelines"	 are	
depicted	 in	 Figure	 8,	 where	 is	 outlining:	 (1)	 The	 fraction	 of	 samples	 with	 reported	 genetic	
alterations,	 (2)	 Level	 of	 existing	 evidence	 for	 the	biomarker,	 (3)	Gene	 affected	 and	 (4)	 the	drug	
association	 (resistant	 or	 responsive).	 Table	 4	 contains	 a	 detailed	 description	 of	 the	 biomarker	
mutations	supported	by	FDA	and	NCCN	clinical	guidelines	found	in	this	study.	

	

Discussion	

As	 a	 result	 of	 its	 global	 adoption	 and	 implementation,	 the	 clinical	 utility	 of	 NGS	 in	 the	 field	 of	
oncology	has	a	 rapidly	growing	body	of	evidence.	The	ability	 to	get	massive	amounts	of	genetic	
information	 from	small	amounts	of	 tissue	provides	clear	advantages	 for	decision-making	against	
cancer37,4,2.	 Nevertheless,	 a	 large	 portion	 of	 cancer	 patients	 around	 the	world	 do	 not	 have	 this	
option	 readily	 available.	 This	 work	 attempts	 to	 favor	 the	 implementation	 of	 NGS	 in	 the	 Latin	
American	health	system	by	showcasing	a	locally-developed	assay,	accompanied	by	an	open-source	
automated	analysis	focused	on	the	target	population's	needs.	

A	 critical	 consideration	 for	 implementing	 NGS	 in	 low	 resource	 settings	 is	 finding	 a	
workflow	 compatible	with	 low-quality,	 highly	 degraded	 samples.	 Although	 fresh	 frozen	 tissue	 is	
the	gold	 standard	 for	molecular	 analyses,	 its	use	 in	 clinical	 practice	 is	 impractical	 because	of	 its	
high	cost	and	technical	difficulty.	The	sample	storage	infrastructure	found	in	the	developed	world,	
with	 dedicated	 -80C	 and	 -20C	 freezers,	 is	 often	 not	 in	 the	 budget	 for	 many	 Latin	 American	
diagnostic	laboratories.	FFPE	tissue	samples	are	much	more	cost-effective	as	they	can	be	stored	at	
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room	 temperature.	 However,	 tumor	 biopsies	 in	 this	 region	 are	 often	 fixed	 with	 formalin	 with	
different	protocols	and	laboratory	environments,	producing	varied	DNA	damage	during	and	after	
the	formalin	fixation	process	(e.g.,	fragmentation,	degradation,	crosslinking24,38).	

DNA	quality	is	affected	by	the	type	of	formalin	used	for	tissue	fixation	and	the	time	since	
preservation25,	both	of	which	vary	highly	in	laboratories	across	Chile	and	Latin	America.	A	total	of	
49	FFPE	samples	failed	to	pass	the	DNA,	library,	or	sequencing	quality	controls.	Most	of	the	failed	
samples	 are	 colorectal	 (33/40)	 and	 gallbladder	 (13/36)	 samples.	 Twenty-four	 failed	 colorectal	
samples	had	low	on-target	rates,	suggesting	issues	with	hybridization	and	or	capture,	while	the	13	
gallbladder	samples	did	not	pass	the	library	preparation	quality	metrics.	

In	 general,	 FFPE	 samples	 showed	a	higher	percentage	of	duplicates	and	off-target	 reads	
(Table	2).	However,	these	characteristics	do	not	affect	sequencing	results.	FFPE	samples	have	the	
highest	 mean	 on-target	 region's	 coverage	 compared	 to	 FF	 and	 BC.	 Removing	 duplicates	 is	
intended	 to	 reduce	 noise	 during	 the	 variant	 identification	 process	 and	minimize	 false	 positives.	
Our	 results	 suggest	 removing	 duplicates	 has	 little	 effect	 on	 this	 panel's	 performance	 at	 the	
sequencing	depths	we	are	interested	in	(~300X).	As	sequencing	technologies	continue	to	advance,	
PCR	duplicate	removal	will	become	less	of	an	issue26.	

Somatic	mutation	analysis	 is	critical	 in	cancer	research.	Currently,	there	is	no	community	
consensus	about	the	most	appropriate	variant	caller	for	somatic	mutations27.	For	this	reason,	we	
incorporated	 six	 variant	 callers	 capable	 of	 producing	 highly	 accurate	 somatic	mutation	 calls	 for	
both	SNVs	and	small	 Indels.	Nevertheless,	when	comparing	the	frequency	of	mutations	per	gene	
found	 in	our	cohort	with	the	reported	 in	 international	databases,	a	higher	 frequency	 in	some	of	
the	 genes	 was	 evident.	 Somatic	 variant	 callers	 discard	 germline	 variants	 by	 interrogating	 the	
reference	 genomes	 and	 population	 databases	 such	 as	 1,000	 Genomes,	 where	 Latin	 American	
genetic	 variation	 is	 not	well	 represented.	 Thus,	we	 implemented	 a	more	 accurate	bioinformatic	
pipeline	 that	 allows	 variants'	 classification	 as	 somatic,	 germline,	 and	 putative	 somatic/germline.	
This	variant	calling	process	highlights	the	extra	 layer	of	difficulty	Latin	American	researchers	and	
clinical	 laboratories	 face	 due	 to	 the	 absence	 of	 reference	 genomes	 representative	 of	 our	
population	in	the	major	databases.		Overestimation	of	somatic	variants	is	a	problem	when	facing	
the	tumor	of	a	patient	from	any	region	or	ancestry	without	a	reference	genome	informative	of	the	
genetic	variation	in	that	specific	population.	This	issue	is	critical	for	therapy	determinants	such	as	
the	tumor	mutational	load,	which	should	be	carefully	interpreted	in	these	patients39.	

The	 best	 approach	 for	 resolving	 the	 somatic	 vs.	 germline	 mutations	 issue	 is	 to	 include	
respective	 blood	 samples	 alongside	 biopsies.	 However,	 this	 raises	 the	 assay's	 cost	 per	 patient,	
which	may	delay	the	assay's	implementation.	

To	achieve	more	accurate	somatic	variant	calling,	we	need	further	efforts	towards	genetic	
characterization	of	the	Latin	American	and	other	under-studied	populations.	Building	an	inclusive	
tumor	 reference	 genome	 database	 will	 allow	 discovering	 novel	 somatic	 mutations	 and	 non-
explored	correlations	to	the	disease.	
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Figures		

Figure	 1.	General	 workflow	 of	 the	 bioinformatic	 pipeline	 for	 identifying	 somatic	 variants.	 Gray	
boxes	correspond	to	automated	processes.	Blue	squares	show	the	main	sub-processes.	Key	input	
and	output	files	are	shown	in	arrows.	
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Figure	2.	A)	Box	plot	of	sequencing	metrics	by	 type	of	sample	 (79	BC,	15	FF,	and	108	FFPE).	BC:	
Buffy	 coat;	 FF:	 Fresh	 Frozen;	 FFPE:	 Formalix-fix	 Paraffin-Embedded.	 Each	 box	 shows	 the	 data	
distribution	 divided	 into	 quartiles.	 The	 centerline	 shows	 the	 median,	 and	 outlier	 points	 are	 in	
black.	B)	 Box	 plot	 of	mean	 coverage	of	 on-target	 regions	 per	 gene	 for	 each	 type	of	 sample:	 BC	
(blue),	 FF	 (green),	 and	 FFPE	 (orange).	 The	 centerline	 shows	 the	median,	 and	 outlier	 points	 are	
shown	in	black. The	vertical	dotted	line	shows	300X	coverage.	 
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Figure	 3.	 Correlation	 between	 expected	 allelic	 frequencies	 for	 reported	 variants	 in	 the	 Horizon	
Discovery	controls	and	those	observed	by	TumorSec.	A)	FFPE	HD	200.	B)	HD	793	and	HD	794.	  
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Figure	 4.	 Reproducibility	 and	 repeatability.	 A)	Within	 sequencing	 run	 reproducibility	 based	 on	
three	 patient	 samples,	 each	 from	 a	 different	 tumor	 type	 (colon,	 ovaries,	 gallbladder).	 Venn	
diagram	 displays	 variants	 observed	 in	 two	 different	 library	 preparations	 for	 each	 of	 the	 three	
samples.	 B)	Repeatability	 between	 sequencing	 runs	was	 assessed	 using	 the	 same	 libraries	 from	
three	different	FFPE	cancer	and	control	(HD200)	samples	 in	two	separate	sequencing	runs.	Venn	
diagram	displays	variants	observed	between	two	sequencing	runs.	C)	One	ovarian	cancer	sample	
was	 processed	 using	 four	 different	 combinations	 (colors)	 of	 library	 preparation	 and	 sequencing	
runs.	 D)	 Correlation	 between	 allele	 frequencies	 of	 variants	 obtained	 in	 repeatability	 and	
reproducibility	tests	(displayed	in	A	and	B).		
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Figure	 5.	 Venn	 diagram	 outlining	 non-synonymous	 variants	 reported	 for	 six	 different	 patients	
diagnosed	 with	 ductal	 breast	 carcinoma	 among	 three	 different	 sample	 types	 for	 each:	 FFPE	
(orange),	Fresh	Frozen	(green),	blood	(blue).	
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Figure	 6.	 Synonymous	 and	 non-synonymous	 variant's	 frequency	 comparison	 between	 FFPE	 and	
Fresh	Frozen	 samples.	A)	Correlation	between	allele	 frequencies	of	all	 variants	 (0-60%)	 found	 in	
FFPE	and	Fresh	Frozen	samples.	B)	Correlation	between	frequencies	of	variants	with	VAF	(below	
LOD).	

	

	

	
	
Figure	 7.	 Non-synonymous	 Somatic	 Variants	 detected	 across	 all	 tumor	 samples.	 187	 non-
synonymous	 somatic	 variants	were	detected	 in	 105	out	 of	 the	 123	 samples,	 including	 "putative	
known	 somatic"	 and	 "putative	 novel	 somatic"	 variants.	 	 A)	 Number	 of	 detected	 variants	 per	
sample	and	mutation	type.	B)	Number	of	unique	variants	somatic	variants	per	tumor	type.	
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Figure	 8.	 Predictive	 biomarkers	 for	 therapy	 response	 identified	 in	 the	 analyzed	 clinical	 tumor	
samples.	 The	 biomarker	 gene,	 the	 associated	 drugs,	 and	 the	 level	 of	 evidence	 supporting	 this	
association	in	solid	tumors	are	depicted.	Positive	(drug-responsive)	and	negative	(drug	resistance)	
associations	are	indicated	by	green	and	red	dots,	respectively.			
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Tables	

Table	1.	Genes	included	in	the	panel	and	their	therapy	association.  
GENE	 Target	

Region	
Drugs	 Tumor	Type	 Highest	

level	of	
evidence*	

AKT1	 all	exons	 AZD-5363	 Breast	Cancer	
Ovarian	Cancer	
Endometrial	Cancer	

B	

ALK	 Hot	spots	 Ceritinib	
Crizotinib	
Alectinib	
Brigatinib	
Lorlatinib	

Non-Small	Cell	Lung	Cancer	 A	

ARID1A	 all	exons	 ATM	inhibitors	
Erlotinib	
Chemotherapy	

Breast	Cancer	
Ovarian	Cancer	

C	

BRAF	 all	exons	 Encorafenib	+	Cetuximab	
Vemurafenib	
Dabrafenib	
Trametinib	+	Dabrafenib	
Cobimetinib	+	Vemurafenib	
Trametinib	
Encorafenib	+	Binimetinib	
Vemurafenib	+	Cobimetinib,	
Trametinib	+	Dabrafenib	
Vemurafenib	+	Cobimetinib	
Encorafenib	+	Panitumumab	

Colorectal	Cancer	
Melanoma	
Non-Small	Cell	Lung	Cancer	
Anaplastic	Thyroid	Cancer	
Hairy	Cell	Leukemia	
Pilocytic	Astrocytoma	
Ganglioglioma	
Pleomorphic	Xanthoastrocytoma	
	

A	

BRCA1	 all	exons	 Olaparib	 Ovarian	Cancer	
Peritoneal	Serous	Carcinoma	
Breast	Cancer	
Prostate	
Ovary/Fallopian	Tube	

A	

BRCA2	 all	exons	 Olaparib	 Ovarian	Cancer	
Peritoneal	Serous	Carcinoma	
Breast	Cancer	
Prostate	
Ovary/Fallopian	Tube	

A	

Cdk4	 all	exons	 Palbociclib	
Abemaciclib	

Dedifferentiated	Liposarcoma	
Well-Differentiated	Liposarcoma	

A	

EGFR	 Hot	spots	 Erlotinib	
Afatinib	
Osimertinib	
Gefitinib	
Dacomitinib	

Non-Small	Cell	Lung	Cancer	 A	

ERBB2	 Hot	spots	 Trastuzumab	 Breast	Cancer	 A	
ESR1	 Hot	spots	 Palbociclib	 Breast	Cancer	 B	
IDH2	 Hot	spots	 Enasidenib	 Acute	Myeloid	Leukemia	 A	
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GENE	 Target	
Region	

Drugs	 Tumor	Type	 Highest	
level	of	

evidence*	

KIT	 Hot	spots	 Sunitinib	
Imatinib	
Regorafenib	
Sorafenib	

Gastrointestinal	Stromal	Tumor	 A	

KRAS	 all	exons	 Cetuximab	
Erlotinib	
Regorafenib	
Selumetinib	
Irinotecan	

Colorectal	Cancer	
Pancreatic	Cancer	
Non-Small	Cell	Lung	Cancer	

A	

MET	 Hot	spots	 Foretinib,	Rilotumumab	 Papillary	Renal	Cell	Carcinoma	
Melanoma	
Non-Small	Cell	Lung	Cancer	

B	

MTOR	 all	exons	 mTOR	inhibitors	 Renal	Cell	Carcinoma	 B	
NRAS	 all	exons	 EGFR	inhibitors	 Colorectal	Cancer	 A	
PDGFRA	 Hot	spots	 Imatinib	

Sunitinib				
Gastrointestinal	Stromal	Tumor	 A,B	

PI3KCA	 all	exons	 Buparlisib	
Serabelisib	
Alpelisib	
Copanlisib	

Breast	Cancer	 A	

PTCH1	 all	exons	 Vismodegib	 Medulloblastoma	
Skin	cancer	

B	

PTEN	 all	exons	 Everolimus	 Various	 B	
ROS1	 Hot	spots	 Crizotinib	 Non-Small	Cell	Lung	Cancer	 C	
SMO	 Hot	spots	 Vismodegib	 Basal	Cell	Carcinoma	 B	
TP53	 all	exons	 Prognosis	 Various	 A	
TSC1	 all	exons	 MTOR	inhibitors,	Everolimus	 Renal	Cell	Carcinoma,	Bladder	Cancer	 A	
TSC2	 all	exons	 MTOR	inhibitors	 Central	Nervous	System	

Renal	Cell	Carcinoma	
A,	B	

*According	to	AMP/ASCO/CAP.	Level	A:	FDA-approved	therapy	included	in	professional	guidelines;	B:	Well-
powered	 studies	with	 consensus	 from	experts	 in	 the	 field;	C:	 FDA-approved	 therapies	 for	different	 tumor	
types	or	investigational	therapies.	Multiple	small	published	studies	with	some	consensus	(Li,	MM	et	al.	J	Mol	
Diagn	2017).	The	highest	level	of	evidence	is	shown.	Some	biomarkers	may	have	additional	indications	with	
lower	levels	of	evidence	for	different	cancer	types	or	protocols.	
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Table	2.	Sequencing	metrics	(median)	for	all	samples	that	passed	QC.		

	
	

Sample	Type	

	Sequencing	Metric	 FFPE	
(n=108)	

Blood	
(n=79)	

Fresh	Frozen	
(n=15)	

%	Duplicated	reads	
	 34.4		 9.5	 9.15	

%	of	reads	in	target	region	
	 58.8	 69.1	 65.8	

Average	coverage	in	target	
region		

1,133.8	 798.5	 789.1	

%	Uniformity	
	 93.7	 96.0	 91.1	

%	of	target	regions	with	
minimum	coverage	of	300X	

99.0	 97.4	 90.0	

 

	

Table	 3.	 Classification	 of	 non-synonymous	 variants	 in	 123	 quality	 passed	 tumor	 samples.	 It	 is	
shown	the	number	of	total	and	unique	variants	by	classification.		
 

Classification	of	variants	 Total	Variants	
Unique	
Variants	

Germline	 		54	 25	

Putative	Novel	Germline	 4	 3	

Somatic	 116	 81	

Putative	Somatic	 12	 12	

Putative	Novel	Somatic	 59	 45	

Total	 245	 166	
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Table	4.	Biomarker	mutations	supported	by	FDA	(43)	and	NCCN	and	other	clinical	guidelines	(9),	
found	in	the	analyzed	clinical	samples.	The	Associated	drug,	the	mutation´s	predictive	effect	and	
supporting	level	of	evidence	are	indicated.	

GEN MUTATION DRUG EFFECT EVIDENCE 

BRCA1 E1609*,  L702Wfs*5, N1745Tfs*20, 
Q1273*,  V370I 

Rucaparib (PARP inhibitor) 
Olaparib (PARP inhibitor) 

Responsive 

FDA guidelines 

BRCA2 

A2603S, D1796Mfs*9, 
K3327Nfs*13, L1114V, 
splice_acceptor_variant, 
T2783Afs*13, T2790I, I1364M, 
L398P, D635G, R2034C 

KRAS 

A146V, Q61H Panitumumab  
(EGFR mAb inhibitor) 

Resistant 
G12A, G12D, G12V 

Panitumumab  
(EGFR mAb inhibitor) 

Cetuximab (EGFR mAb inhibitor) 

NRAS G12C, Q61R 
Panitumumab  

(EGFR mAb inhibitor) 
Resistant 

PTCH1 R441H, D717N, H1240R, P725S, 
V580A, T677A 

Vismodegib (SHH inhibitor) Responsive 

TSC1 
K375Sfs*30, L826Q, L827Q, 
T582S 

Everolimus (MTOR inhibitor) Responsive 

TSC2 
R1729C, S1530L, 
splice_acceptor_variant, 
K533delK, A460T, A950T, 
D1084G, P1771L, S1096C, T154I 

Everolimus (MTOR inhibitor) Responsive 

NRAS G12C, Q61R Cetuximab (EGFR mAb inhibitor) 

Resistant NCCN guidelines 
KRAS G12V, L19F, G12D, G12A, Q61H, 

A146V, Q25*fs*1 

Cetuximab (EGFR mAb inhibitor) 
(EGFR inhibitor) 
Panitumumab  

(EGFR mAb inhibitor) 
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