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Abstract

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal

domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and

promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil

with mutations of concern in the RBD independently acquired convergent deletions and

insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and

other predicted epitopes at this region. Importantly, we detected communitary

transmission of four lineages bearing NTD indels: a P.1 𝚫69-70 lineage (which can

impact several SARS-CoV-2 diagnostic protocols), a P.1 𝚫144 lineage, a P.1-like

lineage carrying ins214ANRN, and the VOI N.10 derived from the B.1.1.33 lineage

carrying three deletions (𝚫141-144, 𝚫211 and 𝚫256-258). These findings support that

the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral

lineages that might be more resistant to antibody neutralization than parental variants of

concern.

Keywords: COVID-19, pandemics, antibody escape, coronavirus, communitary

transmission
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Introduction

Recurrent deletions in the amino (N)-terminal domain (NTD) of the spike (S)

glycoprotein of SARS-CoV-2 have been identified during long-term infection of

immunocompromised patients 1–4 as well as during extended human-to-human

transmission 3. Most of those deletions (90%) maintain the reading frame and cover four

recurrent deletion regions (RDRs) within the NTD at positions 60-75 (RDR1), 139-146

(RDR2), 210-212 (RDR3), and 242-248 (RDR4) of the S protein 3. The RDRs that

occupy defined antibody epitopes within the NTD and RDR regions might alter

antigenicity 3. Interestingly, the RDRs overlap with four NTD Indel Regions (IR - IR-2

to IR-5) that are prone to gain or lose short nucleotide sequences during sarbecoviruses

evolution both in animals and humans 5,6.

Since late 2020, several more transmissible variants of concern (VOCs) and also

variants of interest (VOI) with convergent mutations at the receptor-binding domain

(RBD) of the S protein (particularly E484K and N501Y) arose independently in humans
7,8. Some VOCs also displayed NTD deletions such as lineages B.1.1.7 (RDR2 𝚫144),

B.1.351 (RDR4 𝚫242-244), and P.3 (RDR2 𝚫141-143) that were initially detected in

the United Kingdom, South Africa, and the Philippines, respectively 3. The VOCs

B.1.1.7 and B.1.351 are resistant to neutralization by several anti-NTD monoclonal

antibodies (mAbs) and NTD deletions at RDR2 and RDR4 are important for such

phenotype 9–14. Thus, NTD mutations and deletions represent an important mechanism

of immune evasion and accelerate SARS-CoV-2 adaptive evolution in humans.

Several SARS-CoV-2 variants with mutations in the RBD have been described

in Brazil, including the VOC P.1 15 and the VOIs P.2 16, N.9 17 and N.10 18. With the

exception of N.10, none of the other variants described in Brazil displayed indels in the

NTD. Importantly, although the VOC P.1 displayed NTD mutations (L18F) that

abrogate binding of some anti-NTD mAbs 14 and further showed reduced binding to

RBD-directed antibodies, it is more susceptible to anti-NTD mAbs than other VOCs
9–14,19. In this study, we characterized the emergence of RDR variants within VOC and

VOIs circulating in Brazil that were genotyped by the Fiocruz COVID-19 Genomic

Surveillance Network between November 2020 and February 2021.

Results and Discussion

Our genomic survey identified 35 SARS-CoV-2 sequences from seven different

Brazilian states that harbor a variable combination of mutations in the RBD (K417T,
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E484K, N501Y) and indels in the NTD region of the S protein. These genomes were

classified within lineages N.10 (n = 16), P.1 (n = 14), P.2 (n = 1) and B.1.1.28 (P1-like,

n = 4) (Table 1). Seven VOC P.1 sequences displayed deletion 𝚫69-70 in the RDR1,

three sequences (two VOC P.1 and one VOI P.2) displayed deletion 𝚫144 in the RDR2,

two P.1 sequences showed a four amino acid deletion 𝚫141-144 in the RDR2, two P.1

sequences harbors a two amino acid deletion 𝚫189-190, and one P.1 sequence displayed

a three amino acid deletion 𝚫242-244 in the RDR4. We also detected four B.1.1.28

P.1-like genomes bearing an ins214ANRN insertion upstream to RDR 3 and sharing six

out of 10 P.1 lineage-defining mutations in the Spike protein (L18F, P26S, D138Y,

K417T, E484K, N501Y) as well as P.1 lineage-defining mutations in the NSP3

(K977Q), NS3 (S253P) and N (P80R) proteins 20. The VOI N.10 displayed NTD indels

𝚫141-144 at RDR2, 𝚫211 at RDR3 and 𝚫256-258 close to RDR4 18. Inspection of

sequences available at EpiCoV database in the GISAID (https://www.gisaid.org/) at

March 1st, 2021, retrieved three P.1 sequences from the Bahia state 21 and one B.1.1.28

sequence from the Amazonas state 20 with deletion 𝚫144 (Table 1).

The Maximum Likelihood (ML) phylogenetic analysis of lineage P.1 supports

recurrent emergence of variants 𝚫141-144 and 𝚫69-70 and the monophyletic origin of

variants 𝚫144 and 𝚫189-190 (Fig. 1A). Both P.1 𝚫141-144 sequences recovered from

patients from Amazonas and Rondônia states, all P.1 𝚫69-70 sequences from Santa

Catarina state and the P.1 𝚫242-244 sequence from Sergipe state appeared as singletons

intermixed among non-deleted P.1 sequences. The remaining P.1 variants with NTD

deletions were distributed in two sub-clades that also include non-deleted P.1 sequences.

One sub-clade (aLRT = 86%) was characterized by the mutations ORF1a:T951I and

A18945G and comprises nine sequences: the five P.1 𝚫144, the two P.1 𝚫189-190 and

two P.1 from Amazonas and Goiás states. The other sub-clade (aLRT = 85%) was

characterized by the synonymous mutations G29781A and T29834A and comprises

seven sequences: the three P.1 𝚫69-70 from São Paulo state plus four P.1 sequences

from São Paulo, Amazonas and Tocantins states. The ML phylogenetic analyses further

confirm that all sequences belonging to variants P.1-like ins214ANRN (Fig. 1A) and

VOI N.10 (Fig. 1B) branched in highly supported (aLRT > 99%) monophyletic clades.

These findings revealed that NTD deletions characteristic of VOCs B.1.1.7 (𝚫69-70 and

𝚫144) and B.1.351 (𝚫242-244) occurred at multiple times during the evolution of

lineage P.1 and also sporadically arose in lineages B.1.1.28, B.1.1.33 (N.10) and P.2.
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Table 1. SARS-CoV-2 Brazilian variants with indels at NTD of the Spike protein.

Sample(s) Lineage NTD Indel RBD GISAID ID

AM-FIOCRUZ-20842572LS/2020* B.1.1.28 𝚫144 - EPI_ISL_1068132

MG-FIOCRUZ-8180/2021 P.2 𝚫144 E484K EPI_ISL_1219137

SC-FIOCRUZ-13109/2021
SC-FIOCRUZ-13111/2021
SC-FIOCRUZ-13113/2021
SC-FIOCRUZ-13114/2021

SP-2075/2021
SP-2084/2021
SP-2088/2021

P.1 𝚫69-70 K417T
E484K
N501Y

EPI_ISL_1533994
EPI_ISL_1533992
EPI_ISL_1533996
EPI_ISL_1533993
EPI_ISL_1498917
EPI_ISL_1509639
EPI_ISL_1509720

BA53/2021*
BA54/2021*
BA55/2021*

BA-FIOCRUZ-7029/2021*
AM-FIOCRUZ-21140861HC*

P.1 𝚫144 K417T
E484K
N501Y

EPI_ISL_1067729
EPI_ISL_1067733
EPI_ISL_1067734
EPI_ISL_1219136
EPI_ISL_1533609

AL-FIOCRUZ-4795/2021*
PR-FIOCRUZ-5273/2021**

P.1 𝚫141-144 K417T
E484K
N501Y

EPI_ISL_1219134
EPI_ISL_1219133

AL-FIOCRUZ-4786/2021*
RS-FIOCRUZ-14243/2021

P.1 𝚫189-190 K417T
E484K
N501Y

EPI_ISL_1219135
EPI_ISL_1534013

SE-FIOCRUZ-10220/2021 P.1 𝚫242-244 K417T
E484K
N501Y

EPI_ISL_1534004

MA-FIOCRUZ-6871/2021*** N.10 𝚫141-144
𝚫211

𝚫256-258

V445A
E484K

EPI_ISL_1181371

AM-FIOCRUZ-20897269OP*
AM-FIOCRUZ-20897281WS*
AM-FIOCRUZ-21840593CL*

PR-FIOCRUZ-5241/2021

B.1.1.28
(P.1-like)

ins214ANRN K417T
E484K
N501Y

EPI_ISL_1068256
EPI_ISL_1219132
EPI_ISL_1261122
EPI_ISL_1261123

*Patient from Amazonas state or traveller returning from Amazonas state. ** Patient from
Rondônia. *** Sequence representative of lineage N.10 (EPI_ISL_1181370, EPI_ISL_1465226
,EPI_ISL_1465228, EPI_ISL_1465229, EPI_ISL_1465231, EPI_ISL_1465232, EPI_ISL_1465234,
EPI_ISL_1465235, EPI_ISL_1465236, EPI_ISL_1465238, EPI_ISL_1465239, EPI_ISL_1465241,
EPI_ISL_1465242, EPI_ISL_1465243, and EPI_ISL_1465245). Sequencing depth plots of the
samples bearing indels are available in Supplementary Figure S1.
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Figure 1. ML phylogenetic tree of whole-genome lineage P.1/P.1-like (A) and B.1.1.33 (B)
Brazilian sequences showing the recurrent emergence of deletions at the NTD of the S protein.
Tip circles representing the SARS-CoV-2 sequences with NTD indels are colored as indicated.
The branch lengths are drawn to scale with the left bar indicating nucleotide substitutions per
site. For visual clarity, some clades are collapsed into triangles.

Most P.1 𝚫144, 𝚫141-144 and 𝚫189-190 sequences were detected in the

Amazonas or were recovered from individuals that were transferred from or that

reported a travel history to the Amazonas state, like all P.1 𝚫144 sequences from the

Bahia state described previously 21 and in the present study (Table 1). Thus, those P.1

variants as well as the variant P.1-like ins214 probably emerged in the Amazonas state

and some of them displayed low-level of community transmission. The P.1 𝚫69-70

sequences, by contrast, were detected in autochthonous cases from Santa Catarina and

Sao Paulo states that had no history of travel to the Amazonas. The phylogenetic

clustering supports the independent origin of variant P.1 𝚫69-70 in both Brazilian states

and its local dissemination in São Paulo, but not in Santa Catarina. The lack of

monophyletic clustering of P.1 𝚫69-70 sequences from Santa Catarina, however, should
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be interpreted with caution due to the paucity of synapomorphic mutations within

diversity of lineage P.1. Other variants that also arose outside the Amazonas state were

the P.1 𝚫242-244, the P.2 𝚫144 and the VOI N.10 detected in the states of Sergipe,

Minas Gerais and Maranhão, respectively 18.

While SARS-CoV-2 variants harboring NTD deletions at RDR2 and RDR4 have

emerged in many different lineages globally, insertions in the S protein are rare events.

Our search of SARS-CoV-2 sequences available at EpiCoV database in the GISAID

(https://www.gisaid.org/) on March 1st retrieved only 146 SARS-CoV-2 sequences of

lineages A.2.4 (n = 52), B (n = 3), B.1 (n = 7), B.1.1.7 (n = 1), B.1.177 (n = 1), B.1.2 (n

= 1), B.1.214 (n = 80) and B.1.429 (n = 1) that displayed an insert motif of three to four

amino acids (AKKN, KLGB, AQER, AAG, KFH, KRI, and TDR) in position 214

(Appendix Table 1). Most ins214 motifs were unique, except for the ins214TDR that

arose independently in lineages B.1 and B.1.214. With the only exception of one lineage

B sequence sampled in March 2020, all SARS-CoV-2 ins214 variants were only

detected since November 2020, and its frequency increased in 2021 mainly due to the

recent dissemination of lineage A.2.4 ins214AAG in Central and North America and of

lineage B.1.214 ins214TDR in Europe.

To better understand the evolutionary context of NTD indels, we aligned the S

protein of representative sequences of SARS-CoV-2 lineages with NTD indels and

SARS-CoV-2-related coronavirus (SC2r-CoV) lineages from bats and pangolins 22.

Inspection of the alignment confirms that most NTD indels detected in the

SARS-CoV-2 lineages occur within IR previously defined in sarbecovirus (Fig. 2). The

𝚫141-144 occurs in the IR-3 located in the central part of the NTD, where some bats

SC2r-CoV also have deletions. The 𝚫211 and ins214 occurs near the IR-4 where some

bat SC2r-CoV from China (RmYN02, ins214GATP), Thailand (RacCS203,

ins214GATP), and Japan (Rc-o319, ins214GATS) displayed a four amino acids

insertion. Despite amino acid motifs at ins214 are very different across SARS-CoV-2

and SC2r-CoV lineages, the insertion size (3-4 amino acids) was conserved. Deletions

𝚫242-244 and 𝚫256-258 occur immediately upstream and downstream to IR-5,

respectively, where some bat and pangolin SC2r-CoV lineages also displayed deletions.

Thus, NTD regions that are prone to gain indels during viral transmission among

animals are the same as those detected during transmissions in humans.
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Figure 2. Amino acid alignment of Sarbecovirus NTD Spike region up to amino acid 335
including representative sequences of SARS-CoV-2 lineages harboring indels in the NTD and
SARS-CoV-2-related coronavirus (SC2r-CoV) from bats and pangolins. IRs and RDRs
positions (gray and red shaded areas, respectively) are approximations due to the high genetic
variability in these alignment positions. Dotted rectangles highlight the indels identified in this
study. The relative identity level estimated for each position of the alignment is displayed at the
top.

Epitope mapping showed that neutralizing antibodies are primarily directed

against the RBD and NTD of the S protein 9,23–26. Some of the RBD mutations (K417T

and E484K) detected in the VOCs and VOIs circulating in Brazil have been associated

with increased resistance to neutralization by mAbs, or polyclonal sera from

convalescent and vaccinated subjects 27–31. The RDR2 and RDR4 are located in the N3

(residues 141 to 156) and N5 (residues 246 to 260) loops that composes the NTD

antigenic-supersite 32,33 and deletions at those RDRs are also an essential mechanism for

SARS-CoV-2 immune evasion of anti-NTD Abs 3,9,10,34,14,3,9,10,34. To further visualize the

potential impact of NTD deletions on immune recognition, we performed a modeling

analysis of the binding interface between the NTD region and the NTD-directed

neutralizing antibody (NAb) 2-51 derived from a convalescent donor 23,33. The NAb

2-51 interacts with the wildtype NTD antigenic-supersite (EPI_ISL_402124) through

several contacts with loops N3 and N5, with a predominance of hydrophobic contacts

and dispersion interactions in N5 and saline interactions in N3 (Fig. 3A and B).
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Figure 3. Representation of the Spike NTD 3D structure of wild type (pink) and NTD
deleted variants (colored in blue) complexed to the NAb 2-51 heavy (gray) and light
(green) chains. A) Relative position of the five NTD loops (red arrows) and the NTD
deletions detected in our sample. B) Native interactions of mAb NAb 2-51 with N3 (left
close-up) and N5 (right close-up) loops on the 3D structure of the wild type Spike NTD
antigenic supersite. The N5 loop representation is also rotated 180° around its z-axis. C)
Potential interactions of mAb NAb 2-51 with N3 and N5 loops on the 3D structure of
the Spike NTD of N3 and N5 deleted variants. Residues making contact in the interface
are depicted in the licorice representation, with carbon atoms in cyan, nitrogen atoms in
blue and oxygen atoms in red. The dotted lines indicate the interacting residues-pair.
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Our analyses corroborate that deletions at RDR2/IR-3 (𝚫144, 𝚫141-144) and

RDR4/IR-5 (𝚫242-244, 𝚫256-258) detected in Brazilian sequences impact the N3 and

N5 loops’ size and conformation, disrupting the native contacts and reducing the

interacting hydrophobic surface accessible area, mainly due to the loss of the

hydrophobic pocket (Figure 3C). Indels around the N3/N5 loops resulted in a

significant loss of interactions (both electrostatic and hydrophobic) that can

dramatically impact the binding free energy, and therefore the binding affinity, between

those NTD deletion variants and the NAb 2-51. Variant P.1 𝚫242-244 displayed the

largest loss of interactions, followed by variants N10, P.1 𝚫141-144, P.1 𝚫144, P.2

𝚫144, and B.1.1.28 𝚫144 (Table 2). The NTD indels 𝚫69-70, 𝚫189-190, 𝚫211 and

ins214ANRN did not affect the NTD antigenic-supersite (Figures 3A), but they occur at

other loops that comprise putative epitope regions covering residues 64-83,

168/173-188 and 209-216 (Appendix Table 2) and leads to conformational changes

(Supplementary Figure S2) which might affect Ab binding outside the NTD

antigenic-supersite. These findings suggest that NTD indels detected here probably

abrogate the binding of NAb directed against the antigenic-supersite and other epitopes.

Several studies of SARS-CoV-2 evolution in vitro and ex vivo also support that

NTD indels here observed in Brazilian SARS-CoV-2 VOC and VOI represent a

mechanism of ongoing adaptive evolution to escape from dominant neutralizing

antibodies directed against the NTD. In vitro co-incubation of SARS-CoV-2 with highly

neutralizing plasma form COVID-19 convalescent patient, has revealed an incremental

resistance to neutralization followed by the stepwise acquisition of indels at N3/N5

loops 35. SARS-CoV-2 challenge in hamsters previously treated with anti-NTD mAbs

revealed selection of two escape mutants harboring NTD deletions 𝚫143-144 and

𝚫141-144 14. Studies of intra-host SARS-CoV-2 evolution in immuno-compromised

hosts revealed the emergence of viral variants with NTD deletions at RDR1 (𝚫69-70),

RDR2 (𝚫144 and 𝚫141-144) and RDR4 (𝚫243-244) following therapy with

convalescent plasma 1,3,4,36,37. Another study revealed the emergence of several Spike

gene mutations, including inframe deletions Δ141-143, Δ141-144, Δ145 and Δ211-212,

during persistent SARS-CoV-2 infection in two individuals with partial humoral

immunity 38. Finally, a recent longitudinal analysis of intra-host SARS-CoV-2 evolution

during acute infection in one immunocompetent individual revealed the emergence of

virus haplotypes bearing deletions 𝚫144 and 𝚫141-144 in the NTD following the

development of autologous anti-NTD specific antibodies 39.
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Table 2. Impact of indels on the binding between SARS-CoV-2 NTDs and NAb
2-51, expressed as loss of putative interactions.

Variant ΔH-bond ΔSalt-bridge Δpi-stacking ΔHydrophobic
SASA [Å2]

Native
Contacts Lost

B.1.1.28 𝚫144 -2 -3 -1 -1 K147-E71
K150-E53
K150-D54
Y145-Y98

P.2 𝚫144 -2 -3 -1 -104 K147-E71
K150-E53
K150-D54
Y145-Y98

P.1 𝚫144 -2 -3 -1 -111 K147-E71
K150-E53
K150-D54
Y145-Y98

P.1 𝚫141-144 -2 -3 -1 -313 K147-E71
K150-E53
K150-D54
Y145-Y98

N.10
𝚫141-144
𝚫256-258

-3 -3 -1 -439 Y147-E71
K150-E53
K150-D54
Y145-Y98
D253-S56
P251-P55
P251-L46

P251-Y100

P.1 𝚫242-244 -3 -1 -2 -746 Y248-Y27
Y248-W96
Y248-Y98
L249-Y27
R246-E31
R246-Y27
D253-S56

Recent genomic findings showed a sudden landscape change in SARS-CoV-2

evolution since October 2020, coinciding with the independent emergence of VOCs

carrying multiple convergent amino acid replacements at the RBD of the S protein 40.

One hypothesis is that such a major selection pressure shift on the virus genome is

driven by the increasing worldwide human population immunity acquired from natural

SARS-CoV-2 infection that might also select for convergent deletions at NTD. Our

findings suggest that P.1, P.2 and N.10 variants with NTD indels here detected might

have evolved to escape from NAb against NTD and could be even more resistant to
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neutralization than the parental viruses. Notably, the sequential acquisition of RBD and

NTD mutations observed in the VOC P.1 recapitulates the evolution pattern of the VOC

B.1.351 that first acquired RBD mutations E484K and N501Y and sometime later the

NTD deletion 𝚫242-244 7. The detection of P.1 genomes with convergent NTD

deletions with VOCs B.1.1.7 (𝚫69-70, 𝚫144) and B.1.351 (𝚫242-244) bring caution

about the specificity of published real-time RT-PCR protocols to distinguish different

VOCs in Brazil and also alert against use the failure to detect the S gene (due to

mutation 𝚫69-70) by certain tests, known as S gene target dropout 41,42, as a definitive

proof of circulation of the VOC B.1.1.7 in Brazil.

In summary, these findings suggest that SARS-CoV-2 VOC and VOI are

continuously adapting and evolving in Brazil through acquisition of Spike NTD indels.

Some variants like P.1 𝚫69-70, P.1 𝚫144 and P.1-like ins214ANRN might represent

newly emergent VOC/VOI and its communitary dissemination, as well as that of VOI

N.10, requires careful monitoring. These findings highlight the urgent need to address

the SARS-CoV-2 vaccines' efficacy towards emergent SARS-CoV-2 variants carrying

both RBD and NTD mutations and deletions of concern and the risk of ongoing

uncontrolled community transmission of SARS-CoV-2 in Brazil for the generation of

more transmissible variants. The recurrent emergence of NTD ins214 variants in

different SARS-CoV-2 lineages circulating in the Americas and Europe since November

2020 and its impact on vaccine efficacy also deserves further attention.

Material and Methods

SARS-CoV-2 and SARS-CoV-2-related coronavirus (SC2r-CoV) sequences

Our genomic survey of SARS-CoV-2 positive samples sequenced by the Fiocruz

COVID-19 Genomic Surveillance Network between 12th March 2020 and 28th

February 2021 identified 11 sequences with mutations of concern in the RBD and indels

in the NTD (Appendix Table 1). The SARS-CoV-2 genomes were recovered using

Illumina sequencing protocols as previously described 43,44. The FASTQ reads obtained

were imported into the CLC Genomics Workbench version 20.0.4 (Qiagen A/S,

Denmark), trimmed, and mapped against the reference sequence EPI_ISL_402124

available in EpiCoV database in the GISAID (https://www.gisaid.org/). The alignment

was refined using the InDels and Structural Variants module. Additionally, the same

reads were imported in a different pipeline 45 based on Bowtie2 and bcftools 46 mapping

and consensus generation allowing us to further confirm the indels supported by
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paired-end reads, removing putative indels with less than 10x of sequencing depth and

with mapping read quality score below to 10 for all samples sequenced in this study.

BAM files were used as input to generate sequencing coverage plots onto indels using

the Karyoploter R package 47. Sequences were combined with SARS-CoV-2 and

SC2r-CoV from bats and pangolins available in the EpiCoV database in GISAID by 1st

March 2021 (Appendix Table 1). This study was approved by the FIOCRUZ-IOC

(68118417.6.0000.5248 and CAAE 32333120.4.0000.5190) and the Amazonas State

University Ethics Committee (CAAE: 25430719.6.0000.5016) and the Brazilian

Ministry of the Environment (MMA) A1767C3.

Maximum Likelihood Phylogenetic Analyses

SARS-COV-2 sequences here obtained were aligned with high quality (<1% of N) and

complete (>29 kb) lineages B.1.1.28, P.1, P2 and B.1.1.33 sequences that were available

in EpiCoV database in the GISAID (https://www.gisaid.org/) at March 1st, 2021 and

subjected to maximum-likelihood (ML) phylogenetic analysis using IQ-TREE v2.1.2 48.

The S amino acid sequences from selected SARS-CoV-2 and SC2r-CoV lineages

available in the EpiCoV database were also aligned using Clustal W 49 adjusted by

visual inspection.

Structural Modeling

The resolved crystallographic structure of SARS-CoV-2 NTD protein bound to the

neutralizing antibody 2-51 was retrieved from the Protein Databank (PDB) under the

accession code 7L2C 33. Missing residues of the chain A, corresponding to the NTD

coordinates, were modeled using the user template mode of the Swiss-Model webserver

(https://swissmodel.expasy.org/) 50 and was used as starting structure for the NTD

wildtype. This structure was then used as a template to model the NTD variants using

the Swiss-Model webserver. The modeled structures of the NTDs variants were

superimposed onto the coordinates of the PDB ID 7L2C to visualize the differences

between the NTD-antibody binding interfaces. Image rendering was carried out using

Visual Molecular Dynamics (VMD) software 51. The NTD-antibody complexes were

geometry optimized using a maximum of 5,000 steps or until it reached a convergence

value of 0.001 REU (Rosetta energy units) using the limited-memory

BroydenFletcher-Goldfarb-Shanno algorithm, complying with the Armijo-Goldstein

condition, as implemented in the Rosetta suite of software 3.12 52. Geometry

optimization was accomplished through the atomistic Rosetta energy function 2015

(REF15), while preserving backbone torsion angles. Protein-protein interface analyses
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were performed using the Protein Interactions Calculator (PIC) webserver

(http://pic.mbu.iisc.ernet.in/)53, the ‘Protein interfaces, surfaces and assemblies’ service

(PISA) at the European Bioinformatics Institute

(https://www.ebi.ac.uk/pdbe/pisa/pistart.html) 54 and the InterfaceAnalyzer protocol of

the Rosetta package interfaced with the RosettaScripts scripting language 55. For the

interfaceAnalyzer, the maximum SASA that is allowed for an atom to be defined as

buried is 0.01 Å2, with a SASA probe radius of 1.2 Å.

Epitope prediction

Epitopes in the NTD region were predicted by the ElliPro Antibody Epitope Prediction

server 56. NTD are shown as predicted linear epitopes when using PDB accession codes

6VXX 57 and 6VSB 58, (structural coordinates corresponding to the entire S protein),

along with a minimum score of 0.9, i.e., a highly strict criterion.
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