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ABSTRACT 1 

Continuous risk of recurrence scores (CRS) based on tumor gene expression are vital prognostic tools for 2 

breast cancer (BC). Studies have shown that Black women (BW) have higher CRS than White women 3 

(WW). Although systemic injustices contribute substantially to BC disparities, evidence for biological and 4 

germline contributions is emerging. We investigated germline genetic associations with CRS and CRS 5 

disparity using approaches modeled after transcriptome-wide association studies (TWAS). In the Carolina 6 

Breast Cancer Study, using race-specific predictive models of tumor expression from germline genetics, 7 

we performed race-stratified (N=1,043 WW, 1083 BW) linear regressions of three CRS (ROR-S: PAM50 8 

subtype score; Proliferation Score; ROR-P: ROR-S plus Proliferation Score) on imputed Genetically-9 

Regulated tumor eXpression (GReX). Using Bayesian multivariate regression and adaptive shrinkage, we 10 

tested GReX-prioritized genes for associations with PAM50 tumor expression and subtype to elucidate 11 

patterns of germline regulation underlying GReX-CRS associations. At FDR-adjusted P < 0.10, we 12 

detected 7 and 1 GReX-prioritized genes among WW and BW. Among WW, CRS were positively 13 

associated with MCM10, FAM64A, CCNB2, and MMP1 GReX and negatively associated with VAV3, 14 

PCSK6, and GNG11 GReX. Among BW, higher MMP1 GReX predicted lower Proliferation score and 15 

ROR-P. GReX-prioritized gene and PAM50 tumor expression associations highlighted potential 16 

mechanisms for GReX-prioritized gene to CRS associations. Among BC patients, we find differential 17 

germline associations with CRS by race, underscoring the need for larger, diverse datasets in molecular 18 

studies of BC. Our findings also suggest possible germline trans-regulation of PAM50 tumor expression, 19 

with potential implications for CRS interpretation in clinical settings. 20 

 21 

SIGNIFICANCE 22 

We find race-specific genetic associations with breast cancer risk-of-recurrence scores (CRS). Follow-up 23 

analyses suggest mediation of these associations by PAM50 molecular subtype and gene expression, 24 

with implications for clinical interpretation of CRS. 25 

 26 

Keywords: breast cancer recurrence, risk of recurrence, transcriptome-wide association study, molecular 27 

subtype, trans-eQTL mapping  28 
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ABBREVIATIONS 1 

BW Black Women 2 

CBCS Carolina Breast Cancer Study 3 

CRS Continuous Risk of recurrence Score 4 

eQTL expression Quantitative Trait Locus 5 

ER Estrogen Receptor 6 

FDR False Discovery Rate 7 

GReX Genetically-Regulated tumor eXpression 8 

GWAS Genome-Wide Association Study 9 

HR Hormone Receptor 10 

LFSR Local False Sign Rate  11 

LumA Luminal A 12 

LumB Luminal B 13 

NC North Carolina 14 

ROR Risk of Recurrence 15 

SCC Subtype-Centroid Correlations 16 

SNP Single Nucleotide Polymorphism 17 

TCGA The Cancer Genome Atlas 18 

TWAS Transcriptome-Wide Association Study 19 

WW White Women  20 
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INTRODUCTION (Manuscript Word Count = 4961/5000) 1 

Tumor expression-based molecular profiling has improved clinical classification of breast cancer (1-3). 2 

One tool is the PAM50 assay, which integrates tumor expression of 50 genes (derived from a set of 1,900 3 

subtype-specific genes identified in microarray studies) to determine PAM50 intrinsic molecular subtypes: 4 

Luminal A (LumA), Luminal B (LumB), Human epidermal growth factor 2-enriched (HER2-enriched), 5 

Basal-like, and Normal-like (1,4). Intrinsic molecular subtypes are strong prognostic factors for breast 6 

cancer outcomes, including recurrence and mortality. For instance, Basal-like breast cancer has 7 

substantially higher recurrence and mortality risk compared to LumA breast cancer (5-8). In recent years, 8 

continuous risk of recurrence scores (CRS) have gained traction as a potential clinical tool that 9 

encapsulates prognostic differences of breast cancer intrinsic molecular subtypes into a singular measure 10 

that can be used to guide treatment decisions. CRS include ROR-S, Proliferation score, ROR-P, and 11 

ROR-PT (1,9). ROR-P, for instance, is determined by combining ROR-S (PAM50 tumor expression-based 12 

subtype score) and Proliferation score (tumor expression of 11 PAM50 genes). ROR-PT further integrates 13 

ROR-P with information on tumor size. Studies show that CRS offer significant prognostic information 14 

beyond clinical variables (e.g., nodal status, tumor grade, age, hormonal therapy), improve adjuvant 15 

treatment decisions, and offer robust risk stratification for distant (5-10 years post diagnosis) recurrence 16 

(10-12).  17 

 18 

In the Carolina Breast Cancer Study (CBCS), Black women (BW) with breast cancer have 19 

disproportionately higher CRS than White Women (9), and similar disparities have been noted in 20 

Oncotype Dx recurrence score (9,13). Systemic injustices, like disparities in healthcare access, explain a 21 

substantial proportion of breast cancer outcome disparities (14-17). Recent studies additionally suggest 22 

that germline genetic variation is associated with breast cancer outcomes, and these associations vary 23 

across ancestry groups (18-21). In The Cancer Genome Atlas (TCGA), BW had substantially higher 24 

polygenic risk scores for the more aggressive ER-negative subtype than WW, suggesting differential 25 

genetic contributions for susceptibility for breast cancer, especially ER-negative breast cancer (21). In a 26 

transcriptome-wide association study (TWAS) of breast cancer mortality, germline-regulated gene 27 

expression (GReX) of four genes was associated with mortality among BW and gene expression for no 28 
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genes was associated among WW (18). However, the role of germline genetic variation in recurrence, 1 

CRS, and CRS disparity remains a critical knowledge gap. Studying genetic associations with breast 2 

cancer outcomes in BW is necessary to ensure advancements in breast cancer genetics are not limited to 3 

or generalizable in only White populations, thus aiding in decreasing health disparities. 4 

 5 

As racially-diverse genetic datasets typically have small samples of BW, gene-level association tests can 6 

increase study power. These approaches include TWAS, which integrates relationships between single 7 

nucleotide polymorphisms (SNP) and gene expression with genome-wide association studies (GWAS) to 8 

prioritize gene-trait associations (22,23). TWAS aids in interpreting genetic associations by mapping 9 

significant GWAS associations to tissue-specific expression of individual genes. In cancer applications, 10 

TWAS has identified susceptibility genes at loci previously undetected through GWAS, highlighting its 11 

improved power and interpretability (24-26). Previous studies show that stratification of the entire TWAS 12 

(model training, imputation, and association testing) is preferable in diverse populations, as models may 13 

perform poorly across ancestry groups and methods for TWAS in admixed populations are unavailable 14 

(18,27).  15 

 16 

Here, using data from the CBCS, which includes a large sample of Black breast cancer patients with 17 

tumor gene expression data, we study race-specific germline genetic associations for CRS using a gene-18 

based association testing approach that borrows from TWAS methodology. CRS included in this study 19 

are ROR-S, Proliferation score, and ROR-P. Using race-specific predictive models for tumor expression 20 

from germline genetics, we identify sets of GReX-prioritized genes (i.e. genes whose GReX is associated 21 

with CRS) across BW and WW. We additionally investigate ROR-P specific GReX-prioritized genes for 22 

associations with PAM50 subtype and subtype-specific tumor gene expression to elucidate germline 23 

contributions to PAM50 subtype, and how these mediate GReX-prioritized gene and CRS associations. 24 

Unlike previous studies that correlated tumor gene expression (as opposed to germline-regulated tumor 25 

gene expression) with subtype or subtype-specific tumor gene expression, TWAS enables directional 26 

interpretation of observed associations (22,23). 27 

 28 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.03.19.21253983doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253983
http://creativecommons.org/licenses/by/4.0/


6 
 

MATERIALS AND METHODS 1 

Data collection 2 

Study population 3 

The CBCS is a population-based study of North Carolina (NC) breast cancer patients, enrolled in three 4 

phases; study details have been previously described (28,29). Patients aged 20 to 74 were identified 5 

using rapid case ascertainment with the NC Central Cancer Registry with randomized recruitment to 6 

oversample self-identified Black and young women (ages 20-49) (9,29). Demographic and clinical data 7 

(age, menopausal status, body mass index, hormone receptor status, tumor stage, study phase, 8 

recurrence) were obtained through questionnaires and medical records. The study was approved by the 9 

Office of Human Research Ethics at the University of North Carolina at Chapel Hill, and informed consent 10 

was obtained from each participant. 11 

 12 

CBCS genotype data 13 

Genotypes were assayed on the OncoArray Consortium’s custom SNP array (Illumina Infinium 14 

OncoArray) (30) and imputed using the 1000 Genomes Project (v3) as a reference panel for two-step 15 

phasing and imputation using SHAPEIT2 and IMPUTEv2 (31-34). The DCEG Cancer Genomics 16 

Research Laboratory conducted genotype calling, quality control, and imputation (30). We excluded 17 

variants with less than 1% minor allele frequency and deviations from Hardy-Weinberg equilibrium at 𝑃 <18 

10−8 (35,36). We intersected genotyping panels for BW and WW samples, resulting in 5,989,134 19 

autosomal variants and 334,391 variants on the X chromosome (37). We only consider the autosomal 20 

variants in this study. 21 

 22 

CBCS gene expression data 23 

Paraffin-embedded tumor blocks were assayed for gene expression of 406 breast cancer-related and 11 24 

housekeeping genes using NanoString nCounter at the Translational Genomics Laboratory at UNC-25 

Chapel Hill (4,9). These 406 breast cancer-related genes include genes part of the PAM50, P53, E2, IGF, 26 

and EGFR signatures, among others (Supplementary Table S1). As described previously, we eliminated 27 

samples with insufficient data quality using NanoStringQCPro (18,38), scaled distributional difference 28 
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between lanes with upper-quartile normalization (39), and removed two dimensions of unwanted technical 1 

and biological variation, estimated from housekeeping genes using RUVSeq (39,40). The current analysis 2 

included 1,199 samples with both genotype and gene expression data (628 BW, 571 WW). 3 

 4 

Statistical analysis 5 

Overview of GReX and TWAS 6 

We adopted TWAS methodology to construct GReX (exposure of interest in this study). GReX for a given 7 

gene represents the portion of tumor expression explained by cis-genetic regulation; GReX was 8 

constructed for the aforementioned set of BC-related genes (Supplementary Table S1). Briefly, TWAS 9 

integrates expression data with GWAS to prioritize gene-level germline-trait associations through a two-10 

step analysis (Figure 1A-BW). First, using germline and transcriptomic data, we trained predictive models 11 

of tumor gene expression using all SNPs within 0.5 Megabase of the gene (18,23). Second, we used 12 

these models to impute the GReX of a gene by multiplying the SNP-gene weights from the predictive 13 

model with the dosages of each SNP. Associations between GReX (for a given gene) and trait (CRS, for 14 

instance) in regression analyses identify gene-trait relationships that are a consequence of germline 15 

variation. If sufficiently heritable genes are assayed in the correct tissue, TWAS-based GReX analyses 16 

increase power to detect germline-trait associations and aids interpretability of results, as associations 17 

are mapped from germline genetics to individual genes (23,41). 18 

 19 

GReX analysis of CRS in CBCS 20 

We adopted techniques from FUSION to train predictive models of tumor expression from cis-germline 21 

genotypes (18,23). Motivated by strong associations between germline genetics and tumor expression in 22 

CBCS (18), for genes with non-zero cis-heritability at nominal 𝑃 <  0.10, we trained predictive models for 23 

covariate-residualized tumor expression with all cis-SNPs within 0.5 Megabase using linear mixed 24 

modeling or elastic net regression (Supplementary Methods, Supplementary Materials) (42,43). Here, 25 

we used the 628 BW samples and 571 WW samples with both genotype and expression data to train 26 

these race-specific expression models. We selected models with five-fold cross-validation adjusted 𝑅2 >27 

0.01 between predicted and observed expression values, resulting in 59 and 45 models for WW and BW, 28 
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respectively. Further details on these models, including heritability and cross-validation performance are 1 

available at Supplementary Table S2. These models also showed sufficiently strong predictive 2 

performance in external validation using TCGA data (18).  3 

 4 

Using only germline genetics as input, we imputed GReX in 1,043 WW and 1,083 BW, respectively, in 5 

CBCS. For samples not present in the training dataset, we multiplied the SNP weights from the predictive 6 

models with the SNP dosages to construct GReX. For samples in both the training and imputation 7 

datasets, GReX was imputed via cross-validation to minimize data leakage. We tested GReX for 8 

associations with ROR-S, Proliferation Score, and ROR-P using multiple linear regression adjusted for 9 

age, estrogen receptor (ER) status, tumor stage, and study phase (1). We corrected for test-statistic bias 10 

and inflation using a Bayesian bias and inflation adjustment method bacon, as TWAS are prone to bias 11 

and inflation of test statistics (44). We then adjusted for multiple testing using the Benjamini-Hochberg 12 

procedure (44,45). As a comparison for the germline effect of GReX-prioritized genes, we additionally 13 

assessed the effect of total (germline-regulated and post-transcriptional) tumor expression of those 14 

GReX-prioritized genes on CRS using similar linear models. We were underpowered to study time-to-15 

recurrence, as recurrence data was collected only in CBCS Phase 3 (635 WW, 742 BW with GReX and 16 

recurrence data; 183 WW, 283 BW with tumor expression and recurrence data). For significant GReX-17 

prioritized genes for CRS (FDR-adjusted P < 0.10), we conducted follow-up permutation tests: we shuffle 18 

the SNP-gene weights in the predictive model 5,000 times to generate a null distribution and compare the 19 

original GReX-CRS associations to this null distribution. This permutation test assessed whether the 20 

GReX association provides more tissue-specific expression context, beyond any strong SNP-CRS 21 

associations at the genetic locus (23). 22 

 23 

PAM50 assay and ROR-S, Proliferation score, and ROR-P calculation 24 

As described previously (1), using partition-around-medoid clustering, we calculated the correlation with 25 

each subtype’s centroid for study individuals based on PAM50 expressions (10 PAM50 genes per 26 

subtype). The largest subtype-centroid correlation defined the individual’s molecular subtype. ROR-S was 27 

determined via a linear combination of the PAM50 subtype-centroid correlations (SCCs); the coefficients 28 
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to the PAM50 SCCs in the linear combination are positive for Luminal B, HER2-enriched, and Basal-like 1 

and negative for Luminal A (1). Proliferation score was computed using log-scale expression of 11 2 

PAM50 genes, while ROR-P was computed by combining ROR-S and Proliferation score. 3 

 4 

Assignment of PAM50 gene to subtype was based on PAM50 gene centroid values for each subtype; a 5 

PAM50 gene is assigned to the subtype with the largest positive centroid value. Subtype assignment 6 

through this “greedy algorithm” are specific to this study and represent a simplified reality (e.g., ESR1 7 

classified as part of Luminal A subtype only even though ESR1 expression correlates with both Luminal A 8 

and to a slightly lesser degree Luminal B subtype). Moreover, subtype assignment for this portion of 9 

analyses was conducted only for visual comparison of patterns of associations between GReX-prioritized 10 

genes and PAM50 tumor gene expressions (i.e., subtype assignment in this portion of analyses had no 11 

bearing on continuous ROR score calculations or subtype-centroid correlations). 12 

 13 

Bayesian multivariate regressions and multivariate adaptive shrinkage  14 

As previously noted (1), CRS are functions of PAM50 SCCs and gene expression profiles. Thus, we 15 

followed up on CRS-associated GReX-prioritized genes by studying their associations with PAM50 SCCs 16 

and gene expression. We assessed GReX-prioritized genes (for ROR-P) in relation to SCCs and PAM50 17 

tumor gene expression (Figure 1C). Importantly, consistent with the original formulation of ROR-S, we did 18 

not consider normal-like subtype and normal-like subtype specific genes; subtype-specific genes were 19 

determined using a greedy assignment algorithm, described in the previous section. This classification 20 

scheme offers analytic simplicity but is an oversimplification for some PAM50 genes. We found that none 21 

of our GReX-prioritized genes were within 1 Megabase of PAM50 genes and that most GReX-prioritized 22 

genes were not on the same chromosome as PAM50 genes (Supplementary Table S3).  23 

 24 

Existing gene-based mapping techniques for trans-expression quantitative trait loci (eQTL) (SNP and 25 

gene are separated by more than 1 Megabase) mapping include trans-PrediXcan and GBAT (46,47). We 26 

employed Bayesian multivariate linear regression (BtQTL) to account for correlation in multivariate 27 

outcomes (SCCs and PAM50 gene expression) in association testing. BtQTL improves power to detect 28 
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significant trans-associations, especially when considering multiple genes with highly correlated (>0.5) 1 

expression (Supplementary Figures S1-S2). Lastly, we conducted adaptive shrinkage on BtQTL 2 

estimates using mashr, an empirical Bayes method to estimate patterns of similarity and improve 3 

accuracy in associations tests across multiple outcomes (48). mashr outputs revised posterior means, 4 

standard deviations, and corresponding measures of significance (local false sign rates, or LFSR).    5 

 6 

Associations of genetic ancestry and race with tumor expression and GReX of GReX-prioritized genes 7 

Prior studies using CBCS have reported concordance between self-reported race and genetic ancestry 8 

(first principal component of combined genotype matrix) (49). In an effort to further contextualize CRS 9 

associations across race and to disentangle race from genetic ancestry in our study population 10 

(specifically, whether race, which captures both genetic ancestry and socioeconomic context, is a proxy 11 

for genetic ancestry in our study population), we investigated: 1) association between genetic ancestry 12 

and tumor expression of GReX-prioritized genes; 2) association between genetic ancestry and GReX of 13 

GReX-prioritized genes; 3) association between race and tumor expression of GReX-prioritized genes; 4) 14 

association between race and GReX of GReX-prioritized genes. Genetic ancestry was computed by 15 

aggregating across local ancestry, as determined through the RFMix pipeline (50).  16 

 17 

RESULTS 18 

Race-specific associations between GReX and CRS 19 

We performed race-specific GReX analysis for CRS to investigate the role of germline genetic variation in 20 

CRS and CRS racial disparity. We identified 8 genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, PCSK6, 21 

NDC80, MLPH), 8 genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, NDC80, MLPH, EXO1), and 10 22 

genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, PCSK6, GNG11, NDC80, MLPH, EXO1) whose GReX 23 

was associated with ROR-S, proliferation, and ROR-P, respectively, in WW, and 1 gene (MMP1) whose 24 

GReX was associated with proliferation and ROR-P in BW at FDR-adjusted P < 0.10 (Figure 2A, 2B). No 25 

associations were detected between GReX and ROR-S among BW. We refer to genes with statistically 26 

significant GReX analysis associations (FDR-adjusted P < 0.10) as GReX-prioritized genes. Among these 27 

identified genes, only genes that are not part of the PAM50 panel (i.e., excluding NDC80, MLPH, EXO1) 28 
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were considered in downstream permutation and GReX-prioritized gene follow up analyses (Figure 1C), 1 

as we wished to focus investigation on relationship between non-PAM50 GReX-prioritized genes and 2 

PAM50 (tumor) genes. Supplementary Figure S3 shows results from a sensitivity analysis comparing 3 

the effect sizes for the GReX-CRS associations within samples used in training, not used in training, and 4 

the overall associations using all training and non-training samples. In general, we see concordance in 5 

the direction of association across these three splits of data, though some of the associations detected 6 

within only training or non-training samples intersect the null. 7 

 8 

Among WW, increased GReX of MCM10, FAM64A, CCNB2, and MMP1 were associated with higher 9 

CRS while increased GReX of VAV3, PCSK6, and GNG11 were associated with lower CRS (Figure 2A).  10 

Among BW, increased GReX of MMP1 was associated with lower CRS (Proliferation, ROR-P, but not 11 

ROR-S) (Figure 2A). Supplementary Figure S4 shows the nominal differences in eQTL architecture 12 

across BW and WW for these genes. In particular, for MMP1, we found differences in the standardized 13 

effects across WW and BW: a sizable proportion of shared eQTLs had discordant effects across WW and 14 

BW (Supplementary Figure S5). The LD structure for eQTLs differed across WW and BW, with eQTL 15 

effect size peaks (-log10 p-values: 4.73 (WW); 3.17 (BW)) at differing genomic locations (Supplementary 16 

Figure S5). 17 

 18 

Briefly, to contextualize the functions of these GReX-prioritized genes, MCM10 is involved in DNA 19 

replication, FAM64A and CCNB2 are implicated in progression and regulation of the cell cycle, and 20 

MMP1, like the broader MMP family, is involved in the breakdown of the extracellular matrix (51-55). 21 

GNG11 and VAV3 are involved in signal transduction: GNG11 as a component of a transmembrane G-22 

protein and VAV3 as a guanine nucleotide exchange factor for GTPases (56,57).  23 

 24 

Associations between tumor expression of GReX-prioritized genes and CRS were concordant, in terms of 25 

direction of association to germline-only effects among WW; findings were discordant among BW where 26 

higher tumor expression of MMP1 was associated with higher CRS (Table 1, Supplementary Table S4). 27 

We found differences in the pattern of associations between genetic ancestry and race with tumor 28 
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expression and GReX of GReX-prioritized genes (Supplementary Figure S6). For instance, while higher 1 

African ancestry was associated with higher tumor expression of MCM10, higher African ancestry was 2 

instead associated with lower GReX of MCM10. 3 

 4 

Permutation testing provides context to GReX-prioritized gene and CRS associations 5 

To assess the statistical significance for the observed variance in CRS explained by significant GReX-6 

prioritized genes, we conducted two permutation analyses. First, we assessed the per-gene significance 7 

of the GReX-CRS associations, conditional on the SNP-trait effects at the locus, by generating a null 8 

distribution for the GReX-CRS association via shuffling the SNP-gene weights from the predictive models 9 

5,000 times. We generated a permutation P-value for the GReX-CRS association by comparing to this 10 

null distribution. Here, we found that all GReX-CRS associations showed significance in permutation 11 

testing at FDR-adjusted P < 0.05 (Table 1). These per-GReX-prioritized gene permutation tests show that 12 

GReX (of GReX-prioritized genes) adds more context beyond the genetic architecture at the locus and 13 

provide evidence that germline genetics to GReX-prioritized gene expression relationship mediates, to 14 

some level, the complex genetic effects on CRS. 15 

 16 

Next, we quantified the percent variance explained of CRS by the GReX-prioritized genes, in aggregate, 17 

by calculating the model adjusted-R2 for a regression of covariate-residualized CRS on GReX all GReX-18 

prioritized genes. To context these model adjusted-R2, we conducted two permutation tests. First, we 19 

permuted the sample labels for covariate-residualized CRS 10,000 times and computed the model 20 

adjusted R2 at each iteration to generate a null distribution for adjusted R2 between GReX-prioritized 21 

genes and CRS. Across WW and BW, the observed R2 of GReX-prioritized genes against CRS (7-10% 22 

among WW and 1% among BW) were statistically significant against the respective null distributions (P-23 

values and distributions in Figure 2B).To further contextualize the proportion of variance in CRS 24 

explained by GReX-prioritized genes, we computed race-specific heritability estimates using GCTA (58). 25 

Given the limited sample size for which CRS data were available, we computed the heritability based on 26 

typed SNPs. Moreover, heritability estimates for CRS were stratified by race. Among WW, heritability 27 

ranged from 0.13 (SE: 0.23) for ROR-S to 0.21 (SE: 0.23) for Proliferation score. Among BW, heritability 28 
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was much lower and ranged from 0.01 (SE: 0.12) for Proliferation score to 0.02 (SE: 0.14) for ROR-P. 1 

However, we note that heritability estimates from GCTA were imprecise due to limited sample size. 2 

Permutation tests for analyses of tumor expression of GReX-prioritized genes and CRS are available in 3 

Supplementary Figure S7.  4 

 5 

Second, we wanted to assess if the GReX of these sets of GReX-prioritized genes (7 in WW and 1 in 6 

BW) explained more of the variance in CRS than the GReX of a randomly selected set of genes of the 7 

same size. Previous studies have shown that the tumor expression of a set randomly selected genes is 8 

likely to be predictive of breast cancer outcomes; we wished to investigate this phenomenon on the GReX 9 

level (59,60). Over 10,000 repetitions, we randomly selected 7 and 1 genes in WW and BW subjects, 10 

respectively, ran a multivariable regression, and calculated the model adjusted-R2 to generate another 11 

null distribution. Here again, we found that the true model R2 outperformed the null distribution, all 12 

showing permutation P < 0.05 in these settings (Figure 2B). These permutation tests show that our 13 

GReX-prioritized genes, taken together, appreciably explain differences in CRS.  14 

 15 

Associations between GReX-prioritized genes and PAM50 subtype correlations and gene 16 

expression 17 

As CRS are constructed from PAM50 subtype-specific correlations and gene expression profiles, we 18 

further studied associations between GReX of GReX-prioritized genes and PAM50 SCCs and gene 19 

expression to understand how PAM50 subtype and gene expression mediate GReX-prioritized gene and 20 

CRS associations. Among WW, a one standard deviation increase in FAM64A and CCNB2 GReX 21 

resulted in significantly increased Basal-like SCC while an identical increase in VAV3, PCSK6, and 22 

GNG11 GReX resulted in significantly increased Luminal A SCC. The magnitude of increase in 23 

correlation for respective subtypes per GReX-prioritized gene was approximately 0.05, and most 24 

estimates had credible intervals that did not intersect the null. Among WW, associations between HER2-25 

like SCC and GReX-prioritized genes followed similar patterns to associations for the Basal-like subtype, 26 

although associations for HER2 were more precise (Figure 3A). We found predominantly null 27 

associations between GReX-prioritized genes and Luminal B SCC among WW  (Figure 3A). Unlike in 28 
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WW, for BW, an increase in MMP1 GReX was not associated with Luminal A, HER2 or Basal-like SCCs. 1 

Instead, among BW, MMP1 GReX was significantly negatively associated with Luminal B SCC. Estimates 2 

from univariate regressions are provided in Supplementary Tables S5-S8.  3 

 4 

For both WW and BW, the pattern of associations between GReX-prioritized genes and PAM50 tumor 5 

expression were predominantly congruent with observed associations between GReX-prioritized genes 6 

and PAM50 SCCs as well as GReX-prioritized genes and CRS (Figure 3, Supplementary Tables S9-7 

S12). In WW, a one standard deviation increase in CCNB2 GReX was associated with significantly 8 

increased ORC6L, PTTG1, and KIF2C (Basal-like genes) expression and UBE2T and MYBL2 (LumB 9 

genes) expression. By contrast, a one standard deviation increase in PCSK6 GReX significantly 10 

increased BAG1, FOXA1, MAPT, and NAT1 (LumA genes) expression (Figure 3B). While increased 11 

MMP1 GReX was associated with significantly increased expression of ORC6L (basal-like gene), MYBL2, 12 

and BIRC5 (LumB genes) among WW, this was not the case among BW. Instead, increased MMP1 13 

GReX among BW was significantly associated with increased expression of SLC39A6 (LumA gene) and 14 

decreased expression of ACTR3B, PTTG1, and EXO1 (Basal-like genes) (Figure 3B). Associations 15 

between GReX-prioritized genes and PAM50 genes provide a granular, gene interaction level view into 16 

the mediation of the GReX-prioritized gene and CRS association, suggesting that trans-regulation of 17 

subtype-specific PAM50 genes by GReX-prioritized genes in breast tumors could be a possible 18 

contributor to subtypes and, subsequently, CRS and recurrence.  19 

 20 

DISCUSSION 21 

Through a GReX analysis, we identified 7 and 1 genes among WW and BW, respectively, for which 22 

genetically-regulated breast tumor expression was associated with CRS and underlying PAM50 gene 23 

expression and subtype. Among WW, these 7 GReX-prioritized genes explained between 7-10% of the 24 

variation in CRS, a large and statistically significant proportion of variance. Among BW, the singular 25 

GReX prioritized gene explained a statistically significant ~1% of the variation in Proliferation score and 26 

ROR-P. The magnitudes of these estimates were concordant with race-specific heritability estimates for 27 

CRS (13-21% for WW; 1-2% or BW) in this study population and suggest higher germline genetic 28 
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contribution to CRS among WW compared to BW and as substantial contribution of GReX-prioritized 1 

genes to race-specific CRS heritability. There are two key novel aspects to this study. First, existing 2 

literature on associations between tumor gene expression and recurrence (for which CRS are a proxy) 3 

cannot distinguish between genetic and non-genetic components of effect (61), whereas, here, we 4 

estimate the contribution of the genetic component. Second, GReX analysis allows directional 5 

interpretation of observed associations that are not possible when correlating tumor gene expression and 6 

recurrence. For instance, prior studies report CCNB2 is upregulated in triple-negative breast cancers 7 

(TNBC) but were unable to determine whether increased CCNB2 expression contributes to development 8 

or maintenance of TNBC or is part of the molecular response to cancer progression (62,63). By contrast, 9 

GReX is a function of only genetic variation. As such, we can confidently rule out that differences 10 

in CCNB2 GReX are not direct consequences of subtype (and by extension recurrence); however, our 11 

observed associations of CCNB2 GReX and subtype suggest a potential directional relationship for 12 

further study. Thus, GReX analysis allows a directional, potentially causal interpretation, subject to 13 

effective control for population stratification, minimal horizontal pleiotropy, and assumptions of 14 

independent assortment of alleles (22,23).  15 

 16 

Our GReX-prioritized gene and subtype associations among WW are consistent with literature on the 17 

association between tumor (i.e., genetic and non-genetic) expression of our GReX-prioritized genes and 18 

subtype. Prior investigations in cohorts of primarily European ancestry have reported that MCM10, 19 

FAM64A, and CCNB2 expression is higher in ER-negative compared to ER-positive tumors (62-64). In 20 

studies that compared triple-negative and non-triple negative subtypes, higher MCM10, FAM64A, and 21 

CCNB2 expression was detected in triple-negative breast cancer (62,63). Histologically, HER2-enriched 22 

and Basal-like subtypes are typically ER-negative, and triple-negatives are similar to Basal-like subtypes 23 

(9,65). Moreover, our findings among WW that GReX of PCSK6 and VAV3 associated with LumA 24 

subtype and LumA-specific gene expression are also consistent with previous results of PCSK6 and 25 

VAV3 upregulation in ER-positive subtypes (66,67). Importantly, our associations suggest directional 26 

mechanisms: from germline variation, to GReX of GReX-prioritized gene, and ultimately, to subtype.  27 

 28 
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Presently, little is known about germline genetic regulation of PAM50 tumor expression. In CBCS, we 1 

found that tumor expression of most PAM50 genes is not cis-heritable (18). Instead, observed GReX-2 

prioritized gene and PAM50 gene expression associations may implicate trans-gene regulation of the 3 

PAM50 signature. For instance, we found that VAV3 GReX is significantly positively associated with 4 

tumor expression of BAG1, FOXA1, MAPT, and NAT1 and nominally with increased tumor ESR1 5 

expression, all of which correspond well with LumA signature. Such trans-genic regulation signals, 6 

especially in the case of ESR1, pose significant clinical and therapeutic implication if confirmed under 7 

experimental conditions. For example, VAV3 has been shown to activate RAC1, which upregulates ESR1 8 

(68,69), but such mechanistic evidence is sparse for other putative GReX-prioritized gene to PAM50 9 

associations. More generally, two of the GReX-prioritized genes among WW have been found to activate 10 

transcription factors; FAM64A enhances oncogenic nuclear factor-kappa B (NF-κB) signaling while both 11 

FAM64A and PCSK6 activate oncogenic STAT3 signaling (70-72). 12 

 13 

Interestingly, we found MMP1 GReX has divergent associations with CRS across race. There are a few 14 

potential explanations. While heritability and proportion of variance in MMP1 expression were similar 15 

across WW and BW predictive models, we found that the range of MMP1 GReX was manifold among 16 

WW than BW. Potential differences in influence of germline genetics on tumor expression and CRS by 17 

race could be an artifact of divergent somatic or epigenetic factors that CBCS has not assayed (73-76). 18 

Second, while studies generally report that MMP1 tumor expression is higher in triple-negative and Basal-19 

like breast cancer, one study reported that MMP1 expression in tumor cells does not significantly differ by 20 

subtype (77-79). Instead, Bostrom et al. reported that MMP1 expression differs in stromal cells of patients 21 

with different subtypes (79). There is evidence to suggest that tumor composition, including stromal and 22 

immune components, may influence breast cancer progression in a subtype-specific manner. Future 23 

studies should consider expression predictive models that integrate greater detail on tumor cell-type 24 

composition to disentangle potential race-specific tumor composition effects on race-specific GReX 25 

associations (80,81).  26 

 27 
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In this study, race (derived from self-report) captures genetic ancestry and additionally, socioeconomic 1 

context. Prior investigations using CBCS data have reported concordance between self-reported race and 2 

the first principal component of the combined (i.e. WW and BW) genotype matrix. In our analysis of local-3 

ancestry derived global ancestry estimates and self-reported race, we found a similar, high level of 4 

concordance. In the absence of available methods that allow stratification or adjustments based on 5 

genetic ancestry across the GReX analytic framework, the use of race as a stratifying variable is intended 6 

to serve as a proxy for stratification by genetic ancestry. We acknowledge the limitation that race may not 7 

be a viable proxy across other populations outside CBCS, and that it is challenging to parse effects seen 8 

across race into effects of genetic ancestry and effects of socioeconomic context. 9 

 10 

We found marked differences in the pattern of associations between genetic ancestry and race with tumor 11 

expression and GReX of GReX-prioritized genes, highlighting potential differences in contributions of 12 

germline and non-germline components to tumor expression across European and African ancestry 13 

groups. One particular example is MCM10. In the literature, higher MCM10 tumor expression is correlated 14 

with Basal-like subtype, which is more prevalent among BW. The spectrum of our observations suggest 15 

that higher MCM10 tumor expression is associated with Basal-like subtype across both BW and WW, but 16 

that the germline-regulated component of this expression may be stronger among WW. Similar patterns 17 

were seen for FAM64A and CCNB2. Analyses by race instead of genetic ancestry yielded associations 18 

similar in magnitude and direction. Racial differences in non-germline components of tumor expression, 19 

including tumor methylation and somatic alternations, may partly explain race-specific differences in 20 

GReX-prioritized genes (18,73-76,82,83). Other factors that warrant further investigation include potential 21 

greater contribution of trans-regulation in tumor gene expression in BW (methods for capturing trans-22 

regulation in gene expression predictive models are not as well-developed as those for cis-regulation) 23 

(18). These factors should be investigated further as transcriptomic and epigenomic datasets for racially-24 

diverse cohorts of breast cancer patients become available. 25 

 26 

There are a few limitations to this study. First, as CBCS used a Nanostring nCounter probeset for mRNA 27 

expression quantification of genes relevant for breast cancer, we could not analyze the whole human 28 
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transcriptome. While this probeset may exclude several cis-heritable genes, CBCS contains one of the 1 

largest breast tumor transcriptomic datasets for Black women, allowing us to build well-powered race-2 

specific predictive models, a pivotal step in ancestry-specific GReX analysis. Second, CBCS lacked data 3 

on somatic amplifications and deletions, inclusion of which could enhance the performance of predictive 4 

models of tumor expression (84). Third, as recurrence data was collected in a small subset with few 5 

recurrence events, we were unable to make a direct comparison between CRS and recurrence results, 6 

which may affect clinical generalizability. However, to our knowledge, CBCS is the largest resource of 7 

PAM50-based CRS data. 8 

 9 

Our analysis provides evidence of race-specific putative germline associations to CRS, mediated through 10 

associations between genetically-regulated tumor expression of GReX-prioritized genes and PAM50 11 

expressions and subtype. This work underscores the need for larger and more diverse cohorts for genetic 12 

epidemiology studies of breast cancer. Future studies should consider subtype-specific genetics (i.e., 13 

stratification by subtype in predictive model training and association analyses) to elucidate heritable gene 14 

expression effects on breast cancer outcomes both across and within subtype, which may yield further 15 

hypotheses for more fine-tuned clinical intervention.  16 
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 6 

FIGURE LEGENDS 7 

Figure 1. Schematic of study analytic approach. A) In CBCS, constructed race-stratified predictive 8 

models of tumor gene expression from cis-SNPs. B) In CBCS, imputed GReX at individual-level using 9 

genotypes and tested for associations between GReX and CRS in race-stratified linear models; only 10 

GReX of genes with significant cis-h2 and high cross validation performance (R2 > 0.01 between observed 11 

and predicted expression) considered for race-stratified association analyses. C) Follow-up analyses on 12 

GReX-prioritized genes (i.e., genes whose GReX were significantly associated with CRS at FDR <0.10). 13 

In race-stratified models, PAM50 SCCs and PAM50 tumor expressions were regressed against GReX-14 

prioritized genes under a Bayesian multivariate regression and multivariate adaptive shrinkage approach.  15 

 16 

Figure 2. Permutation tests and associations between GReX-prioritized genes and CRS for WW and BW. 17 

A) Effect estimates correspond to change in ROR-S, Proliferation score, and ROR-P per one standard 18 

deviation increase in GReX-prioritized gene expression (i.e., one standard deviation increase in GReX of 19 

gene). Triangle denotes WW and circle denotes BW. B) Boxplots correspond to null distributions (shuffled 20 

GReX-sample labels on left, random set of genes on right) of covariates residualized-R2 for regressions 21 

of CRS on GReX-prioritized genes. Null distributions are provided for 10,000 permutations of the GReX-22 

sample labels and 10,000 random sets of genes. Dashed horizontal lines correspond to observed 23 

covariates residualized-R2. 24 

 25 

Figure 3. Associations between GReX-prioritized genes and PAM50 SCCs and gene expression. A) 26 

Among BW (top) and WW (bottom), associations between GReX-prioritized genes and PAM50 SCCs 27 

using Bayesian multivariate regression and multivariate adaptive shrinkage. Effect estimates show 28 
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change in SCCs (range -1 to 1) for one standard deviation increase in GReX-prioritized gene GReX. 1 

Circle, triangle, and square denote corresponding LFSR intervals for effect sizes. B) Heatmap of change 2 

in log2 normalized PAM50 tumor expression for one standard deviation increase in GReX-Prioritized gene 3 

GReX. *, **, *** denote FDR intervals for effect sizes.  4 

  5 
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FIGURES 1 

 2 

Figure 1. Schematic of study analytic approach. A) In CBCS, constructed race-stratified predictive models of 
tumor gene expression from cis-SNPs. B) In CBCS, imputed GReX at individual-level using genotypes and tested 
for associations between GReX and CRS in race-stratified linear models; only GReX of genes with significant cis-
h2 and high cross validation performance (R2 > 0.01 between observed and predicted expression) considered for 
race-stratified association analyses. C) Follow-up analyses on GReX-prioritized genes (i.e., genes whose GReX 
were significantly associated with CRS at FDR <0.10). In race-stratified models, PAM50 SCCs and PAM50 tumor 
expressions were regressed against GReX-prioritized genes under a Bayesian multivariate regression and 
multivariate adaptive shrinkage approach.  
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  1 

Figure 2. Permutation tests and associations between GReX-prioritized genes and CRS for WW and BW. A) 
Effect estimates correspond to change in ROR-S, Proliferation score, and ROR-P per one standard deviation 
increase in GReX-prioritized gene expression (i.e., one standard deviation increase in GReX of gene). Triangle 
denotes WW and circle denotes BW. B) Boxplots correspond to null distributions (shuffled GReX-sample labels 
on left, random set of genes on right) of covariates residualized-R2 for regressions of CRS on GReX-prioritized 
genes. Null distributions are provided for 10,000 permutations of the GReX-sample labels and 10,000 random 
sets of genes. Dashed horizontal lines correspond to observed covariates residualized-R2. 
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  1 

Figure 3. Associations between GReX-prioritized genes and PAM50 SCCs and gene expression. A) 
Among BW (top) and WW (bottom), associations between GReX-prioritized genes and PAM50 SCCs 
using Bayesian multivariate regression and multivariate adaptive shrinkage. Effect estimates show 
change in SCCs (range -1 to 1) for one standard deviation increase in GReX-prioritized gene GReX. 
Circle, triangle, and square denote corresponding LFSR intervals for effect sizes. B) Heatmap of 
change in log2 normalized PAM50 tumor expression for one standard deviation increase in GReX-
prioritized gene GReX. *, **, *** denote FDR intervals for effect sizes.  
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TABLES 1 

Table 1: Race-specific associations between germline-regulated tumor gene expression (GReX) of GReX-2 

prioritized genes and CRS. Effect estimates correspond to change in CRS per 1 standard deviation increase in 3 

GReX, adjusted for age, estrogen receptor status, stage, and CBCS study phase. 95% confidence intervals of 4 

effect sizes are provided. All GReX-prioritized gene and CRS pairs shown here showed overall association FDR-5 

adjusted P < 0.10, and FDR-adjusted permutation P < 0.05 (across 5,000 permutations of the SNP-gene 6 

weights). We also provide signatures that include these genes as reference (Supplementary Table S1).  7 

   8 

  WW (N = 1,043) BW (N = 1,083) 

Gene Signature ROR-S Proliferation ROR-P ROR-S Proliferation ROR-P 

MCM10 IGF 
3.03 

(1.73, 4.33) 
0.06 

(0.03, 0.08) 
3.11 

(1.72, 4.50) 
- - - 

FAM64A IGF 
2.57 

(1.28, 3.86) 
0.05 

(0.02, 0.07) 
2.64 

(1.26, 4.02) 
- - - 

CCNB2 Estradiol 
2.69 

(1.40, 3.98) 
0.05 

(0.02, 0.08) 
2.71 

(1.33, 4.09) 
- - - 

MMP1 Estradiol 
2.73 

(1.45, 4.01) 
0.05 

(0.02 , 0.07) 
2.58 

(1.21 , 3.96) 
-1.84 

(-3.12, -0.56) 
-0.04 

(-0.07, -0.02) 
-2.21 

(-3.56, -0.87) 

VAV3 Other 
-2.22 

(-3.51, -0.93) 
-0.04 

(-0.07, -0.02) 
-2.40 

(-3.79, -1.03) 
- - - 

PCSK6 IGF 
-2.16 

(-3.45, -0.88) 
-0.03 

(-0.06, 0.00) 
-1.88 

(-3.25, -0.50) 
- - - 

GNG11 
Claudin-low 

-1.27 
(-2.56, 0.02) 

-0.02 
(-0.05, 0.00) 

-1.42 
(-2.80, -0.05) 

- - - 
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