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ABSTRACT 21 

Background: Continuous risk of recurrence scores (CRS) based on PAM50 gene expression are vital 22 

prognostic tools for breast cancer (BC). Studies have shown that Black women (BW) have higher CRS 23 

than White women (WW). Although systemic injustices contribute substantially to BC disparities, evidence 24 

for biological and germline contributions is emerging. We investigated germline genetic associations with 25 

CRS and CRS disparity through a Transcriptome-Wide Association Study (TWAS).  26 

Methods: In the Carolina Breast Cancer Study, using race-specific predictive models of tumor expression 27 

from germline genetics, we performed race-stratified (N=1,043 WW, 1083 BW) linear regressions of three 28 

CRS (ROR-S: PAM50 subtype score; Proliferation Score; ROR-P: ROR-S plus Proliferation Score) on 29 

imputed Genetically-Regulated tumor eXpression (GReX). Using Bayesian multivariate regression and 30 

adaptive shrinkage, we tested TWAS-significant genes for associations with PAM50 tumor expression 31 

and subtype to elucidate patterns of germline regulation underlying TWAS-gene and CRS associations.  32 

Results: At FDR-adjusted P < 0.10, we detected 7 TWAS-genes among WW and 1 TWAS-gene among 33 

BW. Among WW, CRS showed positive associations with MCM10, FAM64A, CCNB2, and MMP1 GReX 34 

and negative associations with VAV3, PCSK6, and GNG11 GReX. Among BW, higher MMP1 GReX  35 

predicted lower Proliferation score and ROR-P. TWAS-gene and PAM50 tumor expression associations 36 

highlighted potential mechanisms for TWAS-gene to CRS associations.  37 

Conclusions: Among BC patients, we find differential germline associations with three CRS by race, 38 

underscoring the need for larger, more diverse datasets in molecular studies of BC. Our findings also 39 

suggest possible germline trans-regulation of PAM50 tumor expression, with potential implications for 40 

interpreting CRS in clinical settings. 41 

 42 

Keywords: breast cancer recurrence, risk of recurrence, transcriptome-wide association study, molecular 43 

subtype, trans-eQTL mapping  44 
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ABBREVIATIONS 45 

BC Breast Cancer 46 

BW Black Women 47 

CBCS Carolina Breast Cancer Study 48 

CRS Continuous Risk of recurrence Score 49 

eQTL expression Quantitative Trait Locus 50 

ER Estrogen Receptor 51 

GReX Genetically-Regulated tumor eXpression 52 

GWAS Genome-Wide Association Study 53 

HR Hormone Receptor 54 

LumA Luminal A 55 

LumB Luminal B 56 

ROR Risk of Recurrence 57 

SCC Subtype-Centroid Correlations 58 

SNP Single Nucleotide Polymorphism 59 

TCGA The Cancer Genome Atlas 60 

TWAS Transcriptome-Wide Association Study 61 

WW White Women  62 
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INTRODUCTION (Manuscript Word Count = 3000) 63 

Tumor expression-based molecular profiling has improved clinical classification of breast cancer 64 

(BC) [1-3]. One tool is the PAM50 assay which integrates tumor expression of 50 genes (from 65 

approximately 1,900 “intrinsic” genes identified through microarray) to determine intrinsic molecular 66 

subtypes: Luminal A (LumA), Luminal B (LumB), Human epidermal growth factor 2-enriched (HER2-67 

enriched), Basal-like, Normal-like [1, 4]. Continuous risk of recurrence scores (CRS) generated from 68 

PAM50 tumor expression have prognostic value in clinical settings. [5-7]. For node negative, hormone 69 

receptor (HR) positive/HER2 negative BC, ROR-PT (a CRS determined by PAM50-subtype score, 70 

PAM50-based Proliferation score, and tumor size) offers overall and late distant recurrence information; 71 

other multigene signatures (OncotypeDx and EPclin) provide similar prognostic information for clinical 72 

decision-making [7, 8].   73 

In the Carolina Breast Cancer Study (CBCS), Black women (BW) with breast cancer have 74 

disproportionately higher CRS than White Women [9], with similar disparities in Oncotype Dx recurrence 75 

score [9, 10]. Systemic injustices, like disparities in healthcare access, explain a substantial proportion of 76 

breast cancer outcome disparities [11-14], but recent studies suggest germline genetic variation may also 77 

play a role in outcome disparity. In The Cancer Genome Atlas (TCGA), BW had substantially higher 78 

polygenic risk scores for the more aggressive ER-negative subtype than WW, suggesting differential 79 

genetic contributions towards BC and especially ER-negative BC incidence [15]. In a transcriptome-wide 80 

association study (TWAS) of BC mortality, germline-regulated gene expression of four genes was 81 

associated with mortality among BW andnone associated among WW [16]. However, the role of germline 82 

genetic variation in relation to CRS and CRS disparity remains an important knowledge gap.  83 

As racially-diverse genetic datasets typically have small samples of BW, gene-level association 84 

tests can be used to increase study power. These approaches include TWAS, which integrates 85 

relationships between single nucleotide polymorphisms (SNP) and gene expression with genome-wide 86 

association studies (GWAS) to prioritize gene-trait associations [17, 18]. TWAS has identified cancer 87 

susceptibility genes at loci previously undetected through GWAS, highlighting its improved power and 88 

interpretability [19-21]. Previous studies show that stratification of the entire TWAS (model training, 89 
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imputation, and association testing) is preferable in diverse populations, as models may perform poorly 90 

across ancestry groups and methods for TWAS in admixed populations are unavailable [16, 22].  91 

Here, using data from the CBCS, which includes a large sample of Black BC patients with tumor 92 

gene expression data, we study race-specific germline genetic associations for CRS using TWAS. CRS 93 

included in this study are ROR-S (PAM50 subtype score), PAM50-based Proliferation score, and ROR-P 94 

(ROR-S + Proliferation score). Using race-specific predictive models for tumor expression from germline 95 

genetics, we identify sets of TWAS-genes associated with these CRS across BW and WW. We 96 

additionally investigate TWAS-genes for ROR-P for associations with PAM50 subtype and subtype-97 

specific tumor gene expressions to elucidate germline contributions to PAM50 subtype, and how these 98 

mediate TWAS-gene and CRS associations. Unlike previous studies that correlated tumor gene 99 

expression (as opposed to germline-regulated tumor gene expression) with subtype or subtype-specific 100 

tumor gene expressions, TWAS enables directional interpretation of observed associations by ruling out 101 

reverse causality [17, 18]. 102 

 103 

METHODS 104 

Data collection 105 

Study population 106 

The CBCS is a population-based study of North Carolina BC patients with three phases; study 107 

details have been previously described [23, 24]. Patients aged 20 to 74 were identified using rapid case 108 

ascertainment with the NC Central Cancer Registry with randomized recruitment to oversample self-109 

identified Black and young women (ages 20-49) [9, 24]. Demographic and clinical data (age, menopausal 110 

status, body mass index, hormone receptor status, tumor stage, study phase, recurrence) were obtained 111 

through questionnaires and medical records. Recurrence data were available for CBCS Phase 3. The 112 

study was approved by the Office of Human Research Ethics at the University of North Carolina at 113 

Chapel Hill, and informed consent was obtained from each participant. 114 

 115 

CBCS genotype data 116 
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Genotypes were assayed on the OncoArray Consortium’s custom SNP array (Illumina Infinium 117 

OncoArray) [25] and  imputed using the 1000 Genomes Project (v3) as a reference panel for two-step 118 

phasing and imputation using SHAPEIT2 and IMPUTEv2 [26-29]. The DCEG Cancer Genomics 119 

Research Laboratory conducted genotype calling, quality control, and imputation [25]. We excluded 120 

variants with less than 1% minor allele frequency and deviations from Hardy-Weinberg equilibrium at 121 

� � 10
�� [30, 31]. We intersected genotyping panels for BW and WW samples, resulting in 5,989,134 122 

autosomal variants and 334,391 variants on the X chromosome [32]. 123 

 124 

CBCS gene expression data 125 

Paraffin-embedded tumor blocks were assayed for gene expression of 406 BC-related and 11 126 

housekeeping genes using NanoString nCounter at the Translational Genomics Laboratory at UNC-127 

Chapel Hill [4, 9]. As described previously, we eliminated samples with insufficient data quality using 128 

NanoStringQCPro [16, 33], scaled distributional difference between lanes with upper-quartile 129 

normalization [34], and removed two dimensions of unwanted technical and biological variation, estimated 130 

from housekeeping genes using RUVSeq [34, 35]. The current analysis included 1,199 samples with both 131 

genotype and gene expression data (628 BW, 571 WW). 132 

 133 

Statistical analysis 134 

Overview of TWAS 135 

TWAS integrates expression data with GWAS to prioritize gene-trait associations through a two-136 

step analysis (Figure 1A-B). First, using genetic and transcriptomic data, we trained predictive models of 137 

tumor gene expression using all SNPs within 0.5 Megabase of the gene [16, 18]. Second, we used these 138 

models to impute expression into an external GWAS panel to generate the Genetically-Regulated tumor 139 

eXpression (GReX) of a gene. This quantity represents the portion of tumor expression explained by cis-140 

genetic regulation and is used to test for gene-trait associations with an outcome. By focusing on 141 

genetically regulated expression, TWAS avoids instances of expression-trait association that are not 142 

consequences of genetic variation but are driven by the effect of traits on expression. If sufficiently 143 
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heritable genes are assayed in the correct tissue, TWAS increases power to detect gene-trait 144 

associations and aids interpretability of results, as associations are mapped to individual genes [18, 36]. 145 

 146 

CRS TWAS in CBCS 147 

We adopted techniques from FUSION to train predictive models of tumor expression from cis-148 

germline genotypes, as discussed previously [16, 18]. Motivated by strong associations between germline 149 

genetics and tumor expression in CBCS [16], for genes with non-zero cis-heritability at nominal � �  0.10, 150 

we trained predictive models for covariate-residualized tumor expression with all cis-SNPs within 0.5 151 

Megabase using linear mixed modeling or elastic net regression (Supplementary Methods, 152 

Supplementary Materials). We selected models with five-fold cross-validation adjusted ��
� 0.01 153 

between predicted and observed expression values, resulting in 59 and 45 models for WW and BW, 154 

respectively (Supplementary Data). Using only germline genetics as an input, we imputed GReX in 155 

1,043 WW and 1,083 BW, respectively, in CBCS; for samples in both the training and imputation 156 

samples, GReX was imputed via cross-validation to minimize data leakage. We tested GReX for 157 

associations with ROR-S, Proliferation Score, and ROR-P using multiple linear regression adjusted for 158 

age, estrogen receptor (ER) status, tumor stage, and study phase [1]. We corrected for test-statistic bias 159 

and inflation using bacon and adjusted for multiple testing using the Benjamini-Hochberg procedure [37, 160 

38]. To compare germline effects with total (germline and post-transcriptional) effects on ROR, we 161 

assessed relationships between tumor expression of TWAS genes and CRS using similar linear models. 162 

We were underpowered to study time-to-recurrence due to small sample size, as recurrence data was 163 

collected only in CBCS Phase 3 (635 WW, 742 BW with GReX and recurrence data; 183 WW, 283 BW 164 

with tumor expression and recurrence data). 165 

 166 

PAM50 assay and ROR-S, Proliferation score, and ROR-P calculation 167 

Using partition-around-medoid clustering, we calculated correlation with each subtype’s centroid 168 

for study individuals based on PAM50 expressions (10 PAM50 genes per subtype); the largest subtype-169 

centroid correlation defined the individual’s molecular subtype [1]. ROR-S was determined via linear 170 

combination of the PAM50 subtype-centroid correlations (SCCs) [1]. Proliferation score was computed 171 
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using log-scale expression of 11 PAM50 genes while ROR-P was computed by combining ROR-S and 172 

Proliferation score.  173 

 174 

Bayesian multivariate regressions and multivariate adaptive shrinkage  175 

To better understand germline trans-regulation of PAM50 tumor gene expression and germline 176 

contribution to subtype, and to understand how these mediate TWAS-gene and CRS associations, we 177 

assessed TWAS-genes (for ROR-P) in relation to SCCs and PAM50 tumor gene expressions (Figure 178 

1C). We found that none of our TWAS-genes were within 1 Megabase of PAM50 genes and that most 179 

TWAS-genes were not on the same chromosome as PAM50 genes (Supplementary Table S1). Existing 180 

gene-based mapping techniques for trans-expression quantitative trait loci (eQTL)  (SNP and gene are 181 

separated by more than 1 Megabase) mapping include trans-PrediXcan and GBAT [39, 40]. We 182 

employed Bayesian multivariate linear regression (BtQTL) to account for correlation in multivariate 183 

outcomes (SCCs and PAM50 gene expression) in association testing. BtQTL improves power to detect 184 

significant trans-associations, especially when considering multiple genes with highly correlated (>0.5) 185 

expression (Supplementary Methods, Supplementary Figures S1-S2, Supplementary Materials). 186 

Lastly, we conducted adaptive shrinkage on BtQTL estimates using mashr, an empirical Bayes method to 187 

estimate patterns of similarity and improve accuracy in associations tests across multiple outcomes [41]. 188 

mashr outputs revised posterior means, standard deviations, and corresponding measures of significance 189 

(local false sign rates).    190 

 191 

RESULTS 192 

Association between GReX and risk of recurrence scores 193 

We performed race-specific TWAS for CRS to investigate the role of germline genetic variation in 194 

CRS and CRS racial disparity. We identified 8 genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, PCSK6, 195 

NDC80, MLPH), 8 genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, NDC80, MLPH, EXO1), and 10 196 

genes (MCM10, FAM64A, CCNB2, MMP1, VAV3, PCSK6, GNG11, NDC80, MLPH, EXO1) whose GReX 197 

was associated with ROR-S, proliferation, and ROR-P, respectively, in WW, and 1 gene (MMP1) whose 198 

GReX was associated with proliferation and ROR-P in BW at FDR-adjusted P < 0.10 (Figure 2A, 2B). No 199 
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associations were detected between GReX and ROR-S among BW. We refer to genes with statistically 200 

significant TWAS associations (FDR-adjusted P < 0.10) as TWAS-genes. Among these identified genes, 201 

only genes that are not part of the PAM50 panel (i.e., excluding NDC80, MLPH, EXO1) were considered 202 

in downstream permutation and TWAS-gene follow up analyses (Figure 1C), as we wished to focus 203 

investigation on relationship between non-PAM50 TWAS-genes and PAM50 (tumor) genes.  204 

Among WW, increased GReX of MCM10, FAM64A, CCNB2, and MMP1 were associated with 205 

higher CRS while increased GReX of VAV3, PCSK6, and GNG11 were associated with lower CRS 206 

(Figure 2A). Among BW, increased GReX of MMP1 was associated with lower CRS (Proliferation, ROR-207 

P, but not ROR-S) (Figure 2A). To provide statistical context for variance in CRS explained by significant 208 

TWAS-genes, we permuted covariate-residualized CRS to generate a null distribution for adjusted R2 209 

between TWAS-genes and CRS. Across WW and BW, the observed R2 of TWAS-genes against CRS (7-210 

10% among WW and 1% among BW) were statistically significant against the respective null distributions 211 

(P < 0.001 among WW and P < 0.05 among BW) (Figure 2B).  212 

Associations between tumor expression of TWAS-genes and CRS were concordant, in terms of 213 

direction of association to germline-only effects among WW; findings were discordant among BW 214 

(Supplementary Table S2-S3). Permutation tests for analyses of tumor expression of TWAS-genes and 215 

CRS are available in Supplementary Figure S3.  216 

 217 

Associations between TWAS-genes and breast cancer molecular subtype  218 

Among WW, a one standard deviation increase in FAM64A and CCNB2 GReX resulted in 219 

significantly increased Basal-like SCC while an identical increase in VAV3, PCSK6, and GNG11 resulted 220 

in significantly increased Luminal A SCC. The magnitude of increase in correlation for respective 221 

subtypes per GReX gene was approximately 0.05, and most estimates had credible intervals that did not 222 

intersect the null. Among WW, associations between HER2-like SCC and GReX followed similar patterns 223 

to associations for the Basal-like subtype, although associations for HER2 were more precise (Figure 224 

3A). We found predominantly null associations for GReX for Luminal B SCC among WW (Figure 3A). 225 

Unlike in WW, for BW, an increase in MMP1 GReX was not associated with Luminal A, HER2 or Basal-226 
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like SCCs. Instead, among BW, MMP1 GReX was significantly negatively associated with Luminal B 227 

SCC.  Estimates from univariate regressions are provided in Supplementary Tables S4-S7.   228 

 229 

Association between TWAS-genes and PAM50 gene expression 230 

For both WW and BW, the pattern of associations between significant GReX and PAM50 tumor 231 

expression were predominantly congruent with observed associations for SCCs and CRS (Figure 4). In 232 

WW, a one standard deviation increase in CCNB2 GReX was associated with significantly increased 233 

ORC6L, PTTG1, and KIF2C (Basal-like genes) expression and UBE2T, MYBL2 (LumB genes) 234 

expression. By contrast, a one standard deviation increase in PCSK6 GReX significantly increased 235 

BAG1, FOXA1, MAPT, and NAT1 (LumA genes) expression (Figure 4). While increased MMP1 GReX 236 

was associated with significantly increased expression of ORC6L (basal-like gene), MYBL2, and BIRC5 237 

(LumB genes) among WW, this was not the case among BW. Instead, increased MMP1 GReX among 238 

BW was significantly associated with increased expression of SLC39A6 (LumA gene) and decreased 239 

expression of ACTR3B, PTTG1, and EXO1 (Basal-like genes) (Figure 4). Supplementary Tables S8-240 

S11 and Figure 4 provide all TWAS-gene and PAM50 gene expression associations across WW and 241 

BW. 242 

 243 

DISCUSSION 244 

Through TWAS, we identified 7 and 1 genes among WW and BW, respectively, for which GReX 245 

was associated with CRS and underlying PAM50 expressions and subtype. Among WW, these 7 TWAS-246 

genes explained between 7-10% of the variation in CRS, a large and statistically significant proportion of 247 

variance. Among BW, the singular TWAS-gene explained ~1% of the variation in Proliferation score and 248 

ROR-P. Differences in the number and effect of identified TWAS-genes by race may point to factors that 249 

warrant further investigation: (1) potentially greater contribution of trans-regulation in tumor gene 250 

expression in BW, as shown previously, and (2) potential racial differences in tumor methylation and 251 

somatic alternations, which could not be accounted for in CBCS[16, 42-47].  252 

There are two key novel aspects to this study. First, existing literature on associations between 253 

tumor gene expression and recurrence (for which CRS are a proxy) cannot distinguish between genetic 254 
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and non-genetic component of effects [48]. Second, TWAS allows causal interpretation of observed 255 

associations. For instance, prior studies report CCNB2 is upregulated in triple-negative breast cancers 256 

(TNBC) but were unable to determine whether increased CCNB2 expression contributes to development 257 

or maintenance of TNBC or is part of the molecular response to cancer progression [49, 50]. By contrast, 258 

GReX is a function of only genetic variation. Thus, TWAS allows causal interpretation, subject to effective 259 

control for population stratification and minimal horizontal pleiotropy [17, 18].  260 

Our WW-specific finding that prioritizes MCM10, FAM64A, and CCNB2 associations with Basal-261 

like and HER2-enriched subtypes and subtype-specific gene expressions are consistent with literature. 262 

Prior investigations in cohorts of primarily European ancestry have reported that MCM10, FAM64A, and 263 

CCNB2 expression is higher in ER-negative than ER-positive tumors [49-51]. In studies that compared 264 

triple-negative and non-triple negative subtypes, higher MCM10, FAM64A, and CCNB2 expression was 265 

detected in triple-negative BC [49, 50]. Histologically, HER2-enriched and Basal-like subtypes are 266 

typically ER-negative, and triple-negatives are similar to Basal-like subtypes [9, 52]. MCM10, FAM64A, 267 

and CCNB2 are all implicated in cell cycle processes, including DNA replication [51, 53, 54]. Our WW-268 

specific findings that GReX of PCSK6 and VAV3 associated with Luminal A and Luminal A specific gene 269 

expressions are also consistent with previous results of PCSK6 and VAV3 upregulation in ER-positive 270 

subtypes [55, 56]. 271 

Presently, little is known about germline genetic regulation of PAM50 tumor expression. In CBCS, 272 

we found that tumor expression of most PAM50 genes is not cis-heritable. Instead, observed TWAS-gene 273 

and PAM50 gene expression associations may implicate trans-gene regulation of the PAM50 signature. 274 

For instance, we found that VAV3 GReX is significantly positively associated with tumor expression of 275 

BAG1, FOXA1, MAPT, and NAT1 and nominally with increased tumor ESR1 expression, all of which are 276 

Luminal A-specific genes. Such trans-genic regulation signals, especially in the case of ESR1, pose 277 

significant clinical and therapeutic implication if confirmed under experimental conditions. For example, 278 

VAV3 activates RAC1 which upregulates ESR1 but such mechanistic evidence is sparse for other 279 

putative TWAS-gene to PAM50 gene associations [57, 58]. More generally, two of the TWAS-genes 280 

among WW (FAM64A, PCSK6) have been found to activate the oncogenic STAT3 signaling pathway, 281 

housing many purported anti-cancer drug targets [59, 60]. 282 
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Interestingly, we found MMP1 GReX has divergent associations with ROR across race. There are 283 

a few potential explanations. First, the range of MMP1 GReX was manifold among WW than BW, 284 

suggesting sparser cis-eQTL architecture of MMP1 in BW and more influence from trans-acting signals. 285 

Potential differences in influence of germline genetics on tumor expression and ROR by race could be an 286 

artifact of divergent somatic or epigenetic factors that CBCS has not assayed [44-47]. Second, while 287 

studies generally report that MMP1 tumor expression is higher in triple-negative and Basal-like breast 288 

cancer, one study reported that MMP1 expression in tumor cells does not significantly differ by subtype 289 

[61-63]. Instead, Bostrom et al. reported that MMP1 expression differs in stromal cells of patients with 290 

different subtypes [63]. There is evidence to suggest that tumor composition, including stromal and 291 

immune components, may influence BC progression in a subtype-specific manner and future studies 292 

should consider expression predictive models that integrate greater detail on tumor cell-type composition 293 

[64, 65].  294 

There are a few limitations to this study. First, as CBCS used a custom Nanostring nCounter 295 

probeset for mRNA expression quantification, we could not analyze the whole human transcriptome. 296 

While this probeset may exclude several cis-heritable genes, CBCS contains one of the largest breast 297 

tumor transcriptomic datasets for Black women, allowing us to build well-powered race-specific predictive 298 

models, a pivotal step in transethnic TWAS. Second, CBCS lacked data on somatic amplifications and 299 

deletions, inclusion of which could enhance the performance of predictive models [66]. Third, as 300 

recurrence data was collected in a small subset with few recurrence events, we were unable to make a 301 

direct comparison between CRS and recurrence results, which may affect clinical generalizability. 302 

However, to our knowledge, CBCS is the largest resource of PAM50-based CRS data. 303 

Our analysis provides evidence of putative CRS and germline variation associations in breast 304 

tumors across race, motivating larger diverse cohorts for genetic epidemiology studies of breast cancer. 305 

Future studies should consider subtype-specific TWAS (i.e., stratification by subtype in predictive model 306 

training and association analyses) to elucidate heritable gene expression effects on breast cancer 307 

outcomes both across and within subtype, which may yield further hypotheses for more fine-tuned clinical 308 

intervention.  309 

 310 
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 518 

FIGURE LEGENDS 519 

Figure 1. Schematic of study analytic approach. A) In CBCS, constructed race-stratified predictive 520 

models of tumor gene expression from cis-SNPs. B) In CBCS, imputed GReX at individual-level using 521 

genotypes and tested for associations between GReX and CRS in race-stratified linear models; only 522 

GReX of genes with significant cis-h2 and high cross validation performance (R2 > 0.01 between observed 523 

and predicted expression) considered for race-stratified association analyses. C) Follow-up analyses on 524 

TWAS-genes (i.e., genes whose GReX were significantly associated with CRS at FDR <0.10). In race-525 

stratified models, PAM50 SCCs and PAM50 tumor expressions were regressed against TWAS-genes 526 

under a Bayesian multivariate regression and multivariate adaptive shrinkage approach.  527 

 528 

Figure 2. Permutation tests and associations between TWAS-genes and CRS for WW and BW. A) Effect 529 

estimates correspond to change in ROR-S, Proliferation score, and ROR-P per one standard deviation 530 

increase in TWAS-gene expression (i.e., one standard deviation increase in GReX of gene). Circle 531 
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denotes a statistically significant association while triangle denotes a non-significant association at 532 

significance threshold of p-value <0.05. Blue denotes WW and red denotes BW. B) Histograms 533 

correspond to null distributions of covariates (age at selection, estrogen receptor status, study phase, 534 

tumor stage) residualized-R2 for regressions of CRS on TWAS-genes. Dashed vertical lines correspond to 535 

observed covariates residualized-R2. Blue denotes WW and red denotes BW.  536 

 537 

Figure 3. Associations between TWAS-genes and PAM50 SCCs. A) Among WW, associations between 538 

TWAS-genes (genes whose GReX was significantly associated with CRS at FDR <0.10) and PAM50 539 

SCCs using Bayesian multivariate regression and multivariate adaptive shrinkage. Effect estimates 540 

correspond to change in subtype centroid correlations (range -1 to 1) for one standard deviation increase 541 

in TWAS-gene expression (i.e., one standard deviation increase in GReX of gene). Circle, triangle, and 542 

square denote corresponding FDR intervals for effect sizes. B) Among BW, associations between TWAS-543 

genes and PAM50 SCCs using Bayesian multivariate regression and multivariate adaptive shrinkage. 544 

Effect estimates correspond to change in SCCs (range -1 to 1) for one standard deviation increase in 545 

TWAS-gene expression (i.e., one standard deviation increase in GReX of gene). Circle, triangle, and 546 

square denote corresponding FDR intervals for effect sizes. 547 

 548 

Figure 4. Heatmap of associations between TWAS-genes and PAM50 tumor gene expressions using 549 

Bayesian multivariate regression and multivariate adaptive shrinkage. There were 7 TWAS-genes among 550 

WW and 1 TWAS-gene among BW. Effect estimates correspond to change in log2 normalized PAM50 551 

tumor expression for one standard deviation increase in TWAS-gene expression (i.e., one standard 552 

deviation increase in GReX of gene). Red denotes positive change in log2 normalized tumor expression 553 

and blue denotes negative mean change in log2 normalized tumor expression. *, **, *** denote FDR 554 

intervals for effect sizes. Assignment of PAM50 gene to subtype was based on PAM50 gene centroid 555 

values for each subtype; the subtype assigned to a PAM50 gene corresponded to the largest positive 556 

centroid value across subtypes for that gene. Importantly, subtype assignment through this “greedy 557 

algorithm” are specific to this study and represent a simplified reality (e.g., ESR1 classified as part of 558 

Luminal A subtype only even though ESR1 expression correlates with both Luminal A and to a slightly 559 
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lesser degree Luminal B subtype). Moreover, subtype assignment for this portion of analyses was 560 

conducted only for visual comparison of patterns of associations between TWAS-genes and PAM50 561 

tumor gene expressions (i.e., subtype assignment in this portion of analyses had no bearing on 562 

continuous ROR score calculations or subtype-centroid correlations).  563 
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