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Abstract 

Background: It is a key concern in psychiatric research to investigate objective measures to 

support and ultimately improve diagnostic processes. Current gold standard diagnostic 

procedures for attention deficit hyperactivity disorder (ADHD) are mainly subjective and 

prone to bias. Objective measures such as neuropsychological measures and EEG markers 

show limited specificity. Recent studies point to alterations of voice and speech production to 

reflect psychiatric symptoms also related to ADHD. However, studies investigating voice in 

large clinical samples allowing for individual-level prediction of ADHD are lacking. The aim of 

this study was to explore a role of prosodic voice measures as objective marker of ADHD.  

 

Methods: 1005 recordings were analyzed from 387 ADHD patients, 204 healthy controls, 

and 100 clinical (psychiatric) controls. All participants (age range 18-59 years, mean age 

34.4) underwent an extensive diagnostic examination according to gold standard methods 

and provided speech samples (3 min in total) including free and given speech. Paralinguistic 

features were calculated, and random forest based classifications were performed using a 

10-fold cross-validation with 100 repetitions controlling for age, sex, and education. 

Association of voice features and ADHD-symptom severity assessed in the clinical interview 

were analyzed using random forest regressions.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.18.21253108doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.03.18.21253108
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Results and Conclusion: ADHD was predicted with AUC = 0.76. The analysis of a non-

comorbid sample of ADHD resulted in similar classification performance. Paralinguistic 

features were associated with ADHD-symptom severity as indicated by random forest 

regression. In female participants, particularly with age < 32 years, paralinguistic features 

showed the highest classification performance (AUC = 0.86).  

Paralinguistic features based on derivatives of loudness and fundamental frequency seem to 

be promising candidates for further research into vocal acoustic biomarkers of ADHD. Given 

the relatively good performance in female participants independent of comorbidity, vocal 

measures may evolve as a clinically supportive option in the complex diagnostic process in 

this patient group.          

 

 

Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition defined 

by symptoms of inattention, hyperactivity, and impulsivity, which impair quality of life, social, 

and academic outcome [1, 2]. Core symptoms are often accompanied with emotional 

irritability, disorganized behavior and problems of self-concept, as well as in 

neuropsychological domains including executive functions and working memory. Comorbid 

psychiatric symptoms and disorders occur very frequently, especially in adults. The condition 

is highly prevalent worldwide with estimates of 5% prevalence in childhood and about 1.5% 

in adults resulting in functional and occupational impairments with sequelae like academic 

and social failure [3, 4]. Current ADHD diagnostic work up according to international 

guidelines [5, 6] is built around rater depended assessment tools (including a diagnostic 

interview as well as self- and third-party-reports and rating scales). These are however 

subjective procedures and therefore prone to biases [7]. Additionally, memory-recall biases 

occur when adults are asked to trace back childhood symptoms. Limitations of this current 

diagnostic gold standard have been published and the clinical practice is criticized for mis-, 

over- or under-diagnosing ADHD [8, 9], which can lead to the inappropriate prescription of 

medication, failure to prevent chronification, and poor psychosocial development [4]. Thus, a 

major aim in psychiatric research is to develop (objective) biomarkers, in order to help 

improve the diagnostic process and accuracy.  

While various objective measurement techniques have provided valuable information in 

ADHD, none have yet been accepted into routine diagnostics, mostly because they lack 

convincing accuracy and/or have limited practicality as outlined in the following. 

Neuropsychological tests have detected impaired sustained attention and working memory 

deficits in patients with ADHD compared to healthy controls [10]. However, minimal 
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differences between groups of patients and clinical controls have been reported given large 

intra-individual variation in performance [11]. Combined cognitive performance and 

actigraphy measures have shown reasonable correct classification rates for ADHD cases 

compared to healthy controls [12], however, separation from clinical controls is poor [13-15]. 

A huge body of research report EEG changes in ADHD, such as deflected theta/ beta ratio 

or an unstable sleep microstructure [16], but recent meta-analyses indicate a very limited 

diagnostic value of this approach [17, 18]. In neuroimaging, ADHD specific magnet 

resonance imaging (MRI) markers have been identified [19-21] and ADHD related changes 

in structural and functional connectivity have been reported [22-25]. Studies to investigate 

individual prediction have yielded lower accuracy in out of sample performance, partly due to 

variance related to different MRI scanners. Moreover, neuroimaging techniques are among 

the least practical to implement in routine care. In summary, while laboratory tests such as 

neuropsychological tests, EEG or MRI may add to the diagnostic process of ADHD in order 

to rule out somatic or metabolic differential diagnoses, a robust, clinically feasible ADHD 

biomarker has yet to be identified. 

Recently, the analysis of voice and speech anomalies as a potential biomarker has gained 

considerable interest in neurologic [26] and psychiatric diseases [27-29]. The field 

recognizes the potential of an individual-level prediction using machine learning 

classification approaches and the possibility of objective, non-invasive, time and cost-

efficient assessments in clinical settings including remote options (telephone or voice over 

the internet) [30]. Voice conveys information on multiple levels, such as volume, pitch, rate, 

and pauses. It reflects a broad underlying central nervous system involvement including 

networks and structures known to be affected in ADHD [31]. Neurophysiologically, speaking 

is shaped by vocal fold actions and sounds are filtered and articulated by sound production 

mechanisms of other articulators, as well as the pharynx, mouth, tongue and lips. Speaking 

is described as using more motor fibers than any other body activity, forming up to 30 

phonetic segments per second [32], which underlies the intricate modulation and qualities of 

sound signals. Speech production is believed to involve extensive neural networks and be 

dependent on dopaminergic transmission, executive functions, and working memory [33]. 

Speech output is continuously being monitored by proprioceptive and auditory loops, [34-37] 

and deficits in speech production and auditory perception related to impairments in working 

memory and executive functions have been reported in ADHD (reviews at [34-37]).  

Voice, perceived as a complex psychomotor task, should therefore naturally yield 

differences between ADHD and healthy controls. Some observations point into this direction: 

Children with ADHD and to some degree their parents poorly modulate voice volume, speak 

louder and for longer stretches, exhibiting signs of hyperfunctional voice disorder [38, 39]. 

They have higher subglottal pressure and lower transglottal airflow [38], which could result 
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from heightened muscle tone in the glottis due to ADHD-associated increases in tonus 

[40, 41].  

Taken together, in ADHD, voice is a rich source of information that may be used in individual 

diagnostic prediction in combination with machine learning methods, as has been studied in 

other psychiatric disorders such as schizophrenia [42] and depressive disorders [30] but so 

far not in ADHD. Given the (dopaminergic) alterations in brain functioning in ADHD, voice 

and speech production are possibly altered to a degree that may pertain to changes in 

speech production that could ultimately support clinical decision-making. The aim of this 

study is to determine whether prosodic voice features recorded in brief, clinically feasible 

speech tasks may allow for a differentiation of ADHD from healthy probands and possibly 

also probands with mental disorders other than ADHD using a machine learning based 

statistical approach.  

 

Methods 

Subjects 

563 adult probands were recruited at our specialized adult ADHD outpatient clinic, 387 of 

which were subsequently diagnosed with ADHD (see table 1) and 100 of which were 

diagnosed with other mental disorders (see table S3 for diagnostic distribution in this group) 

but did not fulfill the diagnostic criteria for ADHD. 76 patients were excluded from further 

analyses due to positive drug screenings (n = 55), technical deficits of the recordings (n=7), 

or because they showed subclinical ADHD symptoms, but did not fulfill the criteria for ADHD 

or other mental disorders after the diagnostic evaluation (n = 14). All participants were asked 

to provide a voice recording before undergoing a standardized diagnostic procedure.  

In addition, 204 non-patient adults were recruited as healthy controls through public 

announcement. Healthy Controls had no history of past or present neuropsychiatric 

conditions. All participants were aged between 18 and 59 years and all gave written 

informed consent (see Box S1 in Supplement for full inclusion/ exclusion criteria). A detailed 

sample description is provided in Table 1, and S2. The authors assert that all procedures 

contributing to this work comply with the ethical standards of the relevant national and 

institutional committees on human experimentation and with the Helsinki Declaration of 

1975, as revised in 2008. All procedures involving human subjects/patients were approved 

by the local ethics committee, the approval number is EA4/014/10. The study was registered 

as a clinical trial (ClinicalTrials.gov Identifier: NCT01104623).  
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Table 1 Sample description 

 male female total 

All participants 388 379 767 

Age (years, Mean; SD) 34.3 (10.5) 33.4 (9.8) 34.4 (10.6) 

ADHD (all) 221 166 387 

     ATT 117 81 198 

     COM 104 85 189 

     ADHD with comorbidity 117 84 201 

HC 75 129 204 

PC 36 64 100 

Excluded 56 20 76 
ATT = inattentive ADHD subtype; COM = combined inattentive and hyperactive / 
impulsive ADHD subtype; HC = healthy controls; PC = psychiatric controls 
 

Diagnostic Procedure 

ADHD diagnoses were obtained through a multi-informant, multi-method approach with 

psychological and medical assessment. All patients were assessed by trained and licensed 

psychologists and psychiatrists affiliated with the specialized ADHD adult outpatient clinic of 

the Charité University Hospital, Berlin, Germany. The diagnostic procedure was structured 

in accordance with recommended practice of national and international guidelines [43]. The 

diagnostic procedure represents a current “gold standard” for the diagnosis of ADHD in 

adults and included a clinical/diagnostic (DSM-) interview, review of client history (including 

developmental, medical, academic and social background) and relevant documentation, 

behavioral observations, completion of self- and third party-report and standardized ADHD-

specific rating scales each for childhood and adult age. These evaluations were completed 

over two sessions with up to 8 hours of assessment (Table 2). 

To evaluate ADHD-related symptom severity, a clinical interview was performed by a 

senior clinician according to DSM-related criteria [43], the ADHD-DC scale [44]. In addition 

to 18 items covering inattention, hyperactivity, and impulsivity symptoms, the age of onset, 

symptoms related burden, general burden and reduced social contacts are rated on 0-3 

point likert scales; 22 items in total, sum scores 0 - 66.  

 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.18.21253108doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.18.21253108
http://creativecommons.org/licenses/by-nd/4.0/


 6 

Table 2. Diagnostic procedure  

Psychiatric assessment 

 Patients Healthy controls 

Psychiatric/ psychological examination, psychiatric history + + 

SKID I + + 

SKID I / II +  

BDI II +  

Medical examination, +  

medical and psychiatric history + + 

Blood tests, including screening for thyroid conditions +  

Drug tests + + 

ADHD specific assessment 

ADHD-CL ADHD-Checklist for DSM-IV 1  + + 

WURS-k Short version of the Wender Utah Rating Scale 2 + + 

Semi-structured clinical interview following DSM-IV-TR  +  

Second party reports, school reports +  

Diagnostic procedure according to the guidelines of the German Society for Psychiatry, Psychology and –Neurology, 
Psychosomatics (DGPPN)  1: [44] 2 [45], German version [46] 

 
 

Voice Recordings 

High quality sound samples were recorded prior to the clinical evaluation so that participants 

and recording technicians were unaware of the diagnostic results. Since the probands had 

multiple clinical appointments and each appointment was preceded by the same recording 

task, multiple recordings of the same probands were recorded using the identical procedure. 

Participants spoke into a headset microphone (C555L AKG) and signals were recorded in 

16-bit/22.5 kHz sampling rate on a PC followed by cutting and labeling procedures as 

preparation for the sound analysis via the “Fast Track” Interface (MediTECH Electronic 

GmbH). Prior to the actual recording, the instructions for the participants were recorded and 

played back through this interface in order to minimize the effects of interactions with the 

recording technicians and ensure a standardized recording procedure. All participants were 

asked to speak the following utterances: spoken single vowels and consonants, reading out 

of a given text, counting from one to ten (two trials) and free speech of around 120 seconds 

duration of a free topic, e.g. the last weekend/ holidays (see Table S4). All data were 
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collected under identical recording conditions in a clinical examination office. From any given 

participant, a maximum of three recordings was included in the final analysis as separate 

data points.  

From an initial 1029 voice recordings from 767 participants (including the participants that 

were later excluded), 24 recordings were excluded due to technical problems of the 

recordings (e.g., low volume) or due to multiple recordings, i.e., more than three recordings 

of the same person. From the remaining 1005 recordings, 85 recordings were excluded: (a) 

due to positive drug screenings of the probands (n = 60), because participants showed 

subclinical ADHD-symptoms but did not qualify for ADHD or other mental disorders (n = 24) 

or due to severe cold (n = 1). Thus, a total of 920 recordings were included in the 

classification steps, using 1 - 3 recordings of each participant.    

 

Feature generation and data analysis 
 
Paralinguistic features were calculated, so only prosodic information but no semantic content 

was analyzed. Only the utterances based on free speech and counting were included in the 

analyses, spoken words and single sounds were not included into further analyses. 

Following a Fourier transformation of the voice recordings [47], paralinguistic features were 

calculated in two feature groups pertaining to the contour of loudness and the contour of 

fundamental frequency [48-50]. In brief, loudness was transformed to loudness as perceived 

by humans (i.e. Sone) based on the model of subjective loudness by Zwicker [51]. The 

loudness was then averaged over 24 different time frames with durations between 0.025 

seconds and 4 seconds (see Box S2). Characteristics of the loudness curves like slopes, 

peaks, and curvatures of the respective time frames were calculated. For a second set of 

features, the fundamental frequencies were calculated and transformed on a logarithmic 

scale. The resulting curve was again averaged over the same 24 different time frames, and 

the characteristics (slopes, peaks, curvatures) of the melody curve belonging to the 

respective time frames were calculated [52]. To account for statistical effects related to the 

dimension time of the recordings, the curves of the respective features were fitted to multiple 

high-dimensional vectors resulting in a total of 6045 raw features.  

Prior to the classification, initial filtering was performed to eliminate features with very low (< 

2.2 e -16) variance (n=0) and variables with less than 100 unique values (n=4), resulting in 

6041 features that were included in the further analyses. Random forest (RF) classifications 

were performed within MATLAB Version 2020a using the Tree-Bagger algorithm using 500 

trees in 10-fold cross-validation repeated 100 times. Confounds (sex, age, education) were 

regressed from each feature separately using linear regression in a cross-validation 

consistent manner, i.e., the regression model was estimated on the training fold and applied 
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to the training and validation folds and the residuals retained as confound-free features. 

Classification performance was estimated using the area under the receiver operating 

characteristic (AUC-ROC, in the following termed AUC).  

To assess the prediction capacity of the voice features with regard to continuous variables 

such as ADHD symptom severity according to the ADHD-DC scale, age and education, we 

calculated random-forest based regression models with 100 trees also within the cross-

validation folds described above with 100 repetitions. Mean absolute error of the regression 

and Pearson’s correlation between actual and predicted variables were calculated as 

performance measures. To compare Pearson’s coefficients, we first calculated Fisher r-to-z 

transformations and then performed a conservative version of t-tests as proposed by 

Nadeau and Bengio [53] to account for the possibility of bias related to cross-validation 

analyses.  

In order to explore the prediction accuracy over different subgroups (i.e., gender, age-

groups) thus further delineating the relevance of age and gender to voice analyses, we 

calculated group comparisons of male/ female subgroups and of two age groups of 

comparable sample size (median age 32 years). Group comparisons were performed using 

t-tests in a similar manner as described above. To evaluate the relevance of specific 

features and speech tasks for the classification of ADHD, the feature importance was 

assessed as defined by the permutation of out-of-bag predictions as implemented in 

MATLAB [54]. The top ten features were extracted for further evaluation.  

 
 
Results 

Descriptive results 

As expected, ADHD probands showed a significantly higher symptom severity according to 

the sum score in the clinical interview than healthy and clinical control group probands (see 

Table 3). Comparisons with excluded subjects remained non-significant.  

Within the ADHD-group, the symptoms in the subscale “Inattention” were more pronounced 

than in the subscale “Hyperactivity/ Impusivity”, though of note, the latter showed a higher 

variance as indicated by a significant Levene’s test. Moreover, female ADHD-participants 

showed more pronounced “Hyperactivity” than male ADHD-participants, and this applied to 

participants from the ADHD-subgroup with combined symptoms (Inattention/ Hyperactivity-

Impulsivity) compared to participants in the subgroup with predominantly “Inattention”. The 

comparisons of test-psychological results among age-groups of similar size revealed no 

significant group differences.  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.18.21253108doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.18.21253108
http://creativecommons.org/licenses/by-nd/4.0/


 9 

 

 

Table 3 Testpsychology 

 Clinical Interview 

M ± SD 
Inattention  
M ± SD 

Hyperactivity/ 
Impulsivity  
M ± SD 

W.U.R.S.-k  

M ± SD 

BDI - II 

M ± SD 

ADHD, PC, HC  29.8 ± 16.6 4.9 ± 3.2 3.6 ± 2.9 30.1 ± 18.1 12.7 ± 9.1 

ADHD 40.0 ± 8.3 7.0 ± 1.7 2 4.9 ± 2.5 2 38.9 ± 12.9 13.3 ± 8.9 

ADHD - male 40.5 ± 8.3 7.0 ± 1.7 4.7 ± 2.5* 39.4 ± 12.9 12.7 ± 8.7 

ADHD - female 39.3 ± 8.3 6.9 ± 1.6 5.2 ± 2.6* 38.3 ± 12.9 14.0 ± 9.2 

ADHD - ATT 35.1 ± 7.3** 7.0 ± 1.6 2.8 ± 1.6** 36.6 ± 11.6** 13.3 ± 9.0 

ADHD - COM 44.7 ± 6.6** 6.9 ± 1.8 7.0 ± 1.1** 41.5 ± 13.7** 13.0 ± 8.9 

ADHD < 32 y 1 40.2 ± 8.0 7.0 ± 1.5 4.7 ± 2.6 38.0 ± 11.8 13.7 ± 9.0 

ADHD >= 32 y 1 39.5 ± 8.9 6.8 ± 1.8 5.0 ± 2.5 39.8 ± 13.7 12.8 ± 8.8 

HC 5.2 ± 4.4*** 0.5 ± 0.8*** 0.5 ± 0.8*** 6.6 ± 6.5*** 3.2 ± 2.8*** 

PC 23.3 ± 12.2 3.3 ± 2.5 2.7 ± 2.3 23.7 ± 13.8 14.9 ± 8.8 

Excl. Particip. 35.9 ± 11.6 5.5 ± 2.4 4.5 ± 2.6 39.1 ± 15.4 16.5 ± 9.3 

ATT = inattentive ADHD subtype; COM = combined inattentive and hyperactive / impulsive ADHD subtype; HC = 
healthy controls; PC = psychiatric controls; W.U.R.S.-k = Wender-Utah-Rating-Scale short form; BDI = Becks-
Depression-Inventory; * p < 0.05 in comparisons of sex; ** p < 0.001 in comparisons ATT vs COM; *** p < 0.001 in 
comparisons ADHD vs HC; 1: Comparisons between age-groups of ADHD-Participants remained non-significant; 
2: Comparing the variance of Inattention and Hyperactivity with Levene’s test indicates higher variance in 
Hyperactivity than in Inattention 
 

 

Classification  

The classification of patients and healthy controls using vocal per subject controlling for 

effects of age, sex and education resulted in a classification threshold invariant AUC = 0.76 

(see Table 4, Figure 1).  

 

ADHD-subtype, sex, age 

The classification showed a largely similar performance in subjects with combined 

symptoms (i.e., including hyperactivity and impulsivity) as compared to predominantly 

inattentive subjects. Analyzing both sexes separately pointed toward a higher AUC in female 

than in male participants (t = 3.3, p = 0.001). A superior performance in female probands 

was also evident when analyzing separate age groups (age < 32: tmale/ female = 2.2, p = 0.03; 
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age > 32: tmale/ female = 2.3, p = 0.03, see also Table 4) and in the non-comorbid ADHD 

sample (male: AUC = 0.68; female AUC= 0.79; t = 3.3, p = 0.001). 

The comparisons of age groups (median age 32 years) indicated a superior classification 

performance in the younger sample (AUC = 0.80 vs AUC = 0.71; t = 2.0, p = 0.04), with the 

highest performance in young female participants (AUC = 0.86).  

 

Table 4 Results of the Classification ADHD vs HC 

Group  AUC  

all  0.76 

male  0.69 

female  0.82 

one recording/ participant  0.76 

excl. stimulants  0.76  

excl. comorbid ADHD  0.75 

ADHD, subtype ATT  0.78 

ADHD, subtype COM  0.79 

  

Age 18 – 31  all 0.80 

(n = 385 recordings) male (n = 202)  0.75 

  Female (n = 183) 0.86 

   

Age 32 – 59  all 0.71    

(n = 416 recordings) male (n = 193)   0.59  

 female (n = 223) 0.74 

ATT = inattentive ADHD subtype; COM = combined inattentive and 
hyperactive / impulsive ADHD subtype; HC = healthy controls 

 

 

Comorbidity, clinical controls, number of speech samples, medication 

The classification of a subsample of ADHD subjects with no comorbidity resulted in a 

comparable AUC-ROC of 0.75, indicating that comorbidities do not affect the prediction 

considerably.  

Calculating the classification of ADHD participants against a psychiatric control group, that 

presented for the evaluation of ADHD, but did not fulfill the clinical criteria of ADHD, showed 

a much lower prediction accuracy (AUC = 0.59). Of note, the psychiatric control group still 

showed elevated symptoms of ADHD as indicated by much higher mean scores in the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.18.21253108doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.18.21253108
http://creativecommons.org/licenses/by-nd/4.0/


 11

clinical interview of ADHD compared to HC (mean sum score psychiatric controls: 23 vs 5 in 

HC; mean sum score 40 in ADHD, see table 3).  

Notably, the performance using a single recording per subject was identical compared to 

including multiple recordings per subject. Excluding subjects taking ADHD medication 

(methylphenidate, atomoxetine) before the voice recording likewise did not change the 

classification performance, although the number of affected recordings was modest (n = 71; 

8.9% of the analyzed sample). 

 

Table 5   Correlation coefficients of true and predicted clinical variables  

  Group n r  t  MAE 

ADHD Clinical Interview all 876 0.45 14.7 12.5 

ADHD Clinical Interview female 457 0.49 12.1 12.9 

ADHD Clinical Interview male 419 0.29 6.3 12.0 

- Hyperactivity all 915 0.36 11.6 2.3 

- Inattention all 915 0.39 12.9 2.6 

Education all 920 0.33 10.5 0.7 

Age all 920 0.52 18.5 7.2 

BDI all 701 0.24 6.6 7.1 

      

ADHD Clinical Interview adhd 554 0.27 6.7 6.3 

- Hyperactivity adhd 571 0.36 9.2 2.0 

- Inattention adhd 571 0.16 3.9 1.3 

Pearsons’s correlation coefficients are given; MAE = Mean absolute error; BDI = Becks Depression 
Inventory; p-value for all analyses < 0.001 
 

 

Correlations of symptom severity using random forest regression 

The results are given in Table 5. The correlations of true and predicted symptoms performed 

in the ADHD-group only indicated associations of voice features and ADHD symptom 

severity r = 0.27, t = 6.7, p < 0.001), that seemed to be related to hyperactive/ impulsive 

symptoms to a larger extent than to inattention (r hyper = 0.36; r inattention = 0.16; comparison: t = 

3.6, p <0.001). However, hyperactivity showed a larger variance than inattention.   

Extending the analysis of ADHD symptom severity and voice features to all participants 

(ADHD, PC, HC), the correlation of true and predicted symptom score was higher (r = 0.45, t 

= 14.7, p < 0.001), and this was particularly the case in female probands (rfemale  = 0.49; rmale 

= 0.29; comparison t = 3.4, p <0.001). Moreover, no difference in correlations between true 

and predicted symptom scores of inattention/ hyperactive/ impulsive symptoms occurred.  
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Confounding variables  

To analyze confounders that likely play a role in voice analysis, we performed predictions of 

sex, age and education (= highest educational level) using RF-classification and RF-

regression as appropriate in the whole sample (ADHD, PC, HC). Sex was classified with 

AUC = 0.98. The correlations of true and predicted age (r = 0.52, t = 18.5, p < 0.001) and 

education (r = 0.33, t = 10.5, p < 0.001) likewise pointed to relevant associations with voice 

features and were therefore included in all analyses as confounders of no interest. 

Moreover, sex (t = 5.4, p < 0.001), age (t = -1.7, p = 0.09) and education (t = 5.9, p < 0.001) 

were associated with ADHD-status and were therefore included as covariates of no interest 

as described above.  

As depression has been linked to changes of loudness in past research [30, 55], we 

calculated associations of depression scores with voice features (r = 0.24, t=6.6, p < 0.001). 

However, depression scores were not related to ADHD symptom severity, thus we did not 

include it as covariate in the main analysis. Including depression severity as covariate in a 

secondary analysis did not change the results.  

 
Analysis of feature importance for the prediction of ADHD  

The ten most important features were equally (50%) distributed to free speech (2 minutes) 

based on loudness changes over time frames between 0.020 – 0.252 seconds and changes 

of fundamental frequency in the task “counting one to ten” in timeframes of 0.02 to 0.1 

seconds.  

 

Discussion 

In the context of a growing interest in analyzing voice and speech as potential biomarkers of 

mental health  [56-59], to our knowledge this is the first study to investigate the possible 

value of paralinguistic features in a large, heterogeneous sample of adults with ADHD using 

a machine learning based statistical approach. Our results support and extend previous 

findings of paralinguistic abnormalities in ADHD and point toward the possibility of predicting 

ADHD in unseen individuals, in particular in female probands in early adulthood.  

General performance in the context of the current literature 

Our classifier showed a good prediction accuracy to differentiate ADHD from HC, reflected 

by an overall AUC = 0.76 and this is also reflected in regression analyses with associations 

of true and predicted symptom severity in the whole sample and within the ADHD group 
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respectively. Since this is the first study to predict adult ADHD using paralinguistic features, 

in the following, we discuss the results in the context of (a) the current literature on the 

prediction of psychiatric diseases from voice data and (b) approaches to predict ADHD from 

biological signals other than voice.  

Previous studies in the emerging field of automatic assessments of mental disorders using 

speech were restricted to mood and psychotic disorders [59] and showed comparable 

prediction accuracies as reported in this study: Depression can be predicted from 

(paralinguistic) voice features with an accuracy of about 80% [60]. The prediction of 

schizophrenia has been successful using linguistic features such as semantic relatedness of 

individuals with schizophrenia or those at a high risk to develop acute symptoms [42, 61-64]. 

Looking at the studies that have investigated the machine learning based prediction of 

ADHD from other biological signals points towards a similar performance of approaches 

based on neuropsychological performance [65], EEG-measures [55, 66], questionnaires [67] 

or resting state fMRI [68-70] as compared to our findings. In summary, the findings in this 

study are broadly comparable to previous research using voice to predict mental disorders 

or other biological signals to predict ADHD.  

 

Differentiation from clinical controls and comorbidity 

Moreover, correlations between true and predicted symptom severity scores, both in the 

whole sample (ADHD, PC, HC; r = 0.45 ) and within the ADHD group alone (r = 0.27), 

indicate that voice features were able to predict ADHD-symptom severity. The continuous 

association of voice-features and ADHD-severity however may help to understand the lower 

prediction accuracy when calculating the classification of ADHD against clinical controls: the 

clinical control group presented in the outpatient clinic for a diagnostic workup to rule out 

ADHD and did show markedly elevated ADHD symptoms as compared to healthy controls. 

However, after an extensive diagnostic procedure, the participants in this group were not 

diagnosed with ADHD but with various other mental disorders, mostly affective disorders. 

Thus, since the classifier seems to be sensitive to lower levels of ADHD-symptoms as 

indicated by the RF-regression analyses of symptom severity above, the classification is 

likely less suited to differentiate between ADHD-suspect subjects with lower symptoms and 

subjects that fulfil the criteria of ADHD. Moreover, the clinical control group was 

heterogenous with regards to mental disorders and this may add to the limited differentiation 

from ADHD. Future studies with larger sample size may be able to predict ADHD with higher 

precision and possibly be able to better differentiate ADHD participants from participants 

with low or moderate ADHD symptoms. Likewise, other studies investigating potential 

biomarkers of ADHD point to a restricted differentiation from clinical controls such as studies 
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of neurological tests in combination with actigraphy [71-74], meta-analyses evaluating fMRI 

[75] and resting-state fMRI studies to predict ADHD respectively [76, 77].  

A strength of the current approach may be related to a robust classification performance of 

ADHD in the presence of comorbid mental disorders: the classifier showed a similar 

performance to differentiate ADHD from healthy controls with and without comorbidity. 

Regarding the role of comorbidity, we additionally controlled the analyses for depression 

symptom severity with no changes in the AUC. Depression is a frequent lifetime comorbidity 

in ADHD [78] and is known to influence paralinguistic features, such as reduced pitch range, 

speaking rate and intonation [30]. Of note, participants with severe clinical comorbidity, such 

as schizophrenia or severe affective disorders were excluded from the analysis. Overall, the 

limited influence of comorbidity in this study is encouraging in terms of possible clinical 

applications, replication of our results pending: adult ADHD patients often present with latent 

or lifetime comorbid conditions [79], thus compromising the diagnostic accuracy of ADHD in 

clinical practice [80]. Since our data point to a relatively robust accuracy particularly in 

younger female participants - possibly independent of comorbidity - automated voice 

analysis could evolve as a valuable addition to support the diagnostic processes, 

considering marked diagnostic challenges amongst others due to comorbidity in this patient 

group [81]. 

 
Inattention and Hyperactivity/ Impulsivity 

Evaluating the prediction accuracy of inattentive and hyperactivity/ impulsivity symptom 

scores, the RF-regression analyses pointed to a higher correlation of true and predicted 

symptoms of hyperactivity than of inattention in the ADHD group. Importantly, we noted a 

higher variance of the hyperactivity/ impulsivity symptoms than of inattention in the ADHD 

group, as indicated by a significant Levene’s test. Thus, the higher correlation of true and 

predicted hyperactivity/ impulsivity scores may to some extent be explained by a better 

ability for the RF regression to learn from a sample with larger variance. Also, using the 

whole sample (i.e., ADHD, PC, HC), inattention and hyperactivity subscales showed similar 

prediction scores of true and predicted symptoms (with similar variance of both variables in 

this group). Moreover, the higher correlation of true and predicted hyperactivity/ impulsivity 

symptoms did not translate into a significantly better prediction of the subgroup with 

combined (inattention and hyperactive/ impulsive) symptoms.  

Recent research has emphasized the study of underlying traits of ADHD such as cognitive 

traits, e.g., executive functioning and temperament/personality features as an avenue to a 

create more informative phenotypes [82]. Studies to investigate cognitive traits such as 

executive functions and speech production [83] have found that high executive functioning 
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performance relates to faster and more accurate word retrieval in adults and more accurate 

articulatory output children  [60]. Articulation requires complex motor execution, that is 

dependent on self-regulation and inhibitory control. Since articulation is related to loudness 

and fundamental frequency [84], these features could in part be related to difference in 

executive functions between ADHD and healthy controls.  

With regard to temperament/ personality traits as a second important symptom cluster of 

ADHD, prior research similarly has pointed to associations of personality traits and prosody 

of speech [30, 42], including associations of impulsivity and fundamental frequency/ jitter 

[85], that are related to the features in this study. Nilsen et al. [39] reported higher speech 

volumes and pitch to be related to decreased inhibitory control, a key component of 

impulsivity. Moreover, a higher motor activity in ADHD, may result into higher subglottal 

pressures that have been reported in children with ADHD [38]. In summary, a relation of 

prosodic speech abnormalities and ADHD traits such as deficits in executive functioning or 

hyperactivity/ impulsivity seems plausible and should be evaluated in more detail in future 

research.  

Sex and age 

Sex was classified using the voice features with a high accuracy (AUC = 0.98), similar to 

other recent investigations using prosodic voice features and different classification 

approaches [86-88]. Furthermore, our data indicate a better classification performance of 

ADHD in female over male probands, and this pertained to subsamples with different age-

groups and non-comorbid ADHD-probands. To some extent the sex related differences may 

be explained by slightly higher hyperactivity scores in female ADHD, but other measures of 

symptom severity or comorbidity did not differ between sexes. Thus, we assume that the 

voice features vary between male and female probands and are possibly more pronounced 

in female ADHD probands, though this has to be investigated in future studies including the 

underlying biological mechanisms. Other studies on voice in psychiatric disorders have 

mostly not differentiated between sex due to limited sample sizes. However, investigating 

sex separately has been recommended [59].  

With respect to the role of age in the prediction performance, the features in this study were 

able to predict age with a comparable if slightly lower performance to other published 

approaches to investigate the prediction of age using prosodic features [89, 90]. Research 

on changes of prosody in aging indicates higher scores of hoarseness, instability and 

breathiness in higher age [91, 92], reflected by a diminished harmony to noise ratio [93]. 

Moreover, with increasing age, the subglottal pressure decreases in line with a decrease in 

overall muscle mass, and proband compensate this with increased expiratory airflow [94]. In 
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ADHD, some studies report increased hoarseness [38, 95] and one study reports increased 

subglottal pressure and decreased airflow in children [38]. Thus, healthy probands in higher 

age may show symptoms such as hoarseness, a trait that may help differentiate ADHD from 

healthy controls. Moreover, ADHD probands in higher age may show decreased subglottal 

pressure, possibly resulting in a smaller difference from healthy controls. These hypotheses 

state a possible framework for the interpretation of the decreased classification performance 

in higher age. Since the ADHD-related findings have only been studies in children so far, our 

hypotheses should be tested in future research.  

 
Stimulants 

Stimulants have been reported to impact voice and prosody in few small studies, including 

reports of lower fundamental frequency and increased jitter [96, 97], and increased 

hoarseness [98], In our data, we did not note differences with regard to classification 

accuracy, however the subsample with intake of stimulants was relatively small.  

 

Features and speaking tasks 

Our results of changes in loudness support the limited number of previous studies that 

identified voice and speech anomalies in ADHD, especially pertaining to loudness changes 

in ADHD, as reviewed in 2016 [34]. Breznitz et al. reported differences in temporal speech 

patterns and physical features of vocalization in boys with ADHD [35] compared to clinical 

(reading disabilities) and healthy controls. Increased loudness, hoarseness and breathiness 

were identified in ADHD children compared to healthy controls [36, 37]. In particular, children 

with combined ADHD type were louder, showed lower fundamental frequency, had more 

straining voices, as well as more hoarseness and breathiness while speaking, compared to 

healthy controls. Due to a higher subglottal pressure and lower transglottal airflow in ADHD, 

abuse and misuse of the voice count as risk factors for functional dysphonias [38]. We 

assume that even subtle changes in voice based on higher subglottal pressure in ADHD 

patients may results in loudness features to play an important role in the classification of 

ADHD vs healthy probands.   

Moreover, our data indicated that speech test selection plays an important role in the 

classification. Five of the top ten features were related to counting (from one to ten). While it 

is known that characteristics of paralinguistic features differ in different languages [99], the 

type of speech task also influences vocal features. Cognitive function, recently shown to 

differ in ADHD as discussed above [60], is involved in speech production depending on the 

complexity of speech tasks. Moreover, vocal variability differs between spontaneous speech 

and reading aloud in patients with depression [100]. Further, the complexity of spontaneous 
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speech tasks plays an important role; Cohen et al. [66] observed greater vocal variability 

during a picture description task compared with one recalling autobiographical memories. 

Thus, a combination of free speech and speaking tasks may play an important role for the 

classification of ADHD and should be included in future trials.  

 
Conclusion 

In summary, we were able to differentiate ADHD patients from healthy controls using voice 

features with good results in particular in younger and female probands. Strengths of the 

present study were the large, heterogeneous sample, inclusion of healthy and psychiatric 

controls and application of gold standard diagnostic procedures. We detected ADHD 

associated vocal patterns that probably reflect a disorder related vocal hyperfunction. These 

may be related to individual personality traits such as impulsivity and impaired executive 

functioning in ADHD. Replication pending, a particular strength of the voice-based approach 

might be the independence of psychiatric comorbidity, that very frequently occurs in ADHD 

and complicates the diagnostic process. In combination with a high feasibility and low cost to 

record and analyze voice, we see a high potential value for clinical practice especially in 

female and in younger probands and strongly encourage further investigation. A larger study 

sample including a larger psychiatric control group would be needed to achieve a better 

differentiation from clinical controls with low or moderate ADHD symptoms. However, the 

clinical value might be more to help the clinician to include potential differential diagnoses 

than excluding differential diagnoses based on one test. Moreover, in future research, the 

classification performance may increase with the inclusion of additional distinct speech 

features, such as speech pauses and the utilization of additional linguistic measures such as 

verbal fluency. Taken together, we consider voice analyses a promising avenue to support 

the diagnostic process in adult ADHD. 
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Figure legends 
 
Figure 1: Classification ROCs for (all) ADHD patients versus healthy controls. Random-
forest classification, 10-fold cross-validation, 100 replications; AUC = 0.76. 
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