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Abstract 

Objective 
Patients, families and community members would like emergency department wait time 
visibility. This would improve patient journeys through emergency medicine. The study 
objective was to derive, internally and externally validate machine learning models to predict 
emergency patient wait times that are applicable to a wide variety of emergency 
departments. 

Methods 
Twelve emergency departments provided three years of retrospective administrative data 
from Australia (2017-19). Descriptive and exploratory analyses were undertaken on the 
datasets. Statistical and machine learning models were developed to predict wait times at 
each site and were internally and externally validated. Model performance was tested on 
COVID-19 period data (January to June 2020). 

Results 
There were 1,930,609 patient episodes analysed and median site wait times varied from 24 
to 54 minutes. Individual site model prediction median absolute errors varied from +/-22.6 
minutes (95%CI 22.4,22.9) to +/- 44.0 minutes (95%CI 43.4,44.4). Global model prediction 
median absolute errors varied from +/-33.9 minutes (95%CI 33.4, 34.0) to +/-43.8 minutes 
(95%CI 43.7, 43.9). Random forest and linear regression models performed the best, rolling 
average models under-estimated wait times. Important variables were triage category, last-k 
patient average wait time, and arrival time. Wait time prediction models are not transferable 
across hospitals. Models performed well during the COVID-19 lockdown period. 

Conclusions 
Electronic emergency demographic and flow information can be used to approximate 
emergency patient wait times. A general model is less accurate if applied without site 
specific factors. 

Keywords 
Emergency Medicine 
Time-to-Treatment 
Data Science 
Algorithms 
Time Factors 
Machine Learning 
 
What is already known on this subject 

� Patients and families want to know approximate emergency wait times, which will 
improve their ability to manage their logistical, physical and emotional needs whilst 
waiting 

� There are a few small studies from a limited number of jurisdictions, reporting model 
methods, important predictor variables and accuracy of derived models 
 

What this study adds 
� Our study demonstrates that predicting wait times from simple, readily available data 

is complex and provides estimates that aren’t as accurate as patients would like, 
however rough estimates may still be better than no information 
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� We present the most influential variables regarding wait times and advise against 
using rolling average models, preferring random forest or linear regression 
techniques 

� Emergency medicine machine learning models may be less generalisable to other 
sites than we hope for when we read manuscripts or buy commercial off-the-shelf 
models or algorithms. Models developed for one site lose accuracy at another site 
and global models built for whole systems may need customisation to each individual 
site. This may apply to data science clinical decision instruments as well as 
operational machine learning models. 
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Main Manuscript 

Introduction  
Deciding where to seek care for acute medical problems is complex and nuanced. Many 
decisions are made with limited information and at times little transparency from health 
services. Most people hope to be seen by a definitive provider immediately on arrival but 
usually have to wait for treatment. Emergency department (ED) proximity and wait times are 
the major influencers on patient choice of facility.[1-4] Wait time visibility assists with meeting 
physical, logistic and psychological needs of patients.[5] There is increasing consumer 
advocacy for transparency of information about health service resources. There is also 
health service interest in displaying wait times. Many examples exist in the USA, Canada 
and emerging interest has been seen in Australia and other jurisdictions.  
 
Information technology (IT) capabilities and applied data science techniques are becoming 
increasingly available to acute care services. Many emergency departments collect a large 
volume of electronic point-of-care patient data, relating to demographics, flow and clinical 
care. In a community where data from multiple emergency departments are available, 
knowledge of queue lengths could facilitate optimal patient load-balancing across acute care 
facilities. This has the potential to reduce the harms of long waits. 
 
Previously published information is available regarding how to predict wait times in 
emergency medicine. Manuscripts report a variety of predictor variables, model techniques 
and accuracy, from either a single centre or small number of sites. Sun et al[6] used quantile 
regression techniques in a single emergency department, and found that by using triage 
categories, the number of unseen patients and the number of new patients treated by 
physicians in the last hour, they could predict wait times to an accuracy of +/- 12 minutes.  
Ang et al[7] compared statistical to machine learning models using data from four 
emergency departments in the USA in response to inaccurate commercial wait time 
predictors, finding Q Lasso to be the best model with less under-estimation of wait times; 
using only time-of-day and day-of-week data. Arha[8] used a tree-based regression model, 
with simple predictor variables available at triage. Senderovich et al[9] found that by adding 
congestion variables, patient flow predictors had increased accuracy.  
 
There is limited knowledge regarding wait time predictors performance across a variety of 
jurisdictions, patient catchments and healthcare resources. There is no knowledge about 
whether one model might be able to be applied across multiple emergency departments for 
system-wide implementation or how predictive models perform during unexpected events 
with variations in demand (e.g., COVID-19).  

Objectives 
The primary objective of the study was to develop and internally validate predictive 
algorithms for patient wait times (triage-to-provider). Secondary objectives include 
determining the relative importance of each predictor variable and model method, whether 
models are transferable across different emergency departments (external validation), and 
the performance of the models during special events (COVID-19). 
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Methods 

Study design and Setting 
This is an observational study using retrospective administrative data to develop, compare, 
and validate prediction models for patient wait times at emergency departments. Data from 
2017 to 2019 from 12 emergency departments were used for the main study, followed by 
data from January to June 2020 from three emergency departments to test performance 
during COVID-19 conditions. 
 
Mandatory point-of-care emergency patient demographic, flow and clinical data are collected 
for every patient by clerks and clinicians in Australia. In Victoria, these defined data populate 
the governmental Victorian Emergency Minimum Dataset (VEMD).[10] Data available at time 
of triage were used as predictor variables.  
 
There are 24 million residents in Australia and emergency medicine manages eight million 
patient episodes annually. The majority (93%) of Australian residents attend government-
funded, public emergency departments with no patient co-payments. There are no 
restrictions on individual choice of emergency department. Regional to tertiary emergency 
departments were invited to participate if they were part of an academic health science 
centre or were engaged via research networks. Ten Melbourne and two Queensland 
emergency departments participated, comprising one private, one paediatric, four major, two 
large metropolitan, and four medium metropolitan hospitals. Hospital #7 (H7) displayed 
predicted patient wait times (prior in-house models) online, in their waiting room, and to 
Ambulance Victoria during the study.  
 
The study received Monash Health ethics committee approval (RES-19-0000-763A). 

Data sources and Measurements 

Electronic medical record software applies time-date stamps to clinician activities (e.g., 
triage). Clerical staff collect demographic data from patients at initial registration. Clinical 
staff record data whilst attending to a patient. The VEMD datasets from each hospital were 
the primary source of data for this study. VEMD data are routinely checked for 
completeness, accuracy and administrative errors by an emergency physician at each site 
prior to submission to the Victorian Government.  

Three years of retrospective, de-identified VEMD data were obtained from twelve hospitals 
in Australia (mainly Melbourne). Hospital names were replaced with alphanumeric codes 
prior to analyses. All episodes of care were eligible for inclusion in the study. Data were 
collected in early 2020 and arranged into training (2017 and 2018) and testing datasets 
(2019), maintaining the temporal order based on patient arrival times. The training dataset 
was used for exploratory analysis and learning prediction models. The testing dataset was 
used to internally and externally validate the prediction models. Further retrospective data 
were collected from three emergency departments, for the period of January 1st 2020 to 
June 30th 2020 coinciding with major variations in emergency attendances secondary to 
COVID-19 concerns (April, May 2020). These data were used to evaluate the stability of 
model performance during unexpected circumstances.  

Variables 
Variables used in this study are presented in Appendix 1a. Variables collected after 
triage/registration were excluded from the models, except those required for calculation of 
the dependent variables. We used 19 predictor variables (13 VEMD and six derived) in total.  
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Outcomes 
The primary outcomes of this study were triage-to-provider wait times for all patients, 
predicted at triage. Secondary outcomes included the accuracy of each predictive model 
(internal validation); determining if a global model or individual models performed better; 
identifying the best technique to generate these models; the relative contribution of each 
variable to the models; assessment of how each model performs at different sites (cross-
site, external validation) and evaluation of how the models perform during COVID-19 
conditions or unusual circumstances.  Researchers weren’t blinded to outcomes. The 
outcome choices and definitions were informed by a large, multisite, qualitative study of 
community members, consumers, paramedics and health administrators.[5] These 
participants recommended a prediction accuracy of +/- 30 minutes (unpublished data). 

Analysis 

Study size 
We used time-based sampling similar to previous studies of wait time prediction that have 
used time periods ranging from one month to one year.[6-8] We obtained three years of data 
from each hospital to account for seasonal variations in patient visits. Multiple hospitals were 
enrolled to allow cross-site validation evaluations. The accepted convention of using a 
minimum of 30 to 50 data points per variable was applied. 
 
Data cleaning, outliers and missing data 
Patient data rows were checked for missing values related to the primary outcomes and 
episodes were removed from analysis if the primary outcome variables were missing. We 
therefore removed patients who left without being seen by a provider (n=133,204 (6.85%)). 
Other missing values were replaced with “unknown” or “other” categories using VEMD 
descriptors. Three hospitals did not collect ambulance data. The total number of unique 
patient episodes where the value of at least one of the predictor variables is “unknown/other” 
is (n=1,733,247), covering a total of eight predictor variables (Appendix 1b). 
 
Negative values for triage-to-provider time (n = 236 (0.01%)) were removed from the 
analysis. We also removed patient data where the wait time exceeded the maximum of 360 
minutes and the predefined statistical outlier threshold value (defined as 1.5 times the 
interquartile range (IQR = Q3 - Q1) over Q3) which were mainly generated by administrative 
data entry errors for triage-to-provider time (n = 13,612 (0.7%)). 
 
Standardising and encoding data 
Hospitals providing non-VEMD formatted data (Queensland) had their data converted to 
VEMD format. One-hot encoding[11] was applied to all categorical variables prior to 
prediction model development as all categorical variables were nominal with the exception of 
triage category. We assessed that it was preferable to lose order information for triage by 
applying one-hot encoding than to treat triage category as a continuous variable as the 
distances within levels of triage category were non-linear.  
 
Model building and recalibration 
Python scikit-learn and statsmodels modules were used for machine learning model 
development. Guided by wait-time prediction literature,[7-9,12] we used three statistical and 
machine learning techniques (i.e., linear regression, random forests, and elastic net 
regression) and a rolling average approach (i.e., the average calculation of the outcome of 
previous k = 4 observations). We included all predictor variables in model construction and 
undertook a post-hoc variable importance analysis. We rebuilt the models with the most 
important variables only and compared the performance of the simplified models to the initial 
models. To foster future replications, we provide code snippets for model construction in an 
online repository: https://doi.org/10.5281/zenodo.459978. 
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The “last-k” variable is the average triage-to-doctor wait time for the last “k” patients seen by 
a provider. To determine the appropriate value of “k” for this study, we performed a 
sensitivity analysis by observing the performance of prediction models constructed using 
different k values (i.e., 3-10). We found that the performance differences are statistically 
indistinguishable across different k values. We selected the k value of 4 for this study, which 
produced models with the best performance. 
 

Validation 
For site-specific accuracy testing (internal validation), we used a time-wise hold-out 
validation approach.[13] Patient records were sorted for each hospital by their arrival time. 
Data from 2017-18 were used to construct site-specific prediction models for all individual 
hospitals, while 2019 data were used to evaluate prediction models within each hospital. For 
cross-site comparisons of site-specific models, we used a time-wise cross-site approach.[19] 
The site-specific models were tested using 2019 data from other hospitals (e.g., train with 
Hospital A data from 2017-18, then test with Hospital B data from 2019), resulting in 132 
pairwise combinations.  
 
We undertook geographical cross-state testing (external validation). Global prediction 
models were constructed using 2017 and 2018 data from hospitals in Victoria and evaluated 
using 2019 data from Queensland. We also tested the global model performance against 
combined 2019 Victorian all-site data. 
 
We used two boosting ensemble techniques (light GBM and eXtreme gradient boosting) and 
one hyperparameter optimised implementation of random forests (Random Forests (HPO)) 
in our model validation. We found non-statistically significant improvements using these tools 
and as they came at considerable computational cost, we excluded them from the main 
analysis. 
 
For validation during unexpected events, we compared model accuracies between the first 
six months of 2019 (surrogate for normal conditions) and the first six months of 2020 
(surrogate for unexpected events, e.g. COVID-19), using data and models from three 
emergency departments. 
 
To assess model performance, we calculated the Absolute Errors (AE) between the actual 
time and the predicted time for all models and hospitals. We then calculated the median of 
these distributions of Absolute Errors (MAE) to identify the best model for and across 12 
hospitals. 
 
Statistical methods 
Scott-Knott effect size difference test was used to identify performance ranking, based on 
MAE, of the prediction models for internal validation.[15] The Scott-Knott effect size 
difference test is a multiple comparison approach that produces statistically distinct and non-
negligible (effect size) groups of distributions. We used the implementation provided by the 
sk_esd function of the ScottKnottESD R package version 2.0.3. Mann Whitney U tests were 
used to identify whether the performance (MAE) difference between two models was 
statistically significant, then Cliff’s delta tests,[16] ldl, were used to measure the effect size. 
The interpretation of Cliff’s delta values is as follows: ldl < 0.147 negligible, ldl < 0.33 small, 
ldl < 0.474, otherwise large.[17] We used cliff.delta function of the effsize R package version 
0.7.8 for calculating Cliff’s delta. For all statistical tests, we used a statistical significance 
level of  � = 0.05 and sought non-negligible effect sizes. 
 
Patient and public involvement 
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The primary outcome of this study was determined by a qualitative study involving patients, 
the public and other stakeholders.[5] Consumers and community stakeholders contributed to 
the design and write up of the study. 

Results 

Characteristics of study subjects 

Twelve emergency departments contributed data. Two sites were unable to obtain ethics 
approval (regional referral, medium metropolitan). Flow through the study is presented in 
Figure 1. Department and patient demographics are presented in Table 1. The total number 
of patient episodes included in the study were 1,930,609 with 1,388,509 in the training and 
542,100 in the testing datasets. Overall admission rates were 29% and 23% of patients 
arrived by ambulance.  

Insert Figure 1 here 
 

Table 1. Emergency department and patient demographics 

ED 

Type of 
ED 
(AIHW)* 

Patients 
in 

Training 
dataset 

(n) 

Patients 
in 

Testing 
dataset 

(n) 
Females 

(n,%) 
Admissions 

(n,%) 

Median 
age of 

patients 
(median, 

IQR) 

Ambulance 
patients (n, 

%) 

 

Angliss 
Medium 
metro 76,709 39,895 

60,332 
(52%) 

41,933 
(36%) 

35 (IQR 
16,58) 

20,038 
(17%) 

 

Box Hill 
Large 
metro 130,499 67,103 

101,365 
(51%) 

115,008 
(58%) 

47 (IQR 
23,72) 

65,575 
(33%) 

 

Cabrini 

Private 
(not-for-
profit) 45,314 28,138 

40,857 
(56%) 

32,900 
(45%) 

Not 
Available Not Available 

 

Casey 
Medium 
metro 151,227 61,062 

112,887 
(53%) 

42,233 
(20%) 

35 (IQR 
18,56) 

43,850 
(21%) 

 

Clayton 
(Adult) Major 132,602 52,868 

95,032 
(51%) 

60,963 
(33%) 

53 (IQR 
35,73) 

68,678 
(37%) 

 

Clayton 
(Children) 

Specialist 
children’s 75,271 35,298 

48,115 
(44%) 

15,973 
(14%) 

5 (IQR 
3,10) 

12,117 
(11%) 

 

Dandenong 
Large 
metro 165,795 61,470 

112,526 
(49%) 

61,066 
(27%) 

42 (IQR 
25,64) 

73,891 
(33%) 

 

Gold Coast 
University 
Hospital Major 215,034 29,426 

121,449 
(50%) Not Available 

36 (IQR 
19,59) Not Available 

 

Maroondah Major 109,431 55,355 
82,013 

(49.77%) 
81,652 
(50%) 

43 (IQR 
21,65) 

56,002 
(34%) 

 

Robina 
Medium 
metro 121,406 20,345 

72,561 
(51%) Not Available 

43 (IQR 
23,66) Not Available 

 

St Vincent's Major 97,575 52,671 
68,413 
(46%) 

65,693 
(44%) 

52 (IQR 
37,76) 

58,831 
(39%) 

 

Werribee 
Medium 
metro 67,646 38,469 

56,937 
(54%) 

40,953 
(39%) 

39 (IQR 
25,60) 

24,147 
(23%) 

 

Totals  1,388,509 542,100 
971,487 

(50%) 
558,374 

(29%) 
43 (IQR 
23, 65) 

423,129 
(22%)  

*AIHW = Australian Institute of Health and Welfare  
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Wait time proportional distributions were similar throughout sites, although specific wait 
times at each site varied, with a median site range of 24-54 minutes for triage-to-provider 
time (Figure 2). Distribution of outcomes are right skewed but we did not apply any 
transformation to require positive predictions, since predictions of negative values are 
expected to be rare events and can be replaced with zero in deployment.[6] 
 

Figure 2 here 

Main results 
Internal validation of site-specific models (same hospital, using later time period):  
The performance rankings produced by the Scott-Knott effect size difference test showed 
that Random Forests and Linear Regression performed the best (1st rank) for all studied 
hospitals (n=12) followed by Elastic Net (n=11) and Rolling Average (n = 5). Random 
Forests, Linear Regression, and Elastic Net outperformed Rolling Average at seven 
hospitals. The Median Absolute Error (MAE) of Random Forests varied from 22.6 minutes 
(95% CI = [22.4, 22.9]) for H7 to 44.0 minutes (95% CI = [43.4, 44.4]) for H2. The 
distributions of the absolute errors of internal validation for ED wait-time (triage-to-provider) 
prediction are shown (Figure 3). The prediction models predicted a wait time to within +/- 30 
minutes of the actual wait time between 40 and 63% of the time, depending on the site. 
 

Figure 3 here 
 
The performance differences between Random Forests and Linear Regression were 
negligible for all hospitals according to Cliff’s delta effect size. Rolling average models 
consistently underestimated patient wait times. More details regarding the actual errors are 
shown in Appendix 1c. 
 
Variable Importance Analysis: 
Triage Category (median importance score = 65%, IQR (54%, 74%)), Arrival Time (Hour) 
(median importance score = 15%, IQR (12%,25%)), and the average wait time of the last k-
patients (median importance score = 15%, IQR (7%,21%)) were the three most important 
Random Forest predictive variables across all sites. The distributions of importance scores 
are shown in Figure 4.  

Figure 4 here 
 
Simplified models were built with the top-ranked variables, which accounted for 95% of the 
relative variable importance. They demonstrated similar accuracy to full models with all 
variables. Performance differences between Random Forest simplified models and full 
models were not statistically significant and had negligible effect sizes for all hospitals. 
Distributions of the absolute errors of these simplified models are shown in Appendix 1d. 
 
Site-specific model performances at other single sites: 
Single site models perform better for the specific hospital they were developed for, 
compared to other sites. Out of 132 pairwise Random Forest combinations, 119 
combinations had statistically significant performance differences with negligible to medium 
effect size. Ninety-seven (~82%) yielded higher errors by 0.02-39.6 minutes and 22 (~20%) 
yielded lower errors by 0.01-12.4 minutes compared to their site of origin. This suggests that 
site-specific patient wait time prediction models are not transferable to different hospitals. 
The distributions of absolute errors for triage-to-provider time prediction are shown in 
Appendix 1e. 
 
Global model performance: 
Multi-hospital global models that were constructed from Victorian 2017-18 data performed 
similarly when tested with 2019 data from hospitals in Victoria and Queensland. The global 
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models didn’t perform as well as site-specific models. The Median Absolute Errors (MAE) of 
these global models varying from 32.2 minutes (95% CI = (32.1, 32.3)) for Linear Regression 
to 42.6 minutes (95% CI = (42.5, 42.7)) for Elastic Net when tested with Victorian hospital 
data, and varying from 36.1 minutes (95% CI = (35.6, 36.6)) for Linear Regression to 42.4 
minutes (95% CI = (42.1, 42.7)) for Elastic Net when tested with patients from hospitals in 
Queensland. The distributions of the absolute errors of these global models are shown in 
Figure 5. 
 

Figure 5 here 
 
Impact of COVID-19 on model accuracy: 
Three hospitals provided 2020 data (n = 74,398) covering some of the reduced attendances 
COVID-19 period in Victoria. We observed that patient wait time models that were built using 
past data from 2017 and 2018 still performed at reasonable accuracy with MAE differences 
ranging from 0.03-6.0 minutes. Though these performance differences are statistically 
significant, except for Random Forests at H10 and Elastic Net at H12, the effect sizes were 
all negligible for these hospitals. Three models yielded higher errors by 1.7-5.00 minutes and 
four yielded lower errors by 0.5-6.0 minutes. Distributions of the absolute errors of models 
during COVID-19 are shown in Appendix 1f. 

Limitations 

Limitations of the study include using only administrative demographic and ED flow data, 
and using only Australian data. There are no direct measures of resource availability or 
processes within the ED (e.g. nursed cubicles, streaming within the ED); hospital capacity 
(e.g. available beds) or community resourcing (e.g. ambulances to transport patients to 
nursing homes). There were also no measurements of patient comorbidity or diagnosis used 
in the models. Inclusion of this information may improve prediction accuracy in future 
models. Excluding did not wait patients or including triage category 1 patients from the study 
may have over or underestimated true wait times. Additionally, we don’t have information 
about how this model would perform during a disaster with a rapid surge in attendances. 
Models present general estimates of patient wait times for those arriving at the emergency 
department, they don’t generate individualised wait times for each patient. 
 
Models can generate nonsensical outputs, for example linear regression can generate 
negative predictions which do not make practical sense. In practice, negative predictions can 
be replaced with 0. We observe the best prediction results in H7 which is the only hospital 
where wait-time predictions, from an in-house developed model, are shared on their website 
and on site. This may have affected the behaviour of lower acuity patients in choosing to visit 
H7 with more flexibility, at times when less waiting is expected, which could have resulted in 
a more homogenous – and easier to model – distribution than the other hospitals in our 
sample. Machine learning models may or may not introduce or amplify bias in healthcare. 
There are currently no reliable ways of testing for bias in machine learning when applied to 
healthcare datasets (personal communication, Dr Aldeida Aleti, Monash University) and so 
we are unable to determine if these outputs are biased for or against any particular group of 
patients. 

Discussion 

In summary, using emergency patient demographic and flow data from 12 studied hospitals, 
it is possible to build triage-to-provider predictive waiting time models to an accuracy of +/- 
22.6 to 44.0 minutes. Predictions were within +/- 30 minutes of the actual wait time between 
40% and 63% of the time, varying by site. The best performing models used Random 
Forests and linear regression methods for triage-to-provider prediction. Average wait time of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.19.21253921doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253921


12 

the last k-patients, triage category and patient arrival time were the most important predictor 
variables. Accuracy is reduced when a model developed for one site is used at another site 
or a global model (developed by multiple sites) is used. When special events occur such as 
COVID19 reduction in attendances, prediction accuracy is maintained. 
 
To our knowledge, this is the largest study of its kind to date. The accuracies obtained for 
triage-to-provider times (23 to 44 minutes) are less than those reported from a Singapore 
study.[6] Sun et al. built different models for each acuity level and this approach to prediction 
at a finer granularity level may explain the performance difference. They omitted acuity 
category 1 and reported accuracies of 11.9 minutes for acuity category 2 and 15.7 minutes 
for acuity category 3. We chose a single prediction based on consumer feedback that triage 
categories are not understood by patients and families.[5] Ang et al. modelled low-acuity 
patients only and reported performance in terms of Mean Squared Error, arguing that 
median based measures tend to underestimate due to right skewed distribution of wait-
times.[7] We observed this with Rolling Average models, but not others. Ang et al. reported 
9.4 minutes for non-absolute median error, which we outperform at a range of 1.1 to 8.9 
minutes depending on the site, even after inclusion of all triage categories in the analyses.[7] 

Importantly, we found that using a model developed for one site will come at a cost in 
accuracy for the new site, prompting caution prior to promoting a “one size fits all” model. 
Models developed for one site can be applied at other sites, but lose accuracy. The global 
models may reduce time and cost spent developing individual models but are less accurate 
at individual sites. External validation of data science models should be undertaken prior to 
implementation at new jurisdictions, particularly where clinical care decisions might be 
assisted by machine learning algorithms or models. 

This is the first literature describing how models perform during unusual events. We 
demonstrated that COVID19 lockdowns didn’t have a negative impact on model accuracy. In 
Australia, this period of time was one of both significantly reduced emergency attendances 
and reduced productivity for physicians due to the increased complexity of managing 
patients and departments.[18] These data don’t cover periods of surge. 

Qualitative work has shown that patients want access to wait times and would use times to 
address a large variety of needs.[5] This study has shown that it is possible to predict 
approximate wait times, however it has also demonstrated that the range of predictions is 
less accurate than desired by stakeholders. Some information about wait times may still be 
useful to patients, even if the prediction range is broad. Overestimated and underestimated 
predictions may be perceived differently by patients and families. Overestimated predictions 
may be perceived positively if patients wait a shorter time than predicted, but could deter 
patients from seeking care. Random Forests tend to overestimate more than linear 
regression. Rolling average models underestimated wait times the most (Figure 5) and could 
either make emergency flow seem better than it is, or generate dissatisfaction from patients 
when waits exceed predictions.[19-23]  
 
In summary, using limited data available at point-of-care, wait times can be predicted to +/- 
23 to 44 minutes. Models should be individually built for each hospital and are likely to 
perform the same during COVID-19 like conditions. 
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Figure 1. Participant flow through study

Sites expressing interest n=14
Sites providing data n=12

Sites unable to provide data n=2
• Unable to obtain IRB approval n=2

Emergency
Departments

Patient 
episodes

Total number of patient episodes        
n=2,077,661
Patient episodes 
• Available for analysis n=1,930,609
• Used in analysis n=1,930,609
• Reported in analysis n=1,930,609

Data 
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Time-wise site-specific and cross-site 
comparisons
Patient episodes
• Used in training datasets (2017-18) 

n=1,388,509
• Used in testing datasets n=542,100 

(2019)

Sites n = 3
Patient episodes n=74,398
Ambulance episodes n=0

Global model, geographical comparisons
Patient episodes
• Global model Victorian training dataset 

n=1,052,069 (2017-18)
• Victorian testing dataset n=492,329 (2019)
• Queensland testing dataset n=49,771 (2019)

COVID19 analysis
Additional data (2020)
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Figure 2. Site distribution of triage−to−provider wait times.
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