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Abstract We applied a queuing model to inform ven-
tilator capacity planning during the first wave of the
COVID-19 epidemic in the province of British Columbia
(BC), Canada. The core of our framework is a multi-
class Erlang loss model that represents ventilator use by
both COVID-19 and non-COVID-19 patients. Input for
the model includes COVID-19 case projections, and our
analysis incorporates projections with different levels of
transmission due to public health measures and social
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distancing. We incorporated data from the BC Intensive
Care Unit Database to calibrate and validate the model.
Using discrete event simulation, we projected ventilator
access, including when capacity would be reached and
how many patients would be unable to access a ven-
tilator. Simulation results were compared with three
numerical approximation methods, namely pointwise
stationary approximation, modified offered load, and
fixed point approximation. Using this comparison, we
developed a hybrid optimization approach to efficiently
identify required ventilator capacity to meet access tar-
gets. Model projections demonstrate that public health
measures and social distancing potentially averted up
to 50 deaths per day in BC, by ensuring that venti-
lator capacity was not reached during the first wave
of COVID-19. Without these measures, an additional
173 ventilators would have been required to ensure that
at least 95% of patients can access a ventilator imme-
diately. Our model provides a tool for policy makers to
quantify the interplay between public health measures,
necessary critical care resources, and performance indi-
cators for patient access.

Keywords COVID-19 - Critical care - Ventilator
capacity planning - Erlang loss model - Discrete event
simulation - Fixed point approximation

1 Introduction

The World Health Organization declared COVID-19
a global pandemic on March 11", 2020 [I3]. Severe
COVID-19 cases may involve critical conditions includ-
ing respiratory failure, which requires mechanical ven-
tilation for survival [51]. However, hospitals have a lim-
ig%d number of veﬁlc;cg}gutor%,e which also need to be used

y peer review and s not be used to guide clinical practice.
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by patients with medical and surgical conditions un-
related to COVID-19. The potential surge in intensive
care unit (ICU) and ventilator demand due to the pan-
demic heightens the importance of strategic medical re-
source management.

The importance of mathematical modeling to project
critical care resource demand and capacity requirements
during the COVID-19 pandemic is widely recognized
[5, 14 [62]. Mathematical models of disease transmis-
sion are used to predict COVID-19 case counts [29] [35]
57, [61]. Nevertheless, additional modeling is needed to
project medical resource utilization and inform oper-
ational decisions [I4]. One approach to estimate ICU
use is to scale predicted case counts by the projected
proportion of cases admitted to the ICU [15] 57]. How-
ever, critical care resource utilization also depends on
non-COVID-19 demand, resource use time, available
capacity, and the delay from COVID-19 symptom onset
to critical care. Queuing models can provide an accu-
rate way to project resource utilization by incorporating
these stochastic inputs [14].

We applied a multi-class Erlang loss queuing model
to inform ventilator management at a provincial level in
British Columbia (BC), Canada, during the first wave
of COVID-19 in March and April 2020. Our work pro-
vides a real-world case study for epidemic capacity plan-
ning using Erlang loss models. We used local critical
care data from the BC ICU Database to calibrate and
validate the model, and incorporated COVID-19 case
projections provided by the BC Centre for Disease Con-
trol (BC CDC). Model projections capture the inter-
action between ventilator capacity and patient access.
Capacity optimization in the model identifies the num-
ber of ventilators required to meet access targets. Model
analysis under epidemic scenarios with different trans-
mission levels demonstrates the impact of public health
measures and social distancing on ventilator access.

To project ventilator access, we simulated the model
using discrete event simulation (DES). We compared
three numerical techniques with the simulation results,
specifically: pointwise stationary approximation (PSA),
modified offered load (MOL) approximation, and fixed
point approximation (FPA). To our knowledge, no other
studies apply and compare the accuracy of these tech-
niques under the rapid growth of epidemic-type de-
mand, and this represents another contribution of our
work.

To inform capacity planning, we identified the num-
ber of ventilators required to meet access targets in the
model. Loss model performance indicators can capture
patient-centred outcomes and limited access to health-
care resources due to capacity constraints. Epidemic-
type demand can pose challenges for loss model capac-

ity optimization. Approximations which rely on steady-
state formulae may be inaccurate under rapidly chang-
ing demand. Furthermore, simulation-based optimiza-
tion can be especially computationally intensive for queu-
ing models under heavy offered load. To address these
challenges, we developed a hybrid capacity optimization
approach by combining a simulation-based search pro-
cedure with our comparative analysis of PSA, MOL,
and FPA. Our hybrid method offers an accurate and
computationally efficient approach to epidemic loss model
capacity planning. To our knowledge, no other studies
use loss model access targets for capacity optimization
in epidemic scenarios.

Relevant literature is reviewed in Section Bl The
ventilator queuing model is described in Section 3] Model
analysis is detailed in Section [d] including access pro-
jections and capacity optimization. Section [5| describes
BC specific model calibration and epidemic projections,
which were used to produce the results presented in Sec-
tion[6] Lastly, the significance of our results is discussed
in Section [

2 Literature Review

Queuing models play an important role in medical re-
source and ICU management [7, [I1] [12]. The life-threat-
ening conditions faced by many ICU patients motivate
the use of Erlang loss models or infinite server models.
In loss models, arriving patients are either seen imme-
diately, or are lost to the model if resources are unavail-
able. In infinite server models, patients are always seen
immediately and no capacity limits are incorporated.
In both models, patients do not wait for service.
Under non-epidemic conditions, McManus et al. [44]
and Julio et al. [36] compared loss model results with
historical ICU data and found that they accurately pre-
dicted transfer rates. Generalized loss models have been
used to determine the required number of ICU beds
[42] [52],[63], hospital ward beds [8],[10], and neonatal cots
[4]. These studies optimize capacity based on steady-
state formulae [4], [T0], linear simulation searches [52 [63]
or MOL [8]. Although Bekker and de Bruin [§] analyzed
of the impact of cyclic patterns in arrival rates, none of
these studies consider epidemic growth in arrival rates.
Queuing models can also be used to determine the
surge capacity required to meet epidemic or mass causal-
ity event demand [38, [41]. Both loss and infinite server
queuing models have been used to inform critical care
management in response to the COVID-19 pandemic
1 © @, 20, 45, 48, 53, 55, 60]. Infinite server mod-
els can capture the stochastic interplay between ad-
missions and length of stay, yielding time-dependent
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utilization curves that are independent of capacity lim-
its [48]. The probability of excessive utilization can be
measured through simulation [20} 53] B5] or exact for-
mulae [6] [9]. However, infinite server models are unable
to fully capture performance indicators based on pa-
tient access, because these models do not incorporate
the impact of finite capacity. On the other hand, loss
models work within a finite resource capacity and are
able to explore the stochastic relationships between ca-
pacity, utilization, and patient-centred access indicators
[1, 60]. To our knowledge, loss models have not been
used for epidemic capacity optimization.

Time-dependent loss model performance measures
can be accurately evaluated using DES. However, this
approach is computationally intensive, and a number
of numerical approximation methods have been devel-
oped [2, 59]. For phase-type service distributions, loss
model performance measures can be expressed exactly
in terms of the Chapman-Kolmogorov equations [16].
However, solving this system of ordinary differential
equations (ODEs) can also be computationally inten-
sive as the system size grows [32]. Approximate ODE
solutions include closure approximation [2} 27], Gram-
Charlier series expansion [50], and time-dependent per-
turbation theory[54]. Alternatively, another branch of
loss model approximations apply steady-state proper-
ties in strategic ways to approximate time-dependent
results. In the pointwise stationary approximation
(PSA) [21 23] and its extensions [24] 28], steady-state
formulae are applied directly to the time-dependent ar-
rival rate. In the stationary-peakedness approximation,
steady-state results are instead applied to an associated
non-Poisson model in each time interval [43]. In the
modified offered load (MOL) approximation, steady-
state results are applied to an offered load given by the
expected number of busy servers in an associated infi-
nite server queue [19] 23] [33] [34], [43]. In the fixed point
approximation (FPA), time-dependent results and
steady-state relationships are applied in an iterative al-
gorithm [3 32]. Of the above approximation techniques,
the three that have existing extensions to general ser-
vice time distributions and multiple customer classes
are PSA, MOL, and FPA. Published numerical com-
parison of these methods focus on test cases with sinu-
soidal arrival rates [3], [16], 19, 211, 22] 24| 25| 23] 32, [34];
to our knowledge, no other studies evaluate the accu-
racy of these methods under epidemic-type growth in
demand.

Loss model approximation techniques can be used to
identify time-dependent staffing levels required to meet
or stabilize loss probability targets, which is often re-
ferred to as stabilization. PSA can be applied to deter-
mine staffing requirements independently in each time

interval, which is termed the stationary independent
period by period (SIPP) approach [26] 23]. MOL can
be combined with approximate staffing formulas, such
as the square root staffing rule [28], to efficiently iden-
tify time-dependent staffing requirements [19] [34] 23].
More sophisticated staffing approaches draw on itera-
tive evaluation of performance measures [17, 19, [31]. Li
et al. [40] investigate how to achieve stable loss proba-
bility during abrupt staffing changes.

3 Queuing Model

We modeled pandemic ventilator utilization by apply-
ing a two-stage queuing system. The core of this system
is a multi-class Erlang loss model, which captures ven-
tilator use by COVID-19 and multiple types of non-
COVID-19 patients. Additionally, for COVID-19 pa-
tients who require mechanical ventilation, an initial de-
lay model represents the time from symptom onset to
the need for ventilation. The complete queuing system
for COVID-19 and non-COVID-19 patients is depicted
in Figure [T

Non-COVID-19
ventilator
demand

Erlang loss

model for
ventilator use

AN
/

COVID-19 Symptom

cases from onset uphl
epidemic mechanical

projections ventilation

Fig. 1 Diagram of a two-stage queuing system for ventilator
use by by COVID-19 and non-COVID-19 patients.

The ventilator use model is a multi-class ./G/c/c
Erlang loss model with a limited supply of ¢ ventila-
tors that is shared between K + 1 groups of patients. It
considers both COVID-19 patients (group 1) as well as
K different types of non-COVID-19 patients (groups 2
through K + 1). Each patient requires one ventilator,
and if all ¢ ventilators are in use, then arriving patients
are lost to the system. The use of a loss model for venti-
lator access is motivated by the life-threatening nature
of respiratory failure. Patients who need a mechanical
ventilator for life support are not able to wait until one
becomes available. When this model is applied to an
individual hospital, patients unable to access a venti-
lator may be transferred to a different hospital. When
it is applied at a multi-hospital or provincial level, loss


https://doi.org/10.1101/2021.03.17.21253488
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.03.17.21253488; this version posted February 16, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Samantha L. Zimmerman et al.

may indicate mortality. Modeling the provincial venti-
lator supply as a single resource pool assumes that the
critical care transfer service is able to work efficiently,
even under pandemic demand.

The subdivision of non-COVID-19 demand into K
groups is based on preliminary data analysis and expert
opinion that patient indicators affect the distribution of
ventilation time. In our analysis, we considered demand
categories based on the diagnoses of viral pneumonia
(VP) and acute respiratory distress syndrome (ARDS).
Future work could consider other characteristics, such
as surgical status, trauma, and age category.

Each of the K + 1 patient groups has a potentially
different general distribution for time spent on a me-
chanical ventilator, as well as a different arrival process
for ventilator need. We define [K + 1] as the set of inte-
gers 1 through K + 1 representing patient groups. We
denote the CDF of each ventilation time distribution as
G}, with mean 1/, for all k in [K + 1]. In the model,
non-COVID-19 patients require a ventilator based on
non-homogeneous Poisson processes with arrival rate
A (t) at time ¢, for all k € 2, ..., K+1. Time-dependency
in the arrival rates can capture seasonal patterns in ven-
tilator demand, as well as a reduction in elective surg-
eries in response to COVID-19. For COVID-19 patients
needing mechanical ventilation, the effective ventilator
demand is the output of the symptom delay model.

Epidemic case projections are translated into venti-
lator demand using an M;/G /oo queuing model to rep-
resent symptom delay. This infinite server model does
not correspond to utilization of any physical resource; it
simply implements a stochastic delay from the onset of
COVID-19 to the presentation of severe symptoms re-
quiring mechanical ventilation. The arrival process for
this model is a non-homogeneous Poisson process with
rate Ao(t) at time ¢, which we base on scaled localized
COVID-19 case projections. The output process of the
symptom delay model is a non-homogeneous Poisson
process, with rate A; given by the convolution [I§],

A(f) = / " Mot — $)go(s)ds, (1)

where gy is the symptom delay PDF. In other words,
ventilator demand is a weighted average of past case
rates, scaled by the proportion of critical cases and
weighted by the symptom delay PDF.

A key system performance measure is the loss prob-
ability at any time ¢, denoted by S.(t). This represents
the probability of a patient being unable access me-
chanical ventilation, given that they need a ventilator
at time ¢t. Other system quantities of interest include
the time-dependent expected number of ventilators in
use and offered load, denoted by m(t) and a(t) respec-

tively. The patient group specific version of these quan-
tities are denoted by my (t) and ay(t), for all k in [K+1];
however, the loss probability (.(t) is the same for each
patient group. To our knowledge, there are no exact
analytical formulas for 5.(t), m.(t), and a.(t).

4 Model Analysis

Our queuing model analysis focuses on addressing two
practical ventilator management questions. Firstly, we
projected ventilator access in the model based on epi-
demic forecasts. These projections determine whether
the ventilator supply is sufficient, when capacity would
be reached, and the rate of patients unable to access a
ventilator. Comparing projections under multiple epi-
demic scenarios can link public health measures to ven-
tilator access. Subsection [£.1] describes the four meth-
ods that we applied and compared for projecting venti-
lator access, namely: discrete event simulation (DES),
pointwise stationary approximation (PSA), modified of-
fered load approximation (MOL) and fixed point ap-
proximation (FPA). Secondly, we optimized ventilator
capacity by identifying the minimum number of venti-
lators required to keep the loss probability under 5%,
over the course of a projected epidemic scenario. This
optimization problem identifies a single peak require-
ment, since this is sufficient to inform planning. Unlike
staffing, which can fluctuate to address demand, venti-
lator capacity does not vary day to day. Subsection [.2]
describes our hybrid approach to capacity optimization
that draws on the numerical approximations in Subsec-

tion {11

4.1 Projecting Ventilator Access

We applied and compared four methods for approxi-
mating ventilator access in the model. DES is an accu-
rate estimator of time-dependent system performance
in queuing models and it is often used for analysis or
bench marking of intractable models. However, simula-
tion can be computationally intensive, especially under
heavy offered load. On the other hand, the numerical
approximations PSA, MOL, and FPA are all compu-
tationally efficient, albeit with less accuracy. PSA is
typically inaccurate when arrival rates change rapidly
relative to service times [211, 22]. Although MOL is of-
ten more accurate than PSA| it has declining accuracy
for higher loss probabilities [43]. FPA has demonstrated
high accuracy in published test cases [3, 32]. Previ-
ous numerical comparisons of these methods have solely
used sinusoidal test cases [3] [16] 19, 211 22| 24] 25] 23]
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32, [34] and not epidemic arrival rate functions. Sub-
subsection describes our DES implementation, which
we use as a benchmark for three other numerical pro-
cedures. Our applications of PSA, MOL, and FPA are
described in Subsubsections [4.1.2] [4.1.3] and [4.1.4] re-
spectively.

4.1.1 Discrete event simulation

We built a DES simulation of the queuing model us-
ing the AnyLogic modeling software. The simulation
has two source nodes, one for COVID-19 and one for
combined non-COVID-19 patient streams. Each source
node generates patients according to separate non-ho-
mogeneous Poisson processes, which are each obtained
by thinning a homogeneous Poisson process with a time-
dependent probability of acceptance. Generated non-
COVID-19 patients are then randomly assigned into
groups based on time-dependent mixing probabilities.
Generated COVID-19 patients face an additional stoch-
astic symptom delay prior to ventilator use. A single
service block combines ventilator use for all patient
types. Simulated patients will use any available ven-
tilator, with a service time that is generated randomly
from a distribution based on patient group. If all ven-
tilators are in use, then arriving patients will leave the
model without returning or affecting future ventilator
use.

At regular time intervals, the DES model measures
the number of ventilators being used and whether ca-
pacity has been reached. Averaging these measurements
across multiple simulation runs yields time-dependent
estimates mPES(¢) and SPES(¢) for the expected ven-
tilator use and loss probability, respectively, at each
sampled time ¢. Confidence intervals and interquartile
ranges were also calculated for these estimates.

4.1.2 Pointwise stationary approximation and
steady-state formulae

The PSA approach obtains proximate expressions for
time-dependent properties by substituting the time-de-
pendent arrival rate into steady-state formulae [2,[21] at
each time point. PSA assumes that the system reaches
a new equilibrium value instantaneously as the arrival
rate changes, and does not incorporate the impact of
past arrivals. Some extensions try to mitigate this by
incorporating a lag in arrival rate substitution [24] [25].
While this approximation is computationally efficient,
it is known to be over-responsive and have limited accu-
racy in scenarios with arrival rates that change rapidly
relative to service times [21] 22 23]. We applied PSA

by substituting estimated ventilator arrival rates into
steady-state formulae for our multi-class loss model.

If the arrival rate were time-independent, then the
loss model would have an equilibrium state with con-
stant loss probability. Even though ventilation time is
generally distributed, Takdcs [56] proved that general
service time loss models have the same steady-state dis-
tribution as exponential service time loss models, under
time-independent arrivals. Furthermore, Kaufman [37]
proved that this property of insensitivity to service time
distribution also extends to multi-class loss models. The
steady-state loss probability, 8 is given by Erlang’s B
formula,

ﬁ:B(c,a)zﬁ, (2)

Zaj/j!
=0

where c is the number of ventilators and a is the con-
stant total offered load. Erlang’s B formula is an in-
creasing function of a and a decreasing function of c.
For ease of calculation, B(c, a) has an equivalent recur-
sive expression [46]

c+1

B(e+1,0)" =14+ “——B(c,a)"". (3)

The total offered load a is given by the sum of the
constant offered load for each group,

K+1
a = Z ag
k=1
Ak
ap = —, VkG[K+1] (4)
Pk

The steady-state expected number of busy ventilators
for patient group k is given by

mk:ak(l—,@), (5)

and the total over patient groups is

K+1

m:ka:a(l—B). (6)
k=1

App}ying equation , the PSA proximate loss prob-
ability BESA(t) of the ventilator model, with PSA time-
dependent offered load aFS4(t), is given by
BESA() = B(c,a™ (1)) . (7)

Furthermore, the PSA estimate for the expected num-
ber of busy servers is

PSA (1) = P () (1 - AESA). (8)
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In a multi-class loss model, the PSA time-dependent
offered load is not dependent on ¢, and given by

K+1

&PSA<t) = )\total(t)( Z qk(t) ! ) ) (9>

k=1 Hk

where the total arrival rate is

K
Meotal () = AL () + > Aryn(t), (10)
k=1

and the average service time is weighted by the instan-
taneous proportion of arrival rate for each group k in

Qk(t> _ )‘k(t)

B )\total(t) ’ (11)

4.1.8 Modified offered load

In the MOL approach, time-dependent offered load is
approximated by utilization in a corresponding system
without capacity limits [19] [33], [34] 43]. In this infinite
server system, the expected number of busy servers,
denoted by m®(t), incorporates the interplay between
past arrivals and service times [I6]. Substituting this of-
fered load estimate into steady-state formulae provides
an approximation for finite system performance mea-
sures.

The MOL estimates for offered load, loss probabil-
ity, and the expected number of ventilators in use are

aMOL(4) = m™ (1), (12)
BMOL (1) = B(e,a™MO%(t)), and (13)
MOL(1) = aMOL(1) (1 - BYOH()), (14)

respectively. Erlang’s B formula B (c, a) is given by equa-
tions and (3). Here m™(t) is a sum over patient
groups,

K+1

m>=(t) =Y m(t), (15)
k=1

where m7°(t) is the expected number of ventilators in
use by patients of group £ in an infinite server system.
Without capacity limits, there is no patient interaction,
thus each mg°(t) is individually given by the convolu-
tion [I§],

4.1.4 Fized point approrimation

The FPA approach iteratively estimates performance
measures at several fixed points in time [3 32]. Tter-
ative estimates of the time-series for loss probability,
utilization, and offered load are sequentially updated,
until consecutive changes are insubstantial. Each iter-
ation refines estimates of these performance measures
using both steady-state and time-dependent relation-
ships. By starting with an initial loss probability of zero,
the FPA algorithm begins with MOL values and itera-
tively improves estimates to incorporate the impact of
finite server capacity [3}, 32].

We applied the multi-class FPA algorithm described
by Izady and Worthington [32] to our loss model. For
each iteration 4, the loss estimate is denoted (%(t). The
corresponding estimate for the expected number of ven-
tilators in use is given by

(0 = [ w1 - Bi) (L= Gult — w) du, (1)

for all k in [K + 1]. Iterative offered load is estimated
using the steady-state relationship in equation , re-
arranged to give
i (1) = 0

1— Bi(t)
The sum of offered load estimates is substituted into

Erlang’s B formula or , to yield a subsequent
estimate of loss probability,

. Vke[K+1]. (18)

K+1

B = B(e, Y ak(0).

k=1

(19)

The FPA algorithm repeats the three steps given
by equations , , and in each iteration, un-
til sequential loss probability estimates are within a set
tolerance of each other. The FPA approach uses regu-
larly spaced time points and numerical integration in
equation must be based on fixed and regular time
points.

4.2 Optimizing Ventilator Capacity

To address ventilator capacity planning, we determined
the minimum number of ventilators required to main-
tain modeled loss probability under target a over the
time planning horizon T, which ensures 100(1 — o)%
access. This capacity optimization problem can be for-
mulated as

minimize c
subject to max 5.(t) < «
J e BC( ) > o

ceN
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Maximum modeled loss probability is a strictly decreas-
ing and non-linear function of the number of venti-
lators c. This response function can be approximated
by the methods described in Subsection namely
DES, PSA, MOL, and FPA, which give the estimates
BDES(f), BPSA(f), BMOL(f), and BFPA(¢), respectively.
Substituting each of these estimates into problem
provides proximate capacity requirements.

Simulation is the most accurate of these methods
to estimate the response function; however, solving the
optimization problem using DES can be computa-
tionally intensive. On the other hand, the three approx-
imation methods PSA, MOL, and FPA are computa-
tionally efficient, but may be inaccurate. We compared
three proximate capacity requirements—obtained by
substituting PSA, MOL, and FPA estimates into prob-
lem —with the DES solution. To boost the effi-
ciency of our DES search, we developed a hybrid op-
timization approach with a strategic starting point in-
formed by our comparison of approximation methods
to project access under the current ventilator supply.

To approximately solve problem using PSA,
MOL, and FPA, we simply performed deterministic lin-
ear searches, by increasing the ventilator capacity until
each loss estimate rtnea}%( BC is under «. This straightfor-

ward approach sufficed because of the computational
efficiency of these approximation methods.

To solve the optimization problem using DES
estimation for the response function, we applied a mod-
ified response surface methodology (RSM) search pro-
cedure to incorporate the stochasticity in S2E5(¢). Our
response function is only defined on natural number
capacities; consequently, multi-point root-finding pro-
cedures are more suitable than single-point methods,
which rely on derivative proxies [49]. The RSM frame-
work typically uses first and second-order approxima-
tions of a sampled response function to guide an opti-
mization search [47, [39]. We modified the RSM frame-
work in Nicolai and Dekker [47] for stochastic root find-
ing. Our adapted procedure is guided by second-order
approximations of the response function, to account for
non-linear and asymptotic behavior as capacity grows.
In each iteration, the algorithm identifies a root with
a of a second order approximation. This intersection
point is used as a subsequent solution estimate, which
becomes the centre-point for re-approximating the re-
sponse function. The algorithm is repeated until desired
convergence in centre-points is achieved.

In our application, we determined an initial centre-
point for RSM using a proximate required capacity, ob-
tained from the numerical approximation method which
best projected current capacity outcomes. We ended the
algorithm at a change of 5 ventilators, and plotted the

loss probability for the ten capacity values surrounding
the final centre-point. A graphical representation en-
ables further interpretation of our results by decision
makers, and illustrates the sensitivity of loss probabil-
ity to the number of ventilators. Appendix [A] discusses
the algorithmic details of our modified RSM and linear
search approach.

5 Data Analysis and Case Projections

We analyzed data on critical care utilization in BC,
in order to apply our model to the BC context. The
primary data set used was an extract from the BC
ICU Database. We supplemented this with summary
data provided by the BC Ministry of Health from the
Discharge Abstract Database, published reports, ex-
pert opinion, and data from the Provincial Health Ser-
vices Authority on ventilator capacity. The BC Centre
for Disease Control provided case projections for the
COVID-19 epidemic in BC as input for the model.

The British Columbia ICU Database was established
in 1998 at the Centre for Health Evaluation & Outcome
Sciences to provide detailed information on the delivery
of critical care in British Columbia [58]. Our data ex-
tract consists of records from calendar years 2016-2018.
At the time of this work, 2019 data was unavailable.
For 20162018, the database contains ICU data from
20 hospitals in BC, including nearly all major hospitals.
However, an additional 21 hospitals in BC with ICUs
are not included in our extract. For these hospitals, we
used ICU admission data from the Discharge Abstract
Database, which is a national database of hospital ad-
missions in Canada. We estimated ventilator utilization
for these hospitals by assuming that they have the same
fraction of ICU admissions requiring mechanical venti-
lation as the hospitals in the ICU Database. Our ICU
Database extract includes an entry for each instance of
mechanical ventilation. It has fields for the start and
stop time of mechanical ventilation, acute respiratory
distress syndrome (ARDS) diagnosis, and viral pneu-
monia (VP) diagnosis. We included these diagnoses in
our extract because they are clinically similar to respi-
ratory failure due to COVID-19.

5.1 Non-COVID-19 Demand and Ventilator Capacity

We projected non-COVID-19 ventilator demand into
2019-2020 by using the frequency of ventilation starts
in the most recent two years of our BC ICU Database
extract, namely 2017-2018. Patients may have multiple
ventilation periods during a single ICU stay; however,
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Fig. 2 Average monthly rate of mechanical ventilation starts
from the ICU Database, for years 2017 and 2018, along with
a combined monthly average across both years.

we treated these as independent ventilation starts. Fig-
ure[2shows a monthly time series of mechanical ventila-
tion starts in the BC ICU Database for 2017 and 2018.
For both years, the rate of ventilation starts is higher
at the beginning of the year than at the end; however,
2018 has an additional peak in May. To balance captur-
ing seasonal tends without over-fitting to these years of
data, we projected ventilation demand into 2019-2020
using the average monthly rate over both years, which
is also shown in Figure |2l We multiplied this by 1.198,
which was computed from the DAD to account for the
additional 21 hospitals not in the BC ICU Database.

The BC Ministry of Health responded to the
COVID-19 pandemic by canceling non-urgent elective
surgeries as of March 16'", 2020. Detailed data on the
impact of this reduction was unavailable at the time
of this study. Based on expert opinion, we estimated
that this led to a 15% reduction in the number of non-
COVID-19 patients requiring mechanical ventilation.
We implemented this change as a step reduction the
non-COVID-19 demand rate by 15% from March 16,
2020 onwards.

The Provincial Health Services Authority of BC con-
ducted an inventory of ventilators in the province in
March 2020. There were 498 adult mechanical venti-
lators available in 34 hospitals. We were advised that
at any given time, approximately 10% of these ventila-
tors would be unavailable due to repair or maintenance.
Therefore, we set the current number of ventilators in
the model to 448. Based on consultation with a respi-
ratory therapist, we assumed that the time required to
clean a ventilator and prepare it for a new patient is

Table 1 Fitted gamma distribution parameters for time
spent on mechanical ventilation.

VP or ARDS Neither VP nor ARDS
Shape 0.94 0.85
Scale 7.9 days 4.8 days
Mean 7.5 days 4.1 days

approximately two hours, which we incorporated into
the modeled ventilation service time.

5.2 Mechanical Ventilation Time and Symptom Delay

We characterized the duration of time that patients re-
ceive ventilation by using start and stop times from the
2017-2018 records of our BC ICU Database extract.
Approximately 10.4% of these records were either miss-
ing a start/stop time or had zero ventilation time, and
we did not use these records in ventilation time analy-
sis. We divided the remaining records into two groups:
one for patients diagnosed with either ARDS or VP,
and one for patients with neither of these diagnoses. At
the time of this analysis, there was limited data for ven-
tilation time of COVID-19 patients. ARDS and VP are
clinically similar to respiratory failure due to COVID-
19. Therefore, we assumed that the distribution of ven-
tilation time for patents with these diagnoses is repre-
sentative of the distribution for COVID-19 patients.

For each group of records, we fit ventilation time
to a gamma distribution using the maximume-likelihood
method implemented in the ‘MASS’ package in R. The
parameters for the distribution fits are given in Table
and the distributions are plotted in Figure [3| The ven-
tilation time data appears to be well captured by the
fitted gamma distributions. The mean ventilation time
for patients with VP or ARDS is substantially greater
than the mean ventilation time for patients with neither
diagnosis.

Figure 4| displays the 2017-2018 monthly propor-
tion of ventilation starts that are for patients with ei-
ther VP or ARDS, as opposed to patients with neither
diagnosis. Both years show a seasonal trend of higher
winter proportions of patients with VP or ARDS, com-
pared to the summer months. We modeled the arrival
rates for these patients using a time-dependent mixing
probability based on the monthly proportion of ventila-
tion starts for patients in this group in both 2017-2018,
which is also displayed in Figure 4l The compliment
of this time-dependent mixing probability gives the ar-
rivals for the group of patients with neither VP nor
ARDS.
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with either VP or ARDS. Values are shown for 2017, 2018,
and both years.

Symptom onset time is not routinely entered in med-
ical record data in BC, and we are unaware of BC
specific estimates for the distribution of time between
COVID-19 symptom onset and severe symptoms re-
quiring mechanical ventilation. A study by Phua et al.
[61] estimated the median time from symptom onset
to ICU admission as 7-12 days. Therefore, we assumed
a uniform distribution between 7 and 12 days for our
symptom delay model.

5.3 COVID-19 Case Projections

The BC Centre for Disease Control provided COVID-19
case projections made using a stochastic disease modeﬂ
based on Hellewell et al. [29]. Their epidemiological
model was calibrated using historical data on cases in
BC and projects cases under different scenarios by vary-
ing a transmission rate parameter. Scenarios of reduced
transmission were specifically used to illustrate the im-
pact of public health measures such as social distanc-
ing and other changes in population behavior. Signifi-
cant public health measures in BC during the first wave
of the epidemic began on March 16** and included re-
stricting gatherings to no more than 50 people and clos-
ing schoolsﬂ Their model was re-calibrated weekly in
March and April 2020, with projections extending one
month from calibration date. The results in our pa-
per are based on projections released on March 19",
2020 for COVID-19 case counts from March 16" to
April 13",

Based on expert opinion and initial data on the epi-
demic in BC, we assumed that 6.7% of COVID-19 cases
would require ICU care. We further assumed that 70%
of COVID-19 ICU patients would require mechanical
ventilation, based on the ICNARC Report on COVID-
19 (April 10", 2020) [30] and expert opinion on hospi-
talizations in BC. We multiplied the BC CDC projected
daily case counts by the above two proportions, in order
to project COVID-19 symptom onset for cases which
will eventually require mechanical ventilation. We then

I The BC CDC model is implemented as an R pack-
age, which is available from https://github.com/bcgov/epi.
branch.sim.

2 Additional details on public health measures undertaken
in BC are available at https://news.gov.bc.ca/releases/
2020HLTHO0086-000499.
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converted this into projected hourly rates at noon of
each day, and linearly interpolated to obtain instanta-
neous rates for the symptom delay model.

6 Results

We present the results of applying the multi-class Er-
lang loss model from Section [3| to project and optimize
ventilator capacity at a provincial level in BC, during
the first wave of the COVID-19 epidemic in March and
April 2020. Validation of the model for historical non-
COVID-19 ventilator use is presented in Subection |6.1
Model projections of ventilator access are presented in
Subsection [6.2] under different epidemic scenarios to
illustrate the impact of public health measures. Sub-
section [6.3] compares access projections from simula-
tion with results from three numerical approximation
methods: PSA, MOL, and FPA. Results of our hybrid
capacity optimization approach are presented in Sub-
section

6.1 Validation

We validated our non-COVID-19 modeling assumptions
by comparing simulated non-COVID-19 ventilator use
with pre-COVID-19 ICU data. Using our BC ICU Data-
base extract, we estimated the number of patients on a
ventilator at any time from the recorded start and stop
times of ventilation. For the 10.4% of records without
a recorded stop time, we assumed a stop time proxy
equal to the start time plus an annual mean ventilation
time. This yielded a time series of estimated ventilator
utilization for 2017 and 2018.

For comparison with historic data, we ran our DES
implementation with only non-COVID-19 ventilator de-
mand for the 20 hospitals in the BC ICU Database, and
without a reduction in elective surgeries. We used a
ventilator capacity of 356, which corresponds to the es-
timated number of functional adult ventilators in these
hospitals. We ran the DES model for a three-year sim-
ulation of 2016 through 2018. We measured the mean,
5t and 95 percentiles of the number of simulation
ventilators in use, which is compared in Figure |5 with
the inferred historic ventilator use for 2017 and 2018.
Simulation output for 2016 was not analysed, because
the first simulation year was used to populate the model.
In Figure[5] the arrival rates and patient group propor-
tions are given by monthly averages across data from
2017 and 2018. With these monthly arrival rates, the 50
to 95" percentile range of the simulation output covers
the historic data 84.5% of the time. This indicates some
unaddressed data variability; however, a monthly time
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Fig. 5 Comparison of pre-COVID-19 simulation and inferred
2017-2018 ventilator use from the ICU DB. This simulation
uses monthly average arrival rates over 2017 and 2018. The
mean, 5*P, and 95" percentiles of simulation ventilator use
are measured from 4000 runs, using 2016 to populate the
model.

-

N

(&)
1

100+

Number of Ventilators in Use
un ~
< T

Jan I2017 Jul 2I017 Jan I2018 Jul 2IOlS Jan I2019

Date
Historic __ Simulation Simulation 5th to 95th
Data Mean Percentile Range

Fig. 6 Comparison of pre-COVID-19 simulation and inferred
2017-2018 ventilator use from the ICU DB. This simulation
uses week and year specific arrival rates for 2016, 2017 and
2018. The mean, 5t*, and 95" percentiles of simulation venti-
lator use are measured from 4000 runs, using 2016 to populate
the model.

granularity is appropriate for the purpose of projecting
non-COVID-19 ventilator demand into 2019-2020.

We performed a second simulation evaluation with
increased time granularity in the arrival rate to fur-
ther validate our model against historical data. Fig-
ure [6] shows these simulation results, in which arrival
rates are specific to each year and week of the simula-
tion, and patient group proportions are given by year
and month. With this level of time granularity, the sim-
ulation is able to fully match the data variability, since
the 5% to 95" percentile range covers the historic data
90% of the time. Since the unmet variability in Figure
can be fully addressed by increased time-granularity of
arrivals, it does not indicate limitations in our other
non-COVID-19 modeling assumptions.
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6.2 Projected Ventilator Access

We simulated the queue model using DES to project
provincial ventilator access under different epidemic tra-
jectories, during the first wave of COVID-19 in BC.
Model simulation results for the March 19*", 2020 case
projections from the BC CDC are shown in Figure [7]
under scenarios with and without reduced transmission
due to public health measures. These projections start
at the beginning of the community spread of COVID-
19 on March 16", 2020, and project COVID-19 case
counts until April 13", 2020. To build up non-COVID-
19 ICU occupancy, we started the simulation one year
prior to the epidemic projections. We ran the simulation
until April 20t", 2020, since the delay between symptom
onset and ventilation has a minimum of 7 days.

The effect of the cancellation of non-urgent elective
surgeries on March 16" is noticeable in both scenar-
ios as a slight decrease in ventilator utilization, before
an increase occurs due to the projected rising COVID-
19 cases. Without reduced transmission, the projected
number of COVID-19 cases requiring a ventilator reaches
approximately 112 patients per day by the end of the
projection. In this scenario, the estimated probability
of reaching ventilator capacity is negligible until ap-
proximately April 14", when it begins to rise dramati-
cally. By the end of the simulation, the mean number of
patients unable to access a ventilator reaches approx-
imately 50 per day. However, with reduced transmis-
sion due to public health measures, the projected rate
of COVID-19 ventilator cases reaches a substantially
lower rate of approximately 36 patients per day. In this
scenario, the estimated probability of reaching ventila-
tor capacity remains negligible and all the simulated
patients are able to access a ventilator.

6.3 Comparing Numerical Approximations

We applied three numerical methods, namely PSA, MOL,
and FPA, to approximate time-dependent ventilator
utilization and access under the epidemic scenario with-
out reduced transmission from the March 19*" epidemic
projections. Figures[§land [0 compare the results of these
methods with simulation values for the expected num-
ber of ventilators in use and loss probability. The per-
centages of time that these estimates are within the
DES interquartile range (IQR) or confidence interval
(CI) are shown in Table [2, for March 16 onwards.
PSA, MOL, FPA, and simulation values were all eval-
uated at 12-hour intervals aligned with noon and mid-
night of each day. All of the integration in the numerical
methods was performed using the trapezoid rule. Sim-
ulation estimates were obtained using 4000 runs and

Percentage of Time within DES Range for
Method mDPES BPES
PSA 27.8% 61.1%
MOL 84.7% 79.2%
FPA 100% 90.2%

Table 2 Comparison of the percentage of time-dependent es-
timates that are within the simulation ranges, for twice daily
estimates between March 16" to April 215t, 2020. All of the
estimates are under the epidemic scenario without reduced
transmission and use the current supply of 448 ventilators.
The simulation range for the expected number of ventilators
in use ("nPP9) is an interquatile range, and the range for the
loss probability (3PES) is a 95% confidence interval.

Method Peak loss probability Evaluation
(95% CI) time
DES 0.455 (0.44,0.47) >25m
PSA 0.462 0.34 s
MOL 0.250 1.06 s
FPA 0.448 2.08 s

Table 3 Peak estimated loss probability for DES, PSA,
MOL, and FPA methods, as well as computational times.
Computation times were evaluated on a 2.3 GHz quad-
core Intel core i7 processor. DES results were obtained from
4000 runs and were executed in parallel over 8 cores.

a tolerance value of 10719 was used to obtain FPA re-
sults. Table [3|compares peak loss probability estimates,
as well as computation times for these four approaches.

The FPA estimates are substantially closer to the
simulation results than estimates from PSA and MOL.
FPA values for the expected number of ventilators in
use are within the simulation IQR 100% of the time,
and values for loss probability are within the simulation
CI 90.2% of the time (Table [2). Both FPA and PSA
estimates capture the peak loss probability (Table ,
but PSA results predict that capacity would have been
reached about a week sooner than in the simulation
(Figure[9). MOL substantially underestimates the peak
loss probability, yielding an estimate which is 45% less
than the simulation (Table . In our implementations,
FPA requires almost double the computational time of
MOL; however, FPA is still orders of magnitude faster
than DES (Table [3).

6.4 Capacity Optimization Results

We performed the search procedures described in Sub-
section[f:2]to determine the ventilator capacity required
to keep ventilator access above 95% in the March 19*®
epidemic scenario without reduced transmission. This
section compares proximate capacity requirements based
on the three numerical approximations (PSA, MOL,
and FPA) to DES optimization results obtained using
a hybrid approach.
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Fig. 7 Epidemic projections and DES results for scenarios with and without reduced transmission. Simulation runs use
448 ventilators. The dotted red line represents the start of projections and the reduction in elective surgeries. The topmost
panels present epidemic projections of daily COVID-19 cases requiring a ventilator, from March 16** to April 13t 2020. The
second and third pairs of panels shows DES estimates for the expected number of ventilators in use and loss probability, both
measured at midnight and noon of each simulated day. The fourth pair of panels show the average number of patients unable
to access a ventilator per day, measured every half-day. Simulation results are obtained using 4000 runs.
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Fig. 9 Comparison of four estimates for the time-dependent
loss probability. These projections use the current ventilator
capacity of 448, and assume an an epidemic scenario with-
out reduced transmission. The mean and interquartile range
(IQR) for simulation values are obtained using 4000 runs.

First, we performed three separate linear searches
using the PSA, MOL, and FPA model approximations.
Table [ compares the proximate required ventilator ca-
pacity for each of these methods to the DES-based
result. Our hybrid approach to simulation-based opti-
mization initializes an iterative RSM search procedure
with the FPA proximate capacity requirement. This
starting point was informed by the results in Subsec-
tion[6.3] which demonstrate that FPA performs the best
at predicting loss probability under the current venti-
lator capacity.

Table 4 Ventilator capacity requirements to keep the re-
spective loss probability estimates (8LS4, gMOL GFPA " and
BPES) under 5%.
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Fig. 10 Linear search across the ten ventilator capacities sur-
rounding the final RSM required capacity estimate. For each
number of ventilators, the peak loss probability and 95% con-
fidence interval (CI) is estimated using 4000 simulation runs.

Our simulation-based optimization started at the
FPA proximate capacity requirement of 606 ventilators,
and took only 3 iterations of second order RSM approx-
imations until consecutive estimates were within 5 ven-
tilators of each other. Figure [10] presents the DES loss
probabilities for the 10 values surrounding the last RSM
capacity estimate, and it shows at least 621 ventilators
are required to maintain a 5% target. A reduction in
capacity of up to 5 ventilators will keep the loss prob-
ability within 6%.

For the optimal capacity of 621 ventilators, Fig-
ures [[T]and [T2] compare DES and numerical approxima-
tion projections of ventilator use and access. In these
figures, MOL and FPA both accurately approximate
the expected number of ventilators in use. However,
both FPA and MOL methods underestimate loss prob-
ability.
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MOL, and FPA), with an optimal capacity of 621 ventilators
under the epidemic scenario without reduced transmission.
Simulation mean and interquartile range (IQR) values are

obtained from 4000 runs.
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Fig. 12 Comparison of estimated loss probability, for the
three numerical approximation methods (PSA, MOL, and
FPA), with an optimal capacity of 621 ventilators under the
epidemic scenario without reduced transmission. Simulation
mean and 95% confidence interval (CI) values are obtained
from 4000 runs.

7 Discussion and Conclusions

We applied a multi-class Erlang loss model to inform
ventilator capacity management during the first wave
of the COVID-19 pandemic in BC, Canada. We worked
closely with analysts at the BC Ministry of Health, the
Provincial Health Services Authority, and the BC Cen-
tre for Disease Control in March and April 2020, to
provide weekly reports on projected ventilator access.
We collaborated with these organizations to obtain up-
to-date BC specific data and parameter values for our
model, including both non-COVID-19 critical care use

and weekly updated COVID-19 case projections. The
results presented in this paper are based on the
March 19** epidemic projections from the BC CDC, un-
der different levels of transmission. Simulation results
predict that under a scenario of reduced transmission of
COVID-19—through means such as social distancing,
but also other public health measures and changes in
population behavior—ventilator capacity would likely
not be reached, thereby helping to avert as many as
50 deaths per day within the time frame of March 16"
to April 20*", 2020. Under the COVID-19 projections
without reduced transmission, an additional 173 ven-
tilators would have been required to ensure that the
probability of immediate patient access to a ventilator
is at least 95%. However, with public health interven-
tions including social distancing, the current ventilator
supply was sufficient. These results were provided to
health system analysts and policy makers to help inform
capacity management decisions, including whether to
expand the current ventilator supply. Additionally, our
model links public health measures to operational im-
pacts on ventilator access. Our work provides a tool for
policy makers to quantify the interplay between public
health interventions and critical care access.

Our projections of ventilator access are dependent
on the underlying epidemic projections and need to be
interpreted in the light of the challenges with predicting
the epidemic trajectory [35] [61]. In particular, our re-
sults are highly sensitive to estimates of the peak in
the epidemic wave. Furthermore, public health mea-
sures are often implemented in response to epidemic
projections and these measures may change the course
of the epidemic.

Another contribution of this study is the compari-
son of PSA, MOL, and FPA under rapidly changing epi-
demic demand. Previous studies have focused on eval-
uating these numerical methods under sinusoidal de-
mand [3, 16, 19, 21, 22, 24, 25, 23, 32, 34]. Our analysis
compares the accuracy and efficiency of these numeri-
cal approximation methods for projecting ventilator ac-
cess under the rapid growth in the March 19" COVID-
19 projections without reduced transmission. With the
current ventilator supply, FPA results closely approxi-
mate the simulated loss probability throughout the du-
ration of the projection. In comparison, MOL results
underestimate the peak loss probability within this time
frame and PSA results overrespond, predicting capac-
ity would be reached about a week early. The FPA esti-
mate of the number of ventilators required to meet ac-
cess targets is closer to the simulation capacity require-
ment than the PSA and MOL estimates. However, FPA
underestimates capacity requirements by 15 ventilators
(2.5%). The comparative accuracy of FPA is manifest,
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because it improves MOL estimates by iterating to cap-
ture the time-dependent interaction between capacity,
access, and utilization [3, B2]. However, FPA updates
still rely on steady-state formulae, and its accuracy is
not guaranteed for highly time-dependent systems. Our
results demonstrate the extent of the accuracy of FPA
under epidemic-type demand. Although FPA requires
more computational time than PSA and MOL, it is still
substantially faster than DES.

Epidemic projections are frequently updated dur-
ing the COVID-19 pandemic, and efficient model anal-
ysis is important for timely support of decision making.
We developed a hybrid capacity optimization search by
drawing on our comparison of numerical approxima-
tions. Since FPA was the most accurate for projecting
ventilator access under the current capacity, we used
FPA to find a proximate initial value for an iterative
simulation-based capacity search. By starting at this
point, the optimal capacity range was identified in only
three iterations of a modified RSM search. Our hybrid
approach combines the accuracy of DES with boosted
efficiency from FPA, which addresses the computational
challenges of loss model capacity optimization under
rapidly growing epidemic demand.

Overall, this study provides valuable insight for cur-
rent and future epidemic capacity planning. Our com-
parison of numerical approximation methods motivates
the further use of FPA in epidemic queue modeling and
capacity optimization. Our hybrid search procedure ad-
dresses the computational challenges of optimizing loss
models under rapidly growing demand. This enables
further application of loss models to inform epidemic
capacity planning in the context of patient-centred ac-
cess indicators.

As the COVID-19 pandemic progresses, our analy-
sis can be further updated using the latest case projec-
tions, parameters for ventilator use, and treatment pro-
tocols. By using case projections from epidemic models
that incorporate vaccination, our model could link vac-
cine uptake to the utilization of critical care resources.
The queue model can be adapted to other geographic
regions by incorporating location-specific critical care
data. Future work could consider modeling additional
medical resources, for example ICU beds and respira-
tory therapists, and staff scheduling could be informed
by increasing the time granularity of capacity optimiza-
tion. More sophisticated optimization techniques could
be incorporated to provide greater computational effi-
ciency to address these extensions. Our framework is
widely applicable to many critical care resources that
can face surge demand.
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Appendix A Response Surface Methodology

We used a modified response surface methodology (RSM)
procedure to solve the capacity optimization problem in
equation , which identifies the minimum ventilator
capacity required to meet at target on the DES loss
probability. Our approach is based on the RSM frame-
work in Nicolai and Dekker [47]; however, we made sev-
eral modifications based on our problem context. This
appendix describes the algorithmic details of our imple-
mentation; higher level discussion is in Subsection [4.2
In our RSM application, the response function is
the maximum simulation loss probability as a function
of the number of ventilators c. We denote the iterative
estimates of the required ventilator capacity by ¢; and
the iterative radii of the successive regions of interest

by r;, for i = 0,1,2,.... We begin with initial estimated
capacity ¢o and radius rg = round(0.1¢g). The target
loss probability is denoted by «. The details of our im-
plementation are as follows:

Iterate the following over ¢ = 0,1,2, ..., until r; < 5 or
|C7; - Ci,1| S 5:

(a) Use DES to estimate the maximum loss probability
at each ventilator capacity value in a one dimen-
sional central composite experimental design [47].
This design involves five estimates made at the cen-
ter value ¢;, and one estimate made at each of the
values: ¢; — r;, round(c; — 0.57;), round(c; 4+ 0.57;),
and ¢; + r;. For each capacity value, the maximum
loss probability is estimated using 200 simulation
runs.
Using these estimated points, perform a least-squares
regression fit to a second-order model,

2
Tgleaiziﬁc(t) =bo + bic+ bac”.
If the estimated coefficients satisfy bo = by = by = 0,
then set ;41 = 27; and move to the next iteration.
This check increases the region of interest if the DES
estimate of the response function is zero. Note that
the response function is asymptotic to zero for a
large number of ventilators.
If the overall regression fit is statistically significant
(F-statistic has p-value at most 0.05), then set

d=b2—4by(by — a)
b -Va

O 2hy

. —614-\/(3

O 2hy

zZ1
z2
if d>0 and 2, >0 and by >0

if d>0 and (21 <0 or 52<0)
if d<0

21,

22,
by

2by’

Cit+1 =

¢it1 = round(c;y1)

r;41 = round(0.57;),

and move to the next iteration.

If the overall regression fit is not statistically sig-
nificant (F-statistic has p-value greater than 0.05),
then double the number of runs per DES evaluation,
until all are statistically significant.
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