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We model COVID-19 data for 89 nations and US states with a formalism that

describes mathematically any pattern of growth with the minimum number of

parameters (1), looking for correlations between “flattening of the curve” and

preventive public policies. We find strong statistical evidence for the impact of

the first implemented policy on decreasing the pandemic growth rate. Lock-

down was not the first policy of any sample member, and we do not find sta-

tistically meaningful evidence for its added impact. A recent study (2) reached

similar conclusions from an entirely different approach. However, lockdown

was mostly imposed only shortly before the exponential rise was arrested. The

possibility remains that lockdown might have shortened significantly the initial

exponential phase had it been employed as first, rather than last resort.

Various policies have been implemented to arrest the rise of the COVID-19 pandemic. To
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assess the impact of any given policy and compare its efficacy with other policies requires a

description of the epidemic trajectory and objective measures of its trend. One approach is to

construct detailed, dynamic epidemiological models and search for the impact of implemented

policies on the model time variation (2–4). An alternative is to employ a general mathematical

description with the minimal number of free parameters and identify deviations from purely

exponential growth. This is the approach we take here. We construct descriptive models of the

pandemic first wave in a large sample, determine for each the point where the pandemic growth

starts slowing down and look for statistical correlations with policy implementation dates.

General Description of Growth Slowdown

We have recently developed a formalism to describe any growth pattern with a time-varying

growth rate (1). A brief summary of its main ingredients: Consider some quantity Q (> 0) such

as national GDP, cumulative number of COVID-19 infections, etc., whose long-term variation

with time t meets two criteria:

1. Q is monotonically increasing, so that its growth rate g = d lnQ/dt is ≥ 0.

2. g remains finite when Q→ 0, that is, the limit gu = g(Q→ 0) is finite.

These conditions ensure an initial exponential growth phase where Q = Q0 exp(gut), with Q0

an initial value. Subsequent growth may slow down for whatever reasons, an effect we termed

hindering, so that g(t) ≤ gu. Then the general solution of the equation of growth for Q(t) can

be written as

lnQ+
∑
k≥1

akQ
k = gut+ C, (1)

where ak (≥ 0)1 are expansion coefficients that describe the hindering (slowdown) effect and

C is an integration constant that ensures Q(t = 0) = Q0. Purely exponential growth occurs
1Negative ak describe accelerated growth (dg/dt > 0), which we do not consider here.
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when Q is sufficiently small that the logarithmic term dominates the left-hand-side of eq. 1;

this is the unhindered-growth regime with the unhindered growth rate gu. When the algebraic

terms dominate, growth slows down andQ increases only as a power law—the hindered-growth

phase. When the k-th order hindering term dominates, Q ∼ t1/k; the higher is the hindering

term the slower is the rise of Q with t.

Just as the Fourier series provides a generic description for all periodic phenomena, eq. 1

provides a generic description for any growing quantity that meets the two conditions listed

above. This is the case even if Q displays occasional deviations from these requirements; for

example, national GDP may suffer sporadic periods of negative growth, contracting during oc-

casional recessions, but is still described by eq. 1 so long as its long-term behavior is one of

growth. Every growth pattern can be described with a suitable set of hindering coefficients ak.

A finite number of terms yields unbounded growth, with Q → ∞ at a continually decreas-

ing growth rate, while infinite power series describe bounded growth, in which Q approaches

asymptotically some upper limit.

With this formalism we successfully described the time variation of GDP and population in

the US and UK, two nations with more than 200 years of continuous data coverage (1). In each

of these cases the deviation of long-term growth from a pure exponential required no more than

a single hindering term; there was no significant gain from adding more terms.

Hindering Description for the Covid-19 First Wave

Pandemic growth fits naturally into a hindering description. Typically, the number of infections

grows exponentially at first, followed by a “flattening of the curve” as the growth slows down

from its initial rate. These two stages are, respectively, the unhindered and hindered growth

phases described above. The connection with standard epidemiological modeling is established

in the Supplementary Material (see §A).
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We employ eq. 1 to model pandemic data for a large number of nations and US states (5).

We model separately the reported cumulative numbers of COVID-19 infections and deaths,

denoted Q in each case. Most locations have already experienced a second and third pandemic

wave in which the decline in the growth rate of Q is reversed. Describing such time variation

would require a large number of expansion terms in eq. 1, some of which may need to be

negative (see footnote 1). While this is possible in principle, our aim here is not to perform

modeling for the sake of it but to gain insight into the impact of public policy on the growth of

the pandemic. To enhance the analysis reliability, we simplify matters to the extent possible by

restricting modeling to the pandemic first wave. The first waves of infections and deaths need

not overlap. In fact, if every COVID-19 infection and death were detected and reported, the

reported death counts would lag behind the cases by the duration of the disease. In practice,

less-than-perfect detection and reporting afflict both datasets, especially the case counts. We

identify the boundaries of each first wave from the behavior of the daily counts (dQ/dt). The

first wave starts when the daily counts display unambiguously a monotonically increasing trend.

With the non-parametric Mann-Kendall test (see §B.1) we determine the first occurrence of such

a trend at the 95% confidence level in a consecutive sequence of daily counts. The first-wave

endpoint is taken as the first minimum of the daily counts after the end of the initial exponential

rise. To determine this minimum, we smooth the daily counts data with a simple 7-day moving

average to avoid the impact of large fluctuations and the resulting outliers. Following this

selection we fit the data for the pandemic first-wave with eq. 1 by varying the free parameters

to minimize the residual sum of squares (RSS) of the cumulative counts Q. Technical details of

the fitting process are described in §B.

As an example of our analysis, Figure 1 shows the detailed results for New York State, one

of the hardest hit locations in the early days of the pandemic. The data are shown as dots, with

the case counts in the left column, the death counts on the right. Top panels show the cumulative
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Figure 1: The Covid 19 pandemic first wave in New York State. Left column shows reported
cases, right column reported deaths. Dots show the data, lines are best fits with eq. 1 for single-
and two-power models, as labeled. Top panels: Cumulative number from start of the exponential
phase; this phase ends in the transition to hindering, marked th (see text for details). The insets
zoom-in on the second half of each dataset with linear y-axis instead of logarithmic. Bottom
panels: Daily counts; dot-dashed line is the 7-day moving average. The fitting was done for
the cumulative counts (Q; top panels). The bottom-panel curves show dQ/dt and involve no
fitting, fully determined from the models in the top panels.

counts, displaying a similar pattern: An initial exponential rise followed by “flattening of the

curve”. The more moderate behavior during the latter phase is better discerned in the insets,

which zoom in on the second half of each dataset with a linear, instead of logarithmic, y-axis.

This expanded view also brings out problems in the data. The sudden extreme increase on

day 106 (June 30) of the death counts arises from changes in reporting protocols. The bottom

panels show the daily counts, whose overall trends are conveyed by the displayed 7-day moving
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averages. The extreme outlier on day 106 of the daily death counts causes a seven-day upward

displacement of the moving average and the sudden adjustment in the corresponding cumulative

count.

Lines show our models, obtained by fitting eq. 1 to the cumulative counts (top panels). The

point where the model-calculated growth rate g decreases to half its initial value, the unhindered

gu, is marked th. This is where the deviation of g from gu becomes significant, an indicator of the

end of the initial exponential phase and the transition to hindered growth. For the most part, the

data points are barely distinguishable from the model plots in both top panels. The quality of the

fits is further illustrated by the fraction of variance unexplained (FVU = 1−R2 where R2 is the

coefficient of determination), which is only ∼1% in both cases. Although the curves for single-

term models are hardly distinguishable from their 2-term counterparts, the additional hindering

term of the latter does improve the fit for Q. The F -test null hypothesis that the coefficient of

the 2nd term vanishes (see §B.2) can be rejected at high confidence levels: more than 99% (p-

value of 2.5·10−7) for the case counts and 98% for the death counts. The impact of the second

power-law becomes evident in the insets, and stands out prominently in the lower panels, which

show the daily counts. While the best-fitting single-power models describe properly the growth

initial slowdown, they are clearly inadequate for the subsequent steeper falloff.

Adding more hindering terms would further improve the fits, at the risk of overfitting and

chasing noisy structure in the data. This we wish to avoid as we are only interested in capturing

meaningful long-term trends. Two hindering terms successfully achieve that for the displayed

datasets. Importantly, although the single-term models do not properly describe the late hinder-

ing stages of the first wave, they are practically indistinguishable from the two-term solutions

during the exponential rise and early hindering phase. The unhindered growth rates gu are the

same to within a fraction of a percent, the hindering times th differ by less than a day.

The plots of dQ/dt involve no fitting. They are fully derived from the models for Q(t),
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shown in the upper panels. Since daily counts are frequently noisy and irregular, modeling

the cumulative counts is a significant advantage of our method. The cumulative counts are

produced in a running sum, effecting a simple smoothing that preserves the underlying trends

as evidenced by the fact that the long-term variation of dQ/dt is captured reasonably well by

our models for Q .

Policy Impact

A variety of factors can play a role in arresting the exponential rise of the pandemic, many of

them unknown. The one we wish to study is the potential impact of policy decisions, such as

business closures, lockdown (stay at home), etc. The approach we take here is: (1) Construct

hindered-growth models of the first wave of the pandemic in a sample of locations, (2) determine

from them the observable th, the onset of hindering, for every sample member, and (3) look for

correlations with policy implementation dates, the independent variables.

We study five different policy categories, which are the most commonly used around the

world in attempts to slow the growth of the pandemic: Educational facility closures, essential

and non-essential business closures, travel restrictions, restrictions on gatherings, and stay-at-

home orders. With data on policy implementation from the Institute of Health Metrics and

Evaluation (IHME)2 and (2) we selected 52 countries and 47 U.S. states. All 99 entries on this

list instituted at least one of the aforementioned policies.

Modeling and results

The key quantity in assessing the potential impact of a policy in slowing the growth of the

pandemic is the length of the exponential phase—same as the onset day of hindering th. We

determine this parameter by modeling COVID-19 data (5) with a single hindering term in eq. 1.

2http://www.healthdata.org/
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As shown above, single-power hindering yields reliable estimates of th. With a single hindering

term, our models modify pure exponential growth with the minimal number of parameters: the

power k and coefficient ak.

Figure 2: Histograms of the length of the COVID-19 (a) first wave and (b) initial exponential
(unhindered) phase (same as th, the onset day of hindering). (c): Lag times between reported
cases and deaths for the start of the 1st wave and the onset of hindering, as labeled. (d): His-
tograms of the initial, unhindered growth rate gu.

Excessive irregularities in the daily counts of some locations caused difficulties to our data

selection algorithm, which hampered modeling of those data sets. We ended up with 89 reliable

models for case counts and 81 for death counts. Detailed tabulations of our data and model

results are provided in §C. Figure 2 presents histograms of key results. Panel (a) shows that
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the first wave lasts, on average, a full month longer for deaths than for cases. Both histograms

peak at around 90 days, but the deaths histogram peaks again around 160 days and has an

extended tail. In contrast, the length of the exponential phase, which starts with the onset of

the first wave and ends th days later, is essentially the same for both cases and deaths (panel

b). This can also be deduced from panel (c): deaths lags behind cases by the same amount, on

average, for both the first wave starting date and the hindering date; the exponential phase of

COVID-19 deaths is simply a shift of the cases by about 18 days. The implication is that the

much longer duration of the deaths first wave arises from the hindered phase, indicating that

beyond a certain threshold (about 120 days), the death probability increases significantly with

the length of the illness. Finally, panel (d) shows that case counts rise faster than death counts

during the unhindered phase; the unhindered growth rate for case counts is 〈gu〉 = 34.9% per

day, where angle brackets denote the distribution mean, for death counts it is 23.3% per day.

As a result, the deaths:cases ratio, also known as the observed case-fatality ratio, is decreasing

with time. Such a decline may be triggered by increased testing, which makes the number of

reported cases rise faster than actual infections, as well as improvements in medical treatment

of the disease, which decrease the fraction of deaths.

Extraneous factors decrease the observed case-fatality ratio during the first ∼70 days, yet

that ratio rises significantly after ∼120 days. This enhances confidence in the robustness of the

conclusion that the late rise reflects an increase in the intrinsic fatality of the disease when it

lasts longer than ∼4 months or so.

Correlations

Public policy is effective in controlling the pandemic if it shortens th, the length of the expo-

nential phase. The policy history of each location is characterized by the ordered sequence of

implementation times for each of the five policy categories described above, resulting in 120
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possible combinations. Since this exceeds the number of our data points, we collapse the space

of independent variables by considering at every location only the first policy implemented,

whatever it is, and test for the correlation of its implementation day tpolicy1 (days after start of

the exponential phase) with th. This is done with simple regression analysis for the case counts;

there is no need for a repeat with the death counts because, as shown above, the exponential

phase of COVID-19 deaths is, on average, a simple time shift of its case counterpart.

Table 1: Correlations between Length of Exponential Phase and
Policy Implementation

th = a1tpolicy1 + const + a2∆lock

sample full no lockdown lockdown lockdown
size 89 29 60 60

a1 0.43 (0.11) 0.35† (0.20) 0.47 (0.12) 0.51 (0.12)
a2 ——— ——— ——— 0.21‡ (0.16)
const 16.59 (1.00) 15.49 (2.05) 17.02 (1.07) 14.59 (2.15)

Notes: Regression coefficients for th, length of the exponential
phase, on tpolicy1, implementation day of first policy, and ∆lock, the
additional number of days to lockdown. Numbers in parentheses
are the standard errors. All p-values are � 0.01 unless noted
otherwise.
†The p-value for this entry is 0.10
‡The p-value for this entry is 0.20

Regression analysis for the observable th and independent variable tpolicy1 yields a highly

significant linear correlation (p-value = 1.09·10−4). The results are tabulated in the first column

of Table 1 and shown in panel (a) of Figure 3 together with the data points. On average, the first

policy was implemented 5.91 days into the exponential phase, hindering occurred 13.21 days

later. The point on the correlation line with tpolicy1 = 29.1 days has th = tpolicy1, which would

imply that the first policy was imposed on the same day hindering was setting in. This point

is beyond the range of our sample—the latest implementation of a first policy, by the United
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Kingdom, was on day 24 of the exponential phase.

Figure 3: Variation of the onset of hindering, th, with the first implementation of a policy,
tpolicy1, during the first wave of COVID-19 case counts. Results for (a) the full sample, (b) the
subsample of the entities that did not implement lockdown and (c) those that did. The zero-point
of every axis is the start of the initial exponential phase. Dots show the data, straight lines the
results of linear regression analysis (see Table 1).

The zero-intercept of the correlation line, 16.6 days, is the mean length of the exponential

phase when the first policy is implemented right at the start of this phase. Twelve locations took

action even earlier, which does not seem to have brought additional benefits: the mean value of

th for this group is 15.3 days, no different than the zero-intercept within the standard deviation

of 5.97 days. Apparently, the benefits accrued by early policy implementation are not improved

further by acting before the start of the exponential phase.

The correlation shows that a delay of one week in implementing the first policy adds, on

average, 3 days to the continuation of exponential rise at its initial growth rate (34.9% per day),

increasing the cumulative case number by a factor of 2.85.

Lockdown’s potential impact

Stay at home (lockdown) is the most restrictive of the policies implemented by members of our

sample. It was imposed by 60 of the 89 sample members, but never as the first policy; in fact, it
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was the last one in all but 12 cases. As a result, the th–tpolicy1 correlation just derived does not

include lockdown direct effect, only its potential added impact on top of other policies that were

implemented earlier. To assess the potential added impact of lockdown, we split the sample

into those that did and did not implement lockdown; the data points for each subsample are

shown in panels (b) and (c) of figure 3. First we tested whether the two subsamples come from

different distributions—if lockdown had no impact on th, their th data would have been drawn

from the same parent distribution. This hypothesis is rejected by the Kolmogorov-Smirnov

two-sample test with a p-value of 0.05, and by the Mann-Whitney rank test with a p-value of

0.01. The two subsamples come from intrinsically different distributions, but that does not

establish a direct correlation between th and lockdown. For that we repeated the th–tpolicy1

regression analysis for each subsample separately. The resulting correlations are listed in Table

1 and plotted in Figure 3. The correlation is statistically significant for the locations that did

implement lockdown (p = 1.84·10−4), but not for those that didn’t; their th–tpolicy1 distribution

is statistically indistinguishable from random scatter, differing from it by less than 2 standard

deviations. At the same time, the a1 coefficients estimated from the two subsamples are also

statistically indistinguishable from each other. There is no definitive outcome to the comparison

of these two subsamples.

Attempting to tease out the potential added impact of lockdown, we are forced to rely solely

on the subsample of 60 locations that did impose it. Denote by ∆lock the number of days that

passed from the implementation of the first policy (tpolicy1) to lockdown; ∆lock ranges between

1 and 22 days, with a mean 〈∆lock〉 = 10.58 day. There is a small but significant (p = 0.05)

negative correlation between the variables with slope -0.20; that is, a 5-days delay in imposing

a first policy hastened the subsequent implementation of lockdown by a day. Adding ∆lock

to the regression analysis as a second independent variable yields the results listed in the last

column of Table 1. The coefficient a2 is 0.21 with a p-value of 0.20, thus there is no statistically
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significant evidence for the impact of ∆lock. However, lack of decisive statistical evidence does

not prove that lockdown had no impact. The 95% confidence interval for a2 is [-0.11, 0.52],

suggesting that approximately 90% of the distribution of its estimate is > 0.3 It must be noted,

too, that lockdown was implemented, on average, only 3.03 days before the onset of hindering.

By that time, the first policy had already run 78% of its course. Moreover, 19 of the 60 sample

members, almost a third, imposed lockdown only after th, too late to make any impact the onset

of hindering. The possibility that lockdown might have shortened significantly the exponential

phase had it been employed as first resort instead of last remains open.

Summary and Discussion

In the first part of this study we construct phenomenological descriptions for COVID-19 data

of numerous nations and US states. In the second, we conduct statistical analysis of the derived

model parameters in search of evidence for the impact of government policies on the pandemic

growth trajectory. The phenomenological modeling is aimed at getting an objective, reliable

measure of “flattening of the curve”, a day that marks consistent decline of the growth rate from

the initial value it had during the exponential outburst of the pandemic. Our recently developed

hindering formalism (1) identifies the desired parameter as the hindering time th. We determine

th from fits to the data done with minimal modification to pure exponential growth, adding a

single power-law term to the modeling function (eq. 1). The simplicity of this method helps

reduce the risk of potential pitfalls and makes it easy to study a large sample that contains every

nation and US state with relevant data. Modeling cumulative, rather than daily, counts is another

advantage of our method since daily count data are frequently rather noisy, containing many

spurious zeros; a standout example is Sweden, which does not even report COVID-19 cases

3The t-statistic associated with this estimate is 1.30, hence the two-sided p-value of 0.20. Thus, the 80%
confidence interval has a lower bound of 0. This implies, assuming a symmetric distribution of the coefficient
estimate, that approximately 10% of the distribution density falls below zero.
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and deaths every day of the week. While fitting cumulative counts, our models also capture the

variation of daily counts reasonably well, as evidenced by the example of NY State (figure 1).

With a sizeable sample, our models uncover some interesting properties of the COVID-19

disease itself, showing that the mortality rate varies with the sickness duration (figure 2). Other

than an 18–19 day lag, the main segments of the histograms for death and case counts are

similar, indicating that the mean duration of the disease is ∼17-18 days; after that, infected

people either recover or die. This pattern lasts for ∼70 days. The mortality rate rises for those

that remain sick longer, with a significant increase when the illness lasts for more than ∼4

months.

The end of the pandemic initial exponential rise is controlled by numerous factors, many

of them unknown or unmeasurable. Here, we searched for the potential impact of the gov-

ernmental policies implemented by our sample members. Linear regression analysis yields a

highly significant correlation between the implementation day of the first policy, whatever that

policy is, and flattening-of-the-curve day th. Delaying the former by one week almost triples

the cumulative case number, on average. However, policy makers do not have all of the relevant

information when making decisions, and governmental policy is not the only factor controlling

the pandemic trajectory. In twelve locations, the first policy was implemented before the start

of exponential rise, yet their average th is within a standard deviation of the zero intercept of

the correlation we find; that is, implementing the first policy on or before the first day of the

exponential rise limited its duration, on average, to 16–17 days, but not less. This minimal

length may reflect a combination of factors, including the virus incubation period, societal re-

sponse, etc. At the other end, our correlation implies that the initial exponential phase will

end just as the first policy is imposed if the latter was delayed until day 29; namely, the ini-

tial growth would start slowing down after a month even without governmental action. While

no government waited that long, Denmark and South Korea enacted their first policy after the
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initial exponential rise had already come to an end and 13 other entities acted within 5 days of

that end point. Yet except for one extreme outlier (Nebraska, with th = 53 days), the length of

the exponential phase never exceeded 36 days, within the errors of our correlation’s prediction.

A possible explanation for why uncontrolled growth slows down on its own after 36 days is a

change in public behavior without government action, triggered by the severity of the pandemic

impact.

Stay at home (lockdown) is excluded from the evidence we find for the impact of the first

implemented policy. Because of reluctance to employ it, this severe restriction was generally

imposed as a last resort (never the first), too late to do much good; policy makers were unable

to observe that the initial exponential rise was about to end, or even already ended, thanks to

the less restrictive measures implemented earlier. There is a small negative correlation between

∆lock and tpolicy1, namely, the longer decision makers waited to implement their first policy, the

less time they subsequently took to impose lockdown. We conducted separate analysis in search

of an added impact of lockdown and did not find statistically significant evidence for it.

Two recent studies serve as important benchmarks for our results. The first (2) constructed

detailed epidemiological models of 41 nations, all included in our sample, and reached the same

conclusions—strong evidence for the impact of the first policy but not of lockdown. It is en-

couraging that we independently find the same results with such widely different approaches.

However, despite the lack of decisive statistical evidence for an added impact from the late

implementation of lockdown, a close examination of our regression results shows that the pos-

sibility of such impact cannot be rejected. It remains entirely possible that lockdown might have

shortened significantly the initial exponential phase had it been employed as first, rather than

last resort. The second study (3) extensively examined the impact of policy implementation on

the evolution of the COVID-19 pandemic at the local, regional, and national levels in six large

countries. Their findings suggest that in the absence of policy action, early growth rates in these
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nations averaged approximately 38%. By comparison, we find an average unhindered growth

rate for case counts of 34.9%, well within a single standard deviation of their estimate. Along

with estimating the aggregate impact of all implemented policies on the COVID-19 growth rate

by country, they estimate individual impacts as well. These support our findings that “home

isolation” (i.e. lockdown) had a lesser impact on slowing the growth than other notable policies

implemented earlier on, including emergency declarations, school closures, and other social

distancing measures. In the six nations they study, home isolation was never the very first pol-

icy implemented.4 It is clear that when extending the sample of analyzed entities to the 89 we

examine here, the timing of policy implementation was a more important factor in inducing

hindering than the strictness of the policy.

Epidemiology models solve detailed rate equations specific to an epidemic to describe its

growth trajectory. Such approach is essential for modeling of individual countries and for gain-

ing insight into the various factors affecting the pandemic spread. The phenomenological de-

scription presented here is not specific to COVID-19, in fact to any epidemic—the same hinder-

ing function (eq. 1) was also used to fit time variation of GDP and population (1). Hindering is

a generic description of any growth pattern just as Fourier analysis is a generic description of all

periodic phenomena. Although such phenomenological modeling does not provide insight into

the mechanisms driving the growth, it is a useful method to concentrate on the minimal number

of parameters most relevant for the problem at hand, model large samples and classify growth

patterns, providing a practical, complementary tool to guiding policy decisions.

4There is less information on the ordering of policy implementation in specific regions in China. They do note,
though, that policies were deployed there in a “centralized manner” between January 23–29, 2020, and suggest
that the first policy deployed locally was a “level 1 emergency declaration,” which does not include lockdown.
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Supplementary materials

Methods

Tables C.1 to C.4

References (6-14)

Methods

A Epidemiology Models and Hindering

Our hindering formalism can describe any growing quantity Q, irrespective of the underlying

processes driving its growth. The connection with such processes can be done through the

growth rate g = d lnQ/dt and its relation to the parameters of a dynamic model for the growth

of Q. A key concept in epidemiology modeling is the basic reproduction number of an in-

fection, R0, defined as the expected number of secondary infections generated by an average

infectious case in a fully susceptible (uninfected) population. This quantity determines the po-

tential for an infectious agent to start an outbreak, the extent of transmission in the absence of

control measures, and the ability of control measures to reduce spread. The effective reproduc-

tion number Rt (also denoted Re), is the number of infections directly generated by a single

infectious individual at time t after the outbreak, and thus is applicable to an ongoing epidemic.

Since Rt is dimensionless while g is rate, relating the two requires an independent time scale

that characterizes the epidemic.

The spread of infectious diseases is traditionally described with compartmental models—the

population is assigned to labeled compartments and rate equations describe the movement be-

tween them. In the most basic SIR models (6), S denotes susceptible individuals that have never

been infected and I infectious ones. A susceptible individual that contracts the disease transi-
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tions to the I compartment and later removed into the R compartment as a result of recovery,

and presumably developing resistance, or death. The resulting rate equation for the number of

infectious individuals, those in the I-compartment, can be written as a growth equation, yielding

Rt = 1 + τIg (A.1)

where τI is the mean infectious period (τI = γ−1 where γ is the transition rate from compartment

I to R).

An infection can have a significant incubation period during which an individual has been

infected but is not yet infectious himself. During this period the individual is in compartment E

(for exposed), resulting in SEIR models (for Susceptible–Exposed–Infectious–Removed) which

have been employed in numerous studies of COVID-19 (2–4, 7–11). If τE denotes the mean

latent period, i.e., time from infection to onset of infectiousness, the sum τI + τE is called the

serial interval (7). A common growth rate for the E- and I-fractions can be obtained from a

solution of an eigenvalue problem. The result is the quadratic relation

Rt = 1 + (τI + τE)g + τIτE g
2 (A.2)

(7). The limit τE = 0 (no latent period) reverts to the SIR model result (eq. A.1).

In these results, the growth rate g is that of I , the infection daily counts. The quantity that

we model is Q, the cumulative case count. The hindering formalism (1) shows that the general

description of Q can be written as (cf equation 1)

lnQ+ σ0 = gut+ C, where σ0 =
∑
k≥1

akQ
k (A.3)

The free parameters gu (the unhindered growth rate of Q), {ak} (the expansion coefficient set)

and C (an integration constant that ensures an initial condition) are determined by best-fitting

the data for Q with this expansion. The required growth rate g of dQ/dt, the daily counts, can
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then be derived through straightforward differentiation and algebraic manipulations:

g = gu
1 + σ1 − σ2
(1 + σ1)2

, (A.4)

where

σ1 = Q
dσ0
dQ

=
∑
k≥1

kakQ
k, σ2 = Q

dσ1
dQ

=
∑
k≥1

k2akQ
k

The effective reproduction number, and its time variation, can be obtained by inserting this

result in eq. A.2.

B Data Analysis

Datasets of points q0, q1 . . . at times t0, t1 . . . are modeled with the function Q(t), defined in

parametric form in eq. 1. Best-fitting models are obtained by minimizing the residual sum of

squares (RSS) of the data and model points Qi = Q(ti). Because of the large dynamic range

spanned by typical datasets, we give all data points equal relative weights (σi ∝ qi) so that the

minimization is performed on RSS =
∑

i (Qi/qi − 1)2. It is important to note that we only seek

the minimum of RSS; its actual magnitude is irrelevant (no need to specify the magnitude of

the proportionality constant in σi ∝ qi).

B.1 Mann-Kendall Test

The logarithmic term in eq. 1 describes pure exponential growth, corresponding to a constant

growth rate. The first step is to determine whether any hindering corrections (the algebraic

terms) need to be included in the model. Such terms describe slowdown of growth, thus the

first step is to determine whether the data provide evidence for such slowdown, i.e., a decline in

the growth rate g. To that end we compute g from the data with a finite-differences calculation

and perform the Mann-Kendall (hereafter MK) test on its time series. This non-parametric

test determines whether or not there is a monotonic trend in a given dataset. Its Z-statistic is
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computed from the signs of differences between data pairs.5 There are no assumptions regarding

the distribution of data points and no requirement that the errors be normally distributed. The

null hypothesis (H0) is no trend in the time series, in which case the test statistic Z is distributed

according to the normal distribution with zero mean and unity standard deviation. Positive

(negative) Z indicates an increasing (decreasing) trend. To determine the presence of hindering

we test the null hypothesis against the alternative hypothesis (Ha) that there is a downward

monotonic trend (Z < 0) in a one-tailed test. The presence of hindering is established at the

99% confidence level when Z < −2.33, which can be achieved with as few as 6 data points.

By example, the NY dataset analyzed in the text yields Z = −16.1 for the case counts and −18

for the death count, therefore in each case the null hypothesis can be rejected in favor of the

alternative Ha with a p-value that is essentially zero within the numerics capacity. The MK-test

provides robust statistical confirmation that neither dataset can be meaningfully described with

pure exponential growth. Hindering corrections must be added in both cases.

B.2 Hindering Terms; F -Test

When the modeling function must contain at least one hindering (i.e., algebraic) term, the ques-

tion is what power-law to use for that term and how many additional ones might be needed.

Our approach in (1) was to handle this as a Taylor series expansion: start with k = 1 and add

consecutive powers until reaching negligible marginal contribution. Here we adopt a different

approach because of a significant difference between the two situations. As is evident from

eq. 1, the independent variable is the dimensionless x = gut = t/Tu, where Tu = 1/gu is the

growth time during the unhindered phase. For both the GDP and population datasets of the US

and UK, analyzed in (1), the magnitude of gu is less than ∼4% per year so that Tu is at least 25

years. With a time span of ∼200 years, x was at most ∼8 in those datasets. In contrast, gu for

5For a detailed description of the MK-test see (12).
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the COVID-19 data is∼30% per day so that Tu is∼3 days and x typically extends to more than

∼40. Because of the much larger range of x, proper modeling of these datasets could require

a large number of terms to describe structures that may reflect noise rather than fundamental

trends.

To avoid such potential pitfalls we devised an alternative approach that seeks to identify the

long-term trends in the data rather than construct the absolute best fit. In the first step we model

the data with a single hindering term and determine the power that provides the best fit; this

ended up being k = 2 for the NY case count and 3 for the deaths (fig. 1). Next we employ a

two-terms model whose first power is k of the best-fitting single-term model. The power of the

second term is varied along k+1, k+2 . . . until achieving the best fit with this two-term model.

For the NY case counts the 2nd term ended having a power of 18, for death counts 22 (figure

1). Since the addition of a term can be expected in itself to improve fitting, we must determine

the statistical significance of this improvement. The single-term model is a restricted form of

the two-term model, with the coefficient of the 2nd term restricted to zero, thus the problem can

be handled with the F -test, assuming that the unobserved error is normally distributed (13).6

The null hypothesis is that the additional term has no effect on the dependent variable so that

its coefficient should be zero. The number of data points, the ratio of RSS for the two models

and their number of free parameters are combined to form the F -statistic (or F ratio); it follows

an F -distribution, which arises as the ratio of two normal random variates. The F -statistic is

compared with a critical value Fcrit, determined by the degrees of freedom for each model and

an error level α. When F > Fcrit, the null hypothesis can be rejected at the confidence level

1− α, the probability of a false rejection is less than α.

6The F -test is closely related to the odds ratio test in Bayesian statistics. The two become the same if and only
if one assumes scale-invariant Jeffreys’ prior for RSS (14).
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Modeling of the Full Sample

The full sample was fitted with single-term models. This simplest form of hindering suffices to

reproduce reliably the quantities of interest here—the hindering time th, an objective measure

of the “flattening of the curve” day, and the unhindered growth rate gu. Each dataset was also

fitted with the logistic function (15), which became the best overall fit when it produced a

smaller RSS than the best-fitting hindering model. This was the case in a number of datasets

for death counts. Since the regression analysis to determine the impact of public policy on the

growth of the pandemic employed only the case counts, it did not involve any logistic models.

The full results are tabulated below.
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C Tables

Tables of our model results for case and death counts during the COVID-19 pandemic first wave

are presented here in printed form and supplied separately in csv file format. Column headers

are as follows:

day0 Starting date (month/day in 2020) of the pandemic initial exponential
outburst; zero day of time t

th Ending day of exponential phase and beginning of the hindered growth
phase, i.e., “flattening of the curve”

tpolicy1 Implementation day of first policy; negative entries mean that the policy
was imposed before day0

∆lock Number of days from tpolicy1 to stay-at-home (lockdown) order where
applicable

tend Ending day of the pandemic first wave; number of points in model

gu Initial (unhindered) growth rate; see eq. 1

k Power of the best fitting single-term hindering model; k = −1 denotes
the logistic function (occurs only in the death count models)

The columns for the policy data tpolicy1 and ∆lock are entered only in the tables for case counts;

they are not repeated in the tables for death counts.
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Table C.1: COVID-19 case counts; Nations

day0 tpolicy1 ∆lock th tend gu k

Albania 3/16 -7 12 18 51 13.38 2
Andorra 3/15 -1 NA 5 81 96.11 2
Argentina 3/13 2 5 17 28 23.43 2
Austria 3/1 9 6 23 99 27.28 4
Belgium 2/29 13 5 18 107 44.68 1
Bosnia and Herzegovina 3/9 2 NA 15 71 32.19 1
Brazil 3/7 17 NA 23 45 31.03 1
Bulgaria 3/10 3 4 7 75 53.32 1
Canada 3/1 22 NA 36 121 20.84 2
Colombia 3/10 6 9 13 34 41.63 1
Croatia 3/13 -4 8 16 78 22.9 3
Cyprus 3/23 -10 11 16 83 10.96 7
Denmark 3/5 11 NA 5 119 92.77 1
Dominican Republic 3/16 3 NA 10 64 46.14 1
Ecuador 3/13 0 4 18 171 32.49 1
Finland 3/5 7 NA 22 126 22.86 2
France 2/24 9 14 23 98 33.45 1
Hungary 3/14 -2 16 24 91 16.44 2
Iceland 2/29 16 NA 17 91 32.89 2
Ireland 3/13 -1 15 22 98 20.22 2
Israel 2/25 8 21 34 79 24.49 3
Italy 2/20 14 5 15 127 55.3 1
Latvia 3/7 6 NA 15 104 35.59 2
Lithuania 3/10 4 1 17 105 35.17 3
Malaysia 2/26 16 5 31 123 17.79 3
Malta 4/1 -19 NA 5 99 12.72 4
Mexico 3/10 13 10 17 38 33.13 1
Moldova 3/9 2 14 18 36 33.58 1
Morocco 3/9 7 4 20 78 30.97 1
Netherlands 2/28 11 NA 15 126 49.74 1
New Zealand 3/13 10 3 16 69 32.66 4
Norway 2/29 12 NA 19 134 27.81 3
Poland 3/5 5 14 18 121 39.56 1
Portugal 3/3 13 3 24 149 32.28 2
Romania 3/3 3 17 24 85 29.23 1
S Korea 2/15 16 NA 14 73 44.05 4
Serbia 3/9 7 12 18 78 37.55 1
Slovakia 3/7 5 NA 8 82 61.33 1
Slovenia 3/7 5 NA 9 71 43.87 2
South Africa 3/7 11 8 15 32 43.98 1
Spain 2/24 17 2 26 125 36.92 2
Sweden 2/25 15 NA 23 183 33.49 1
Switzerland 2/26 2 NA 21 96 39.02 2
Turkey 3/12 4 NA 14 79 65.48 1
Ukraine 3/16 -4 NA 21 68 29.79 1
United Kingdom 2/25 24 3 36 125 21.79 2
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Table C.2: COVID-19 case counts; US states

day0 tpolicy1 ∆lock th tend gu k

Arkansas 3/17 0 NA 5 46 49.58 1
California 2/27 13 8 36 95 20.87 1
Colorado 3/8 9 9 18 93 33.66 1
Connecticut 3/8 4 NA 19 112 43.32 1
Delaware 3/14 2 8 18 159 30.09 1
District of Columbia 3/13 0 17 19 108 27.31 1
Florida 3/2 15 17 27 52 32.8 1
Georgia 3/5 13 16 23 66 34.05 1
Idaho 3/16 7 2 16 49 31.5 3
Illinois 3/5 8 8 26 117 33.05 1
Indiana 3/11 1 13 20 97 36.15 1
Iowa 3/21 -4 NA 15 23 20.42 2
Kansas 3/13 4 13 23 80 25.08 1
Kentucky 3/14 2 NA 19 27 23.52 2
Louisiana 3/11 2 10 20 72 33.03 2
Maine 3/12 4 17 8 145 63.17 1
Maryland 3/7 9 14 29 102 27.61 1
Massachusetts 3/4 9 NA 31 181 28.31 2
Michigan 3/15 -2 11 15 86 38.11 2
Minnesota 3/7 10 11 13 23 46.06 1
Mississippi 3/14 5 15 11 18 44.44 2
Missouri 3/11 12 14 16 58 46.78 1
Nebraska 3/13 3 NA 53 97 11.41 2
Nevada 3/7 9 15 19 58 35.07 1
New Hampshire 3/12 4 11 14 155 32.9 1
New Jersey 3/5 11 5 26 132 37.8 2
New York 3/2 10 10 23 170 45.56 2
North Carolina 3/13 1 16 16 33 33.24 1
North Dakota 3/16 0 NA 12 69 40 1
Ohio 3/10 2 11 16 28 43 1
Oklahoma 3/12 5 NA 15 72 38.9 1
Oregon 3/6 6 11 18 75 29.72 1
Pennsylvania 3/7 10 15 29 98 28.87 2
Rhode Island 3/15 1 12 31 106 18.67 2
South Carolina 3/14 2 22 15 34 32.3 1
South Dakota 4/2 -17 NA 16 98 16.64 2
Tennessee 3/12 8 13 15 32 35.94 1
Texas 3/3 16 14 35 77 22.31 2
Utah 3/9 7 NA 16 61 37.09 1
Vermont 3/20 -7 11 11 50 22.99 3
Virginia 3/7 8 15 15 24 41.13 1
Washington 2/27 13 12 20 192 31.64 1
Wisconsin 3/8 9 8 19 163 37.03 1
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Table C.3: COVID-19 death counts; Nations

day0 th tend gu k

Argentina 3/23 10 69 27.67 1
Austria 4/2 14 105 7.79 8
Belgium 3/13 24 164 28.94 3
Bulgaria 4/18 116 150 2.72 1
Canada 3/21 33 165 15.82 3
Colombia 3/31 14 22 17.81 3
Croatia 4/1 13 58 15.35 2
Czechia 3/25 13 99 23.49 3
Denmark 3/15 19 149 24.13 3
Dominican Republic 3/21 6 292 57.31 1
Ecuador 3/18 22 276 24.04 1
Egypt 3/17 48 204 10.64 1
Estonia 4/11 6 106 8.48 -1
Finland 3/24 19 106 21.9 2
France 3/5 31 137 23.2 4
Germany 3/12 22 123 28.48 2
Hungary 4/4 15 105 14.29 3
Ireland 3/21 18 126 26.68 2
Israel 3/23 11 83 35.6 2
Italy 2/25 28 172 25.01 3
Malaysia 3/19 5 64 52.59 2
Mexico 3/21 21 23 27.87 1
Moldova 3/31 12 139 22.79 1
Morocco 3/21 13 83 26.18 3
Netherlands 3/13 20 135 26.07 3
New Zealand 4/9 5 55 41.81 4
Panama 3/21 6 67 50.88 1
Peru 3/26 39 280 14.33 1
Philippines 3/11 21 295 23.57 1
Portugal 3/17 14 136 37.99 2
Romania 4/25 19 35 3.6 8
Serbia 4/8 12 43 9.05 -1
Singapore 4/1 22 79 7.49 -1
Slovenia 3/21 13 72 25.6 2
South Africa 5/14 81 161 5.12 -1
Spain 3/3 22 82 38.38 2
Sweden 3/13 22 164 26.29 2
Switzerland 3/16 20 212 19.3 6
Turkey 3/18 18 140 36.51 2
Ukraine 4/17 29 45 6.53 -1
United Kingdom 3/11 23 156 29.97 2
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Table C.4: COVID-19 death counts; US states

day0 th tend gu k

Alabama 3/26 10 182 35.97 1
Arizona 3/28 39 193 9.86 1
California 3/8 28 246 23.22 1
Colorado 3/20 11 104 36.06 1
Connecticut 3/20 28 158 20.69 3
Delaware 4/5 21 141 12.78 2
District of Columbia 4/4 27 140 10.04 4
Florida 3/17 26 63 19.5 2
Georgia 3/17 10 102 48.28 1
Idaho 4/5 5 57 24.28 3
Illinois 3/19 17 117 32.2 1
Indiana 3/19 24 111 22.06 2
Iowa 4/18 30 72 7.56 -1
Kansas 3/26 16 76 20.51 2
Kentucky 3/27 16 78 19.9 2
Louisiana 3/20 16 80 25.72 2
Maryland 4/1 25 181 14.65 3
Massachusetts 3/20 24 160 28.54 2
Michigan 3/18 18 124 37.06 2
Minnesota 3/25 20 100 25.01 1
Mississippi 3/24 10 82 39.29 1
Missouri 3/28 5 107 43.14 1
Nevada 3/27 15 86 17.54 2
New Hampshire 3/31 33 150 10.89 2
New Jersey 3/15 25 157 28.77 2
New Mexico 4/17 19 168 9.06 2
New York 3/14 22 142 35.91 3
North Carolina 3/30 9 90 33.14 1
North Dakota 4/18 30 78 6.87 -1
Ohio 3/22 11 200 38.31 1
Oklahoma 3/21 16 83 27.21 2
Oregon 4/3 7 47 15.66 2
Pennsylvania 3/20 26 169 26.22 2
Rhode Island 4/5 21 110 12.75 2
South Carolina 3/27 11 76 20.24 1
Texas 3/28 6 54 32.75 1
Utah 4/13 24 151 6.84 1
Virginia 4/17 14 196 9.17 2
Washington 3/13 23 267 12.08 2
Wisconsin 3/22 19 107 20.35 2
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