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Abstract 

We performed a genome-wide epistasis search across 502 phenotypes in case control matched 
cohorts from the UK Biobank. We identified 152,519 genome wide significant interactions in 68 
distinct phenotypes, and 3,398 interactions in 19 phenotypes were successfully replicated in 
independent cohorts from the Finngen consortium. Most interactions (79%) involved variants 
that did not present significant marginal association and might explain part of the missing 
heritability for these diseases. In 10 phenotypes we show the presence of epistasis between 
common variants with intermediate to large effect size (𝑂𝑅 > 2) supporting the hypothesis that 
common diseases are modulated by common variants. Most of the variants in interactions (82%) 
were more than 1Mb apart and cis-epistasis was hardly found outside the HLA region. Functional 
annotation of the variants suggests that most mechanisms behind epistasis occurs at the supra 
pathway level and that intra-gene or intra-pathway epistasis is rare. Surprisingly we find a 
significant biais toward antagonistic epistasis, representing 60% to 95% of interactions. In type 1 
diabetes, hypothyroidism, disorders of mineral absorption, rheumatoid arthritis, asthma, and 
multiple sclerosis more than 50% of interactions were completely compensating the effect of the 
marginally associated variant. In psoriasis we identified an interaction between a stop gain variant 
in CCHCR1 with two missense variants in MUC22 and HSPA1L leading to a 3 fold increase of the 
effect of CCHCR1 variant on disease risk. Our study shows that there is still much to discover in 
epistasis and we provide the full summary statistics results to researchers interested in studying 
epistasis. 
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Introduction 

The emergence in the recent years of human genetic data from large-scale biobanks, such as UK 
Biobank, Finngen, and Biobank Japan 1–3, has been followed by a new wave of Genome Wide 
Association Studies (GWAS) spanning the entire human phenome 4–7, while investigating variation 
across populations 6,7. These studies provided new systematic estimate of narrow sense 
heritability 4,8, the proportion of phenotypic variation due to additive genetic variation. More 
importantly the summary statistics resulting from these efforts represent now a key resource 
beside GWAS catalogs 9 for many researchers to explore the genetic architecture of human 
diseases 10. 

However such PheWAS rarely consider potential nonlinear relationship between genotype and 
phenotypes. In particular interactions between genetic variants, a phenomenon known as 
epistasis, are not considered. Epistasis is generally defined as deviation from additivity of the 
combined effect of multiple variants and is suspected to be an ubiquitous property of genetic 
architecture 11. Molecular causes of epistasis may range from intra-protein interactions 12, 
transcription regulation 13, to molecular recognition, substrate competition, functional 
redundancy within pathways, or higher level interactions between pathways 14. Epistasis has long 
been identified as a potential explanation for the discrepancy observed between narrow and 
broad sense heritability, i.e. the proportion of phenotypic variation due to total genetic variation 
15,16. Estimations by Zuk et al. suggests that epistasis could be responsible for up to 80% of such 
missing heritability 16. More recent estimates by Young et al. 17 still present a gap of 33%. Finally 
epistasis has been shown to be a key component of evolution and might have important 
application in therapeutic target identification and population stratification. 

In the past decade a number of statistical approaches have been developed to detect epistasis, 
ranging from regression 18 and linear mixed models 19 to machine learning 20 approaches, and are 
reviewed elsewhere 21,22. However, despite the suspected importance of epistasis in the genetic 
architecture of the human phenotypes, the application of these methods to the systematic study 
of epistasis has mostly remained limited to a small number of illustrative phenotypes, almost 
exclusively among the 7 diseases of the WTCCC 23. Wang et al. 18 performed one of the first 
attempts of genome wide search for epistasis on the WTCCC cohorts and identified significant 
interactions in Type 1 Diabetes (T1D) and Crohn’s Disease (CD), almost all localized within MHC 
region. Subsequent genome wide epistasis studies 19,24 of these cohorts identified additional 
interactions in Rheumatoid Arthritis (RA), Coronary Artery Disease (CAD), Bipolar Disorder (BD), 
Type 2 Diabetes (T2D) and Hypertension (HT), again mostly localized within MHC region.  

Multiple obstacles explain why genome-wide epistasis studies have remained so limited. Epistasis 
effect size has been suspected to be small and therefore to require unrealistic sample size to be 
detected 25. Most epistasis detection methods do not implement correction for confounding 
factors in particular to account for population structure. Testing all genotyped variant pairs for 
epistasis remains a computationally challenging task, in particular for those methods correcting 
for confounding factors such as FastLMM 19, which required 950 compute years to analyze 7 
diseases. Additional obstacles rise when going at the biobank scale. The presence of relatives, 
complex population structure, and strong case control imbalance makes accurate control of type 
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error rate more challenging. In univariate GWAS analysis, dedicated solutions based on linear 
mixed models such as SAIGE 5 have been developed to address this point but do not yet 
implement epistasis tests. Finally the required computational resource increases as the number 
of phenotypes considered in the biobank and linear mixed models and even logistic regression 
with covariates cannot be realistically applied. 

Here we present a genome wide epistasis analysis on 502 diseases from the UK Biobank with 
more than 500 cases using the likelihood ratio test introduced in BOOST 18. In a previous study 
we show that BOOST performs accurate type 1 error rate control even in presence of linkage 
disequilibrium while reaching satisfying statistical power compared to other tools 26. In order to 
control for confounding factors, we prepare case control matched cohorts for each phenotype 
following the method described by Luca et al.27 . Significant interactions are replicated in the 
Finngen biobank and discussed thereafter. 

Materials and methods 

Ethics statement 

Participants and data sources 

The UK Biobank is a population-based prospective cohort composed of approximately 500,000 
individuals across the United Kingdom combining genotype and deep phenotyping data. More 
details regarding the UK Biobank project have been published by Bycroft et al. 1.  

Finngen is a public–private partnership project combining genotype data from biobanks and 
electronic health record data from Finnish public registries. It aims at sequencing 500,000 Finnish 
individuals by 2023. In this study we use data from Finngen release 6 which includes genotype 
and phenotype data for 269,077 participants. 

Genotyping and quality control 

UK Biobank participants genotypes were obtained from two genotyping arrays, the Affymetrix UK 
BiLEVE Axiom or Affymetrix UK Biobank Axiom array. For the purpose of this study we used a 
subset of 266,679 individuals satisfying all following quality control criteria : (i) identified as inlier 
in heterozygosity and missing rates (Data-field 22027), (ii) not identified as putatively carrying sex 
chromosome configurations other than XX or XY (Data-field 22019), (iii) selected as input for the 
phasing of autosomal chromosomes (Data-field 22028), (iv) without genetic kinship to other 
participant (Data-field 22021), (v) identified as white British and very similar genetic ancestry 
based on a principal components analysis of the genotypes (Data-field 22006). We restricted the 
analysis to SNPs from HRC imputation with minor allele frequency greater than 0.01, in Hardy 
Weinberg equilibrium (pHWE > 1e-10) and with call rate larger than 0.95. Details about quality 
control has been published by the UK Biobank 1. To insure the feasibility of an exhaustive bivariate 
epistasis analysis we restricted the study to the 576,429 genotyped variants passing the quality 
control criteria. 
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Finngen participants genotypes were obtained from Illumina and Affymetrix arrays and was 
composed of 52 datasets. A total of 16,962,023 variants were imputed using 3,775 whole 
genomes from the Finish specific reference panel SISu v3 (http://sisuproject.fi/). We used Finngen 
as replication cohort including only variants presenting significant epistasis in the discovery phase 
with the UK Biobank. In order to limit the population structure we considered 182,584 unrelated 
individuals of Finish ancestry satisfying the following quality control criteria : (i) non-ambiguous 
gender, (ii) genotype missing rate lower than 5%, (iii) no excess heterozygosity (±4𝑆𝐷), (iv) of 
finish ancestry, defined by PCA of Finngen samples together with EUR and FIN samples from the 
1000 genomes projects, (v) no related individual up to degree 2 as computed from kinship matrix. 

Phenotypes and cohort selection 

UK Biobank 

In the UK Biobank data we derived the phenotypes from primary and secondary hospital diagnose 
data (Data-field 41270) using ICD10 codes of level 3. An individual was defined as a case for a 
particular ICD10 code (eg. J45 asthma) if it had at least one registered diagnose for this ICD10 
code or any subcode (eg. J45.8 mixed asthma). The age of first diagnose was defined as the 
earliest diagnose of these codes (Data-Field 41280). The current age of the individual was defined 
as his age at the latest date of entry of all hospital diagnose in the dataset, March 2017. 

A major difficulty in performing an epistasis scan across the entire genome for a large number of 
phenotypes is the computational cost. Using linear mixed method approaches such as SAIGE 5 
would be computationally unfeasible. Even logistic regression models for epistasis including 
continuous covariates would be too computationally prohibitive.  

First, we divided the cohort into genetic clusters without significant population structure with the 
following process. We performed a principal component analysis (PCA) on all selected individuals 
using 100,000 pruned variants listed by UK Biobank. The 10 first components presented 
significant population structure (Tracy Widom test pval<1e-2, Table S4) and were selected to 
perform hierarchical clustering of all individuals in the cohort using Ward’s algorithm (Figure S1). 
We evaluated iteratively the presence of population structure in each cluster starting from the 
hierarchy root cluster by performing a PCA and a Tracy Widom test. In absence of significant 
population structure (Tracy Widom pval>1e-2 for the PCA first eigenvalue) we selected the 
cluster, otherwise we tested the two subclusters. We removed clusters with 20 individuals or less 
excluding 787 individuals. Outlier removal (±6𝑆𝐷 on the first 5 PCs) for each cluster excluded 41 
additional individuals. The remaining 265,538 individuals were distributed into 276 clusters, with 
clusters of more than 1,000 individuals accounting for a large majority of individuals (225,099, 
Table S5 and Figure S2). We used the FLASHPCA2 software for the PCAs 28, the tw function in the 
EIGENSOFT suite to perform Tracy Widom test 29, and the fastcluster R library to perform 
hierarchical clustering 30. 

For a given phenotype we matched each case to 𝑛 controls uniformly sampled from controls of 
the same sex, same genetic cluster and older than the case at the time of its first diagnosis (Figures 
S4 and S5). We optimized the control case ratio 𝑛 for each phenotype to maximize the effective 
sample size 𝑁𝑒𝑓𝑓 = (𝑁𝑐𝑎𝑠𝑒𝑠

−1 +𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
−1 )−1. An example of optimization is depicted in Figure S3. 
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We excluded phenotypes with less than 500 cases and included 502 remaining phenotypes in the 
study. 

We performed simulations for each phenotype to estimate the statical power with the following 
parameters : phenotype model with only epistatic term logit[𝐸(𝐷|𝑋1 = 𝑥1, 𝑋2 = 𝑥2)] = 𝛼 +
𝛽12𝑥1𝑥2 with 𝑋1 and 𝑋2 coding the genotype of two variants of minor allele frequency 0.1 and no 
linkage disequilibrium, number of cases and controls as identified by the previous optimization 
step, disease prevalence 𝐾0 as observed in the full UK Biobank cohort, pvalue threshold for 
genome-wide significance of 8e-12. We estimated the minimal epistasis odd ratio 𝑂𝑅 = exp[𝛽12] 
detectable with statistical power 0.8 by root search with 100 replicates for each value of 𝛽12. All 
estimates are reported in Table S1 and ranged from OR=1.07 for hypertension (I10) to OR=2.9 for 
pancreas cancer (C29). 

Finngen 

In the Finngen data, used here for replication, about 2700 phenotypes have been manually 
defined by Finngen expert groups from health registry data 2. We manually mapped to Finngen 
phenotypes the 102 phenotypes selected in the UK Biobank and presenting at least one significant 
epistatic interaction (mapping provided in Table S1). 

We applied the previous case control matching process to define Finngen replication cohorts. A 
total of 134,080 individuals were selected and distributed across 3008 genetic clusters. 

Epistasis analysis 

Discovery 

We performed exhaustive bivariate epistasis tests on each UK Biobank phenotype using BOOST 
epistasis testing implemented in plink 1.9 with the options ‘–fast-epistasis boost –epi1 0.001’ 
which discarded results with epistasis pvalue higher than 1e-3, to keep results files of reasonable 
size (~5Gb per phenotype). The genome-wide epistasis scan of the 502 phenotypes required 2880 
cpus during approximately 7 days. For each phenotype we computed the false discovery rate with 
the Benjamini and Hochberg method 31 setting to 1 the pvalue of tested but discarded variant 
pairs. We considered variant pairs with false discovery rate below 0.25 as presenting significant 
epistasis. The genomic inflation factor at P=0.001 was lower than 1.1 in all phenotypes and lower 
than 1.05 in 94% of phenotypes showing a good control of type 1 error rate (Figure S7 and S8). 

Clumping 

We clumped significant results from the discovery study by iteratively selecting lead variant pairs 
(𝑥1, 𝑥2) with lowest epistasis pvalue and excluding all variant pairs (𝑥′1, 𝑥′2) within 250kb with 
𝑟1
2𝑟2

2 > 0.5 where 𝑟1
2 (resp. 𝑟2

2) is the Linkage Disequilibrium (LD) between 𝑥1 and 𝑥′1 (resp. 𝑥2 
and 𝑥′2). We excluded lead variant pairs with strong LD (𝑟2 > 0.9). 

Univariate and bivariate models 

For each phenotype we first tested the marginal association of each variant involved in epistasis 
with a simple Fisher test using plink 1.9 option ‘–assoc fisher’ without covariate on our case 
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control matched cohort. We then obtained a more powerful and complementary evaluation of 
the marginal association from the population meta-analysis study published by the Pan-UKBB 
team 6. To evaluate if a variant would be detected by a genome-wide univariate analysis we used 
a a Bonferonni corrected pvalue threshold of 8.67e-8. Finally we fitted a bivariate logistic 
regression model on each variant pairs 𝑋1 and 𝑋2 with significant epistasis: logit[𝐸(𝐷|𝑋1 =
𝑥1, 𝑋2 = 𝑥2)] = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2. The modulation of the effect of variant 𝑋1 by 
variant 𝑋2 is derived from this model as (1 + 𝛽12/𝛽1𝑥2) with 𝛽12/𝛽1 the epistatic factor. 

Replication 

We tested for epistasis all variant pairs presenting significant epistasis in a UK Biobank discovery 
cohort in the corresponding Finngen replication cohort using plink option ‘–fast-epistasis boost’. 
We considered as successful replicated interactions with false discovery rate below 0.05. 

Variant to gene and pathway mapping 

We mapped variants to genes using three types of data : variant transcript consequence 
computed with VEP, eQTL mapping from open target genetics  (see Ghoussaini et al. 32 for detailed 
eQTL sources), and pQTL mapping from Sun et al. study 33. We evaluated the presence of known 
physical interaction between genes using the protein protein interaction network from BioGRID 
Release 4.2.191. Finally we assigned genes to 2868 canonical pathway obtained from MSigDB 
Collections. 

Heritability and variance explained 

To estimate disease heritability, we generated GWAS (univariate) summary statistics for each 
phenotype using plink2 (--glm) with the ‘cc-residualize’ modifier 34, adjusting for sex, age, and 
the top 10 first principal components. We included imputed variants but restricted to variants 
with MAF>0.01 and present in the HapMap 3 variant reference panel.  We used LD score 
regression to calculate additive SNP heritability, using pre-compiled LD scores from 1000 
Genomes European dataset35. The heritability estimates were converted to the liability scale 
using the disease prevalence in the UK Biobank dataset (i.e. assuming it is the same as 
population prevalence). We used Fisher exact test to calculate the enrichment of significant 
interactions for diseases with h2>0.1, restricting to phenotypes with Neff > 5,000. 

To estimate the gain in variance explained, we fitted logistic regression models with and without 
the interaction term for all significant variant pairs, and calculated Nagelkerke’s pseudo-R2. For 
each variant pairs, the difference in pseudo-R2 between the full model (additive + interaction) 
and additive-only model was used to estimate the proportion of variance explained by epistasis.  

Results 

Significant variant pairs 

In the discovery cohorts we detected 152,519 independent genome-wide significant interactions 
(FDR<0.25) in 68 phenotypes. The following 8 phenotypes presented from 200 to more than 
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100,000 interactions : Intestinal malabsorption (K90) and disorder of mineral metabolism (E83), 
type 1 diabetes (E10), rheumatoid arthritis (M069), hypothyroidism (E03), psoriasis (L40), asthma 
(J45), multiple sclerosis (G35). Other phenotypes presented less than 40 interactions (table 1). In 
the simulations the minimal epistatic odd ratio detectable between common variants ranged 
from 1.07 for hypertension( I10) to 2.92 for pancreas cancer (C25) and were smaller than 2 for 
251 phenotypes. While median minimal odd ratio was significantly higher in phenotypes with no 
significant interactions (1.8 vs 2.2) there was no significant correlation with the number of 
interactions (Table S1), suggesting that this number was reflecting the etiology of these diseases 
rather than higher statistical power. 

Table 1 : Number of independent variant pairs with significant epistasis in the UK Biobank 
discovery cohorts (FDR<0.25) and the Finngen replication cohorts (FDR<0.05), minimal epistasis 
odd ratio (𝑂𝑅 = exp[𝛽12]) detectable with power 0.8, and estimated additive heritability ℎ2. 
Phenotypes with less than 40 significant interactions in discovery are reported Table S1. 

ICD10 code and phenotype 𝒉𝟐 (SE) 

UK Biobank Finngen 

Cases Controls 
Min 
OR 

Lead 
pairs 

Cases Controls 
Lead 
pairs 

K90 Intestinal malabsorption 
0.08 

(0.05) 
1461 48213 2.13 109007 358 1432 1 

E10 Insulin-dependent 
diabetes mellitus 

0.09 
(0.04) 

1974 69090 1.90 11169 2841 14205 2273 

E03 Other hypothyroidism 
0.2 

(0.02) 
10470 125640 1.44 9821 15311 30622 116 

L40 Psoriasis 
0.05 

(0.04) 
1715 44590 1.97 8673 2697 13485 870 

E83 Disorders of mineral 
metabolism 

0.05 
(0.04) 

1839 66204 1.91 8107 465 1860 1 

M06 Other rheumatoid 
arthritis 

0.04 
(0.02) 

3204 86508 1.74 3641 1710 6840 67 

J45 Asthma 
0.1 

(0.01) 
18822 188220 1.43 1700 10700 32100 3 

G35 Multiple sclerosis 
0.04 

(0.06) 
926 26854 2.70 213 691 4146 26 

In the replication cohorts 3,398 interactions in 19 phenotypes presented significant epistasis with 
a conservative threshold (FDR<0.05). An important proportion of interaction were reproduced for 
type 1 diabetes (20%), psoriasis (10%) and multiple sclerosis (12%). Only one interaction was 
reproduced for intestinal malabsorption and disorder of mineral metabolism, which might be 
explained by the limited number of cases in these replication cohorts, or the presence of an 
uncontrolled confounding factor for these phenotypes in the UK Biobank population. 
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Enrichment in high impact region 

Variant locations 

A majority of variants involved in epistasis were located in intergenic (40%) and intronic regions 
(48%). However intergenic regions were significantly depleted in interacting variants (Fisher’s 
exact test pval<1e-173) while coding and intronic regions were significantly enriched (pval<1e-6). 
The variant distribution across genomic regions, the enrichment in coding and intronic region, 
and depletion in intergenic regions was consistently reproduced in all 7 diseases with more than 
1000 significant interactions (Figure 1). 

 

 Figure 1 : Distribution of variants with significant epistasis across 5 genomic regions categories 
defined from VEP annotation: regulatory region includes regulatory region and TF binding site 
variants, non coding includes mature miRNA and non coding transcript exon variants, intergenic 
includes intergenic, upstream and downstream gene variants. Results are given for the 7 diseases 
with more than 1000 interactions and for all diseases together (bold). Results are given for variant 
identified in the discovery cohorts. (top) Odd ratios (OR) estimates and 95% confidence intervals 
for enrichment in variants with significant epistasis compared to the number of variants 
sequenced in the region category. Blue error bars indicates significant depletion (Fisher’s exact 
test pval<1e-3) and red significant enrichment. (bottom) proportion of significant variant in each 
region.  
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Odd ratios for high impact variants 

All identified 

Among genotyped high impact variants (start loss, stop gain, stop loss, missense, splice donor and 
splice acceptor variants) 124 significant interactions were successfully replicated (table 2) for type 
1 diabetes (E10) and psoriasis (L40), asthma (J45) and rheumatoid arthritis (M06). Bivariate and 
marginal contingency tables and odd ratios for each interaction are reported in Figure S11. 

Loss of function 

The interactions in psoriasis between the CCHCR1 stop gain variant (rs3130453) and two missense 
variants of MUC22 (rs3094672) and HSPA1L (rs2227956) are an example of synergistic epistasis 
(contingency tables reported in figure 2). While the stop gain variant is marginally associated to a 
weak increase in psoriasis risk (OR=1.49 pval=7.7e-20), the variant effect is increase by a factor 
2.7 in the presence of two minor alleles of MUC22 missense variant (OR=3.2) and by a factor 3.1 
in the presence of two minor alleles of HSPA1L missense. CCHCR1 is thought to be a regulator of 
mRNA metabolism and was already associated with psoriasis 36 but also with rheumathoid 
arthritis 37. MUC22 is coding for a protein of the mucin family present in epithelial secretions. 
HSPA1L is a gene located in the HLA region and coding for a heat shock protein with molecular 
chaperon function. The HSP gene family was previously associated with inflammation processes 
38 and immune diseases (rheumatoid arthritis 39, multiple sclerosis 40, IBD 41, IPF 42, and COPD 43). 

 

 Figure 2 : contingency tables for two interaction in psoriasis involving the CCHCR1 stop gain 
variant rs3130453. Marginal association pvalue were computed by Fisher’s exact test on the UK 
biobank psoriasis cohort. Data are represented for the UK Biobank discovery cohort.  
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Distance between interacting variants 

Chromosomes 

After excluding the HLA region and taking into account the distribution of the sequenced variants 
on the chromosomes we observe a homogeneous distribution of the interactions across the 
chromosomes (Figure 3) with the exception of a high enrichment of interaction on chromosome 
6 probably due to interactions within immune regulator regions. Most replicated interactions 
were intrachromosomal with a majority of interactions in the HLA region. 

   

Figure 3 : distribution of the intra and interchromosomal interactions normalized by the expected 

number of pairs for a uniform distribution, defined as 𝛼𝐶1,𝐶2 = 𝛼0𝑛𝐶1,𝐶2
(𝑒𝑝𝑖)

/[𝑛𝐶1
(𝑐ℎ𝑖𝑝)

𝑛𝐶2
(𝑐ℎ𝑖𝑝)

] with 

𝑛𝐶1,𝐶2
(𝑒𝑝𝑖)

 the number of variants pairs with significant epistasis between chromosomes 𝐶1 and 𝐶2, 

𝐶1

(𝑐ℎ𝑖𝑝)
 and 𝑛𝐶2

(𝑐ℎ𝑖𝑝)
 the number of sequenced variants in chromosomes 𝐶1 and 𝐶2, and a 

normalization factor 𝛼0 = ∑ 𝑛𝐶1,𝐶2
(𝑒𝑝𝑖)

𝐶1,𝐶2 /[𝑛𝐶1
(𝑐ℎ𝑖𝑝)

𝑛𝐶2
(𝑐ℎ𝑖𝑝)

]. Enrichement on chromosome 6 was 𝛼 =

58 in the discovery cohorts and 𝛼 = 473 in the replication cohorts.  

Intrachromosome interactions 

Intrachromosomal interactions are composed for 95% of variants distant from more than 1Mb 
and the distance distribution is very similar to the distribution of distance of uniformly distributed 
variants (Figure 4). The only exception is observed for 3 phenotypes (K90, J45, L40) for which we 
observe 60% of variant pairs distant from less than 1Mb, even after excluding HLA region. 
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 Figure 4 : Distance distribution between interacting variants located on a same chromosome, on 
chromosome 6 (left) and on all other chromosomes (right). The distributions are given for the 7 
diseases with more than 1000 interactions (colored thin lines) and for all diseases (thick red line). 
The dashed black line depicts the distance distribution in uniformaly distributed variants. Data is 
shown for the discovery cohort.  

Effect sizes 

Comparison with univariate analysis and proportion of new discoveries 

A majority of significant interactions occurred between variants that did not present significant 
marginal association in the present study (78%) or in the Pan-UKB study (79%). Only 15% of 
interactions occurred between 2 variants presenting both significant marginal associations (11% 
with both marginal association in the Pan-UKB study). We observed a similar distribution for all 7 
diseases with largest number of interactions (Figure 5). This proportion was higher among the 
replicated interactions (24% and 36% for this study and the Pan-UKB study respectively). 
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Figure 5 : Number of variant pairs for which both variants do not present marginal association (0), 
only one variant present marginal association (1), or both variants present marginal association 
(2). Marginal association are tested in the present UK Biobank cohort with Fisher’s exact test (blue) 
and in the Pan UKB study 6 with SAIGE 5. The category ‘All’ includes all variants pairs significant in 
the discovery phase and the category ‘All replicated’ all variant pairs replicated.  

Effect size of common variants 

Among the significant interactions identified 3% presented intermediate effect size (𝑂𝑅 =
𝑒𝑥𝑝(𝛽12) > 2 or < 0.5) and 0.1% presented high effect size (𝑂𝑅 > 5 or < 0.2). Interestingly all 
the high effect size interactions were protective (Figure 6). 
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 Figure 6 : Effect size of the interaction estimated from the full bivariate logistic regression model 
coefficient 𝛽12, and effect allele frequency of variant 1 (𝑓1) or variant 2 (𝑓2) whichever is smaller. 
Only interactions with effect size 𝑂𝑅 > 2 or 𝑂𝑅 < 1/2 are represented.  

Directionality of epistatic effect 

For variants presenting significant marginal association we can derive from the full bivariate 
logistic model the effect of variant 𝑥1 conditional on variant 𝑥2 as 1 + 𝛽12/𝛽1𝑥2 following the 
approach of Hansen et al. 44. The epistatic factor 𝛽12/𝛽1 quantifies how much the effect of variant 
𝑥1 is influenced by variant 𝑥2. Surprisingly we observed that a significant majority (60%) of 
epistatic interactions were antagonistic (𝛽12/𝛽1 < 0). This biais toward antagonistic epistasis is 
systematically observed for all diseases with more than 100 significant interactions (Figure 7). For 
E10, E83, G35, E03, M06, and J45, 58% to 79% of interactions with at least one marginal effect 
presented an antagonistic epistatic factor 𝛽12/𝛽1 < −0.5. For these interactions the effective 
effect of variant 1 is in opposite direction in individuals homozygous for minor allele of variant 2 
(𝑥2 = 2) and in homozygotes for major allele (𝑥2 = 0). Within the replicated interactions with at 
least one marginal effect 62% were antagonistic. 
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 Figure 6 : Distribution of epistatic factor 𝛽12/𝛽1|2 derived from the full bivariate logistic model 

with 𝛽1|2 = 𝛽1 (resp. 𝛽1|2 = 𝛽2) if only variant 1 (resp. variant 2) presents marginal association 

(Fisher’s exact test pval < 8.67e-8). If both variants presented marginal association both epistatic 
factors were considered. Interactions without marginal association were excluded. The category 
‘All’ includes all variants pairs significant in the discovery phase and the category ‘All replicated’ 
all variant pairs replicated.  

Examples of antagonistic interactions 

Figure 7 presents an example of antagonistic epistasis for psoriasis. Allele C of variant rs2272596 
is marginally associated with increased disease risk (OR=1.25 pval=3.5e-8). However the effect of 
this variant appears to be strongly dependent on variant rs2229094, a LTA missense variant 
already associated with psoriasis and other immune traits. In presence of rs2229094 common 
allele disease risk actually decreases with the number of rs2272596-C alleles (OR=0.79) while it 
strongly increases in presence of rs2229094 minor allele (OR=4.82 for double homozygotes). All 
antagonistic interactions reproduced in Finngen are reported in Figure S10. 
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 Figure 7 : Contingency tables for an antagonistic epistasis in psoriasis involving the LTA missense 
variant rs3130453. Marginal association pvalue were computed by Fisher’s exact test on the UK 
biobank psoriasis cohort. Data are represented for the UK Biobank discovery cohort.  

Variance explained by epistasis 

We asked whether the number of associations detected correlated with SNP additive heritability 
as measured using LD-score regression. Because h2 estimates may be biased downwards by small 
case counts, we limited the analysis to phenotypes with Neff > 5,000 (N=97). Of those, 22 
phenotypes had an estimated h2>0.1, 9 of which displayed at least 1 significant interaction 
(OR=3.96, Fisher exact test P=0.01, Table S1). This enrichment was stronger when considering 
phenotypes with at least one replicated epistasis (OR=13.2, P=0.002), suggesting that diseases 
with high SNP heritability are also likely to display epistatic effects.  

Next, we attempted to estimate the amount of variance explained by epistatic effects. For each 
variant pairs, with fitted regression models with and without the interaction term, and calculated 
the difference in pseudo-R2 between both models (Table S3). The mean increase in pseudo-R2 
due to the interaction effect was 0.001 (standard deviation=0.001). Therefore, most epistatic 
events individually did not explain a large fraction of the phenotypic variance. 289 variant pairs 
displayed a gain in pseudo-R2 > 0.01 when the interaction term was included. Of note, rs1543680 
and rs198820 were both additively associated with disorders of mineral metabolism (both P<2e-
16), and explained 2.4% of the phenotypic variance. Including the interaction term in the model 
revealed antagonistic epistasis and together explained 5.6% of the total phenotypic variations. 
This was true across tested indications, whereas the interactions that explained the most variance 
were antagonistic (P<2x10-16, Figure S9). Therefore, in addition to revealing antagonistic effects, 
epistasis can explain a good fraction of heritability not captured by additive effects.  
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Epistasis mechanism 

In the discovery phase 82% of interactions was classified as trans-epistasis, 14% involved variants 
affecting a same gene and 16% involved variants affecting different genes only (Figure 8). Other 
interactions would require further functional annotations to identify genes by each variant. 
Among interactions mapped to different genes a majority (95%) were mapped to different 
pathways, only 4 (0.02%) were mapped to non HLA genes with known physical interaction, and 
891 (4%) to non HLA genes belonging to a same pathway. We observed a similar distribution in 
all phenotypes with more than 200 interactions. Most replicated interactions were in cis-epistasis 
in the HLA region (89%), 76% involved variants mapped to the same HLA gene, 16% to different 
HLA genes. Outside of the HLA region 9 interactions (0.2%) involved variants mapped to the same 
non HLA genes and 12 (0.3%) to different non HLA genes, 8 belonging to a same pathway. 
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 Figure 8 : Proportion of cis-epistasis (interaction betwen variants distant of less than 1Mb) and 
trans-epistasis (left column). Proportion of variant in which both variant were mapped to no gene, 
only one variant mapped to a gene, both variants mapped to the same gene, and both variants 
mapped only to different genes (center column). Among interaction mapped to different genes 
proportion for which both genes are in direct physical interaction, belong to the same canonical 
pathway or only to different pathways (right column). Alluvium color indicates interactions in HLA 
region (red) and outside (blue).  
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Discussion 

In this study we generated a genome-wide map of epistasis across 502 phenotypes. A major goal 
of this study was to generate this unique resource for genetics researchers interested in 
investigating epistasis mechanism. The full summary statistics results for all variant pairs with 
epistasis pval>1e-3 for all 502 phenotypes included in the discovery study are available online 
(URL). In this article we have explored global properties of epistasis across diseases and provided 
few illustrative examples of epistasis. 

While epistasis has long been considered to be ubiquitous in human genetics it has often been 
thought to involve small effect sizes requiring prohibitive sample size to reach satisfying statistical 
power 25. This point of view is moderated by our results which show that a moderately powered 
study is able to identify genome wide significant epistasis in 14% of the phenotypes considered. 
Previous univariate studies in UK Biobank could identify significant association in a larger 
proportion of phenotypes, 79% in Canela-Xandri study4, but this difference might be explain by 
the lower statistical power of the present study. Moreover, we show the presence of epistasis 
between common variants with intermediate to large effect size (OR>2) in 10 diseases. This 
observation support previous predictions that epistasis can maintain variants with deleterious 
effect at high frequency over long evolutionary periods 45. It also suggests that epistasis would 
support the hypothesis of common diseases common variants 46. The presence of high effect size 
interaction (OR>5 or <0.2) between intermediate frequency variants (𝑓 ≈ 0.05) for 3 phenotypes 
might still suggest the existence of strong effect size epistasis between rare variants. Interestingly 
all these interactions with high effect size were protective suggesting the presence of strong 
modulators of genetic disease risk in this space which might give insight into new therapeutic 
targets for genetically defined disease subgroups. However, exploring epistasis between rare 
variants would require larger sample sizes or focus studies and we argue that our results show 
that there is still much to explore in the area of epistasis between common variants. 

For most diseases the majority of variants in interactions did not present marginal association. 
We have shown that even using approaches with more statistical power, such as the pan-UKB 
analysis with SAIGE approach 5, most of these variants (79%) would remain undetected. This 
observation is consistent with the results of Lippert et al. 19 on the 7 diseases of the WTCCC who 
found interactions between marginally significant SNPs only in T1D. It demonstrates that epistasis 
can therefore opens the door to new locus discovery. It also adds to existing evidence 16 
supporting the fact that part of the missing heritability would be explained by the presence of 
epistasis.  

While previous genome-wide epistasis studies on the WTCCC cohorts identified significant 
interactions almost exclusively in the HLA region 18,19 our results suggests the presence of 
epistasis throughout the genome.  However, most interactions replicated in Finngen are in the 
HLA region. While it is probably due to a stronger association in this region it might suggest that 
a higher variability of epistasis between populations.  

The significant bias towards antagonistic interactions (60% of all interactions in average and more 
than 95% for several diseases) indicates that epistasis tends to stabilize the phenotype towards 
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population average rather than towards the extremes. Genetic studies in mice have already 
suggested this mechanism 47. Such bias towards antagonistic, or negative, epistasis has been 
hypothesized to be central in evolution 48,49. Negative epistasis has been related to robustness 
and genetic redundancy in complex organisms49 and predicted to decelerate response to 
selection while contributing to the emergence of population polymorphism by generating 
multiple equilibria 50. Its emergence has been suggested to be a consequence of sexual 
reproduction 51. We show that antagonistic epistatic effect can completely reverse the effect of 
a variant presenting marginal association and that it is a common phenomenon in human 
genetics. Epistasis scan therefore opens the way to identify genes with a strong modifying effect 
on known genetic risk factors. It also shows that epistasis could mask true variant effect and 
should be taken into account when experimentally validating the effect of genetic variant. The 
interaction in psoriasis between CCHCR1, MUC22 and HSPA1L variants provides a good 
illustration. CCHCR1 stop gain rs3130453 is a frequent variant presenting a significant marginal 
association with moderate increased risk of psoriasis (OR=1.49 pval=7.7e-20). However its effect 
is small to inexistant (OR=1.2 and OR=1 respectively) in major alleles carriers of MUC22 or HSPA1L 
common missense variants rs3094672 and rs2227956. An experimental validation of the CCHCR1 
variant effect in reference genotypes, by CRISPR editing for instance, would thus be probably 
unsuccessful. Taking into account epistasis we show that CCHCR1 variant effect is actually 
intermediate to high (OR=3.2 and 3.1 respectively) in homozygotes minor allele carriers of MUC22 
or HSPA1L variants, which could guide experimental validation. 

The causal biological mechanism behind statistical epistasis can occur at different levels. In this 
study we investigated the following mechanisms: variants modifying the structural and 
transcription properties of a single gene, modifying genes coding for two proteins in direct 
physical interactions, modifying genes involved in a same pathway, or modifying pathway 
functions interacting at a higher level. Outside the HLA region we find most variant interacting in 
trans-epistasis. For a majority of interactions (70%) we did not identify the potential genes 
affected by the variants, suggesting that the interpretation of epistasis is still limited by our 
knowledge in functional genomic, at least as represented in the annotation data from open target 
genetics and ensembl used in this study. Our evaluation, therefore partial, indicates that intra-
genes interaction is rare outside the HLA region and that most epistasis occurs at the supra 
pathway level (94% of mapped non HLA interactions). 

We expect that the summary statistics and findings generated in this study will foster further 
analysis on epistasis. Fine mapping analysis on identified locus in particular would be important 
to localize the potential causal variants. 
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