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Abstract 

 

Several studies have identified biomarkers for tuberculosis (TB) diagnosis based on blood cell 

transcriptomics.  Here, we instead studied epigenomics in the lung compartment by obtaining 

induced sputum from subjects included in a TB contact tracing. CD3- and HLA-DR-positive 

cells were isolated from the collected sputum and DNA methylome analyses performed.  

Unsupervised cluster analysis revealed that DNA methylomes of cells from TB-exposed 

individuals and controls appeared as separate clusters and the numerous genes that were 

differentially methylated were functionally connected. The enriched pathways were strongly 

correlated to data from published work on protective heterologous immunity to TB. Taken 

together, our results demonstrate that epigenetic changes related to trained immunity occurs in 

the pulmonary immune cells of TB-exposed individuals and that a DNA methylation signature 

can be derived from the DNA methylome. Such a signature can be further developed for clinical 

use as a marker of TB exposure.  
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Introduction 

 

Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which is transmitted between 

individuals through the inhalation of aerosols generated by coughing 1. The disease still claims 

more than one million human lives annually and an expansion of the current toolkit for 

diagnosis, prevention and treatment is critical for reaching the United Nations’ Sustainable 

Development Goals for 2030 of ending the TB epidemic 2. In response to the urgent need for 

new approaches to diagnose TB, recent studies identified TB-specific biosignatures based on 

RNA transcription profiles in peripheral blood of TB-infected individuals 3,4. Similar TB 

biosignatures have been identified that could predict disease progression 5,6 and reflect 

treatment monitoring 6,7. Biosignatures for the detection of TB-exposure in easily accessible 

clinical samples could provide a basis for the development of novel effective point-of-care 

diagnostic tools. 

 

The only available TB vaccine is Bacillus Calmette Guérin (BCG), which is based on live 

attenuated M. bovis 8. In a recent study, we showed that administration of the BCG vaccine to 

healthy subjects induced profound epigenetic alterations in immune cells, which correlated with 

enhanced anti-mycobacterial activity in macrophages isolated from the vaccinees9. The changes 

were reflected in the DNA methylome, with the strongest response being recorded within weeks 

after vaccination9. Our observation that BCG induces alterations of the DNA methylome of 

immune cells has later been confirmed by others 10,11. Since BCG vaccination reflects an in vivo 

interaction between immune cells and viable mycobacteria, we hypothesized that natural 

exposure to M. tuberculosis would induce similar changes not only in TB patients, but also in 

individuals who have been exposed to TB. To enable recruitment of control subjects with very 

low likelihood of previous TB exposure, we performed the study in a low-endemic setting. We 
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established a protocol for the isolation of distinct cell populations from induced sputum12, from 

which DNA could be isolated. Analyses of DNA methylomes of immune cells isolated from 

lungs and peripheral blood allowed us to identify distinct DNA methylation signatures in TB-

exposed individuals. The signature was most prominent in the lung-derived cell populations. 

Pathway analyses revealed strong overlaps with previous studies on BCG-induced epigenetic 

signatures that could be correlated with protection against M. tuberculosis. We also identified 

pathway overlap with previous work on trained immunity induced by -glucan from Candida 

albicans. In conclusion, we found a distinct pattern of DNA methylome changes in immune 

cells isolated from lungs in individuals with documented exposure to TB. The alterations 

strongly overlap with pathways described as reflecting trained immunity and an enhanced anti-

mycobacterial response. The identified signature has potential to be used as a tool to identify 

TB exposure in low-endemic settings.  
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Results 

 

Study design 

To determine epigenetic changes in the immune cells in TB-exposed individuals, we recruited 

subjects enrolled in a routinely performed TB contact tracing at Linköping University Hospital, 

Sweden. Age-matched individuals were included as controls (Table 1). The index case was 

diagnosed with drug-sensitive pulmonary TB and had completed two out of six months of 

standard treatment at the time of sample collection. All included subjects except one (a TB 

contact) were BCG-vaccinated (Table 1).  Interferon-Gamma Release Assay (IGRA) status was 

determined and among the exposed individuals, two were positive (including the index case) 

and among the controls, one individual (C2) was classified as ‘borderline’- positive 13 (Table 

1). From induced sputum, HLA-DR-positive (antigen-presenting cells, dominated by 

macrophages 14 and CD3-positive (T cell) populations were purified, whereas the PBMC 

fraction extracted from blood were kept as a mixed population (Fig. 1).  

 

DNA methylome data from TB-exposed individuals form a separate cluster  

DNA isolation from the studied cell populations was followed by global DNA methylation 

analysis using the Illumina 450K protocol. After curation of the data15, the datasets were 

subjected to unsupervised hierarchical cluster analysis based on DNA CpG methylation - 

values  (see project work-flow, Fig. 1). This approach accurately clustered the participants into 

TB-exposed and controls based on the DNA methylome data derived from both HLA-DR- and 

CD3-positive cell populations. (Fig. 2a, b). On the other hand, in the PBMC-derived dataset, 

the TB index case appeared outside the clusters and two of the controls clustered with the other 

exposed individuals, one of them (“Con_2”) being the individual identified as border line-

positive in the IGRA test (Fig. 2c).   
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Next, we identified the differentially methylated CpG sites (DMCs) and DMGs by comparing 

the TB-exposed and controls groups for each cell population. To filter out the most significantly 

altered DMGs in the dataset, the stringency criteria of log2 0.3 fold increased or decreased -

values and Benjamini-Hochberg (BH)-corrected p-value < 0.05 (HLA-DR), <0.1 (CD3) and 

<0.2 (PBMC) were applied. The results are depicted as volcano plots, which show that the DNA 

methylomes of TB-exposed most strongly differ in the HLA-DR cells as compared to control 

subjects, followed by the CD3 population, whereas PBMC datasets reveled fewer DMGs (Fig. 

2d, e, f, Table 2). To highlight the locus position of the DMGs, chromosome maps were 

constructed (Suppl. Fig. S1). Using the same stringency criteria as for the HLA-DR analysis, 

we tested whether DMGs would emerge when the datasets were arranged in other possible 

groups as derived from the demographics (>/< median age, sex, IGRA status), Neither age nor 

IGRA status generated any significant DMGs with these settings, and gender rendered only 

three (Table 2). 

 

Functional enrichment analysis reveals common and unique interactomes in the datasets 

Using the Panther Database, we investigated whether the identified DMGs were enriched in 

known pathways (Fig. 3a,b,c). The analysis revealed pathways with relevance for TB infection, 

including hypoxia-inducible factor (HIF)1- activation, Vitamin D metabolism and p38, Wnt, 

Notch, interleukin, chemokine and cytokine signaling pathways 16–23. Common pathways 

shared between at least two of the cell populations included B cell activation, glycolysis, 

angiotensin II signaling, and cholecystokinin signaling. Notably, several pathways being named 

after their known functions in the nervous system were enriched in the studied cell populations, 

including pathways involved in axon guidance and adrenaline, acetylcholine and glutamate 
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signaling. In the PBMC population but not in the lung cell populations, the interferon- 

signaling pathway was identified among the enriched pathways.  

 

Comparisons across cell populations and species reveals the existence of a common DNA 

methylome-based biosignature in mycobacteria-exposed immune cells  

Given the fact that the interaction between mycobacteria and eukaryotes is evolutionary ancient, 

we predicted that highly conserved pathways exist that are common among the studied cell 

populations.  Combining the identified DMGs from the HLA-DR, CD3 and PBMCs in a Venn 

analysis, we discovered 185 common DMGs (Fig. 4a). We expanded the Venn analyses to 

include data from our previous work on BCG vaccine-induced DMGs that correlated with 

enhanced mycobacterial control9, the rationale being that natural exposure to TB and BCG 

vaccination both represent in vivo encounters between mycobacteria and host immune cells. 

Even though the routes of mycobacterial exposure differ profoundly in these settings, a set of 

151 DMGs could be identified that overlapped between our previous BCG study9 and all cell 

populations studied here (Fig. 4b), suggesting that a highly conserved epigenetic response to 

mycobacterial challenge exists.  

 

In 2018, Hasso-Agopsowicz et al. described alterations in DNA methylation patterns in PBMCs 

from BCG-vaccinated individuals, with concomitant enrichment in many immune-related 

pathways10. In order to compare that study with ours, we performed Panther analysis with the 

185 common DMGs and matched the identified enriched pathways with those from that study, 

revealing that 75% of those pathways were the same as in the present study (Fig. 5a and Suppl. 

Table 1a), further corroborating the relationship of the altered DNA methylation patterns 

induced through TB exposure and BCG-induced changes. In a recent mouse study by Saeed et 

al. BCG-induced alterations of the epigenome was correlated to protection against M. 
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tuberculosis infection11, and to translate our human DNA methylome signature to the signature 

identified in the mouse study, we searched for pathway overlaps between the two studies. To 

allow comparison with that study, we performed a Gene Ontology (GO) enrichment analysis 

(Suppl. Fig. S2a-c).  Figure 5b and Suppl. Table 1b demonstrates that for our PBMC data, the 

GO terms “biological processes” overlapped to 100% with the mouse study (same cell 

population) and to 31% and 65% for HLA-DR and CD3 cells respectively. In 2014, Saeed et al 

24 demonstrated the induction of trained immunity pathways by another immune-training agent, 

-glucan. We assessed possible pathway overlap with that study and although there were fewer 

overlaps as compared to the BCG-induced pathways described above, again the strongest 

correlation was found in the PBMC fraction, in this case in the GO terms “cellular components” 

(Fig.  5c and Table 1c). 

Finally, we assessed how well the 284 CpG sites corresponding to the 185 overlapping DMGs 

performed in an unsupervised cluster analysis. To this end, we included one additional TB 

patient and two contacts, and collected HLA-DR cells from induced sputum, since the DNA 

methylome data this cell type was clearly outperforming the others with respect to accurate 

separation of the groups. Fig. 6 shows a k means-based dendrogram with a heatmap of the β 

values of the 284 CpG sites from the previous and the new subjects’ samples.  

Together the results demonstrate that the identified biosignature with the strongly enriched 

pathways can be linked to modifications of immune cell functions that result in improved anti-

mycobacterial defense, possibly through trained immunity.  
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Discussion 

In this study, we present data suggesting that exposure to TB generates a very distinct DNA 

methylation signature in pulmonary immune cells. The signature was found not only in those 

with active or latent TB infection but also in individuals who are exposed but IGRA-negative. 

The finding that also healthy, TB-exposed carry the signature opens up the possibility that the 

epigenetic alterations reflect a host-beneficial reprogramming of the immune mechanisms 

rather than being induced by M. tuberculosis as a step to evade the immune defense. This notion 

is supported by our observation that the DMGs identified in the present study strongly 

overlapped with the previously reported DNA methylation changes induced during BCG 

vaccination, which correlated with increased anti-mycobacterial capacity of macrophages9. In 

addition, we demonstrate that the GO data derived from our dataset display a strong overlap 

with data from a study on protective BCG vaccination in mice11.  

BCG vaccination has convincingly been shown to induce heterologous immunity protecting 

against childhood mortality from other causes than TB25,26. Based on our finding that natural 

TB exposure and BCG vaccination trigger similar epigenetic changes we propose the 

hypothesis that a “beneficial exposure” to TB exists, which protects against other infections 

through heterologous immunity. Along the same line, it has been shown that a substantial 

fraction of individuals exposed to TB can be defined as ‘early clearers’, since  they do not test 

positively in the tuberculin skin test (TST) or IGRA27, suggesting effective eradication of the 

infection 27. Identifying these early clearers and understanding the biology behind their 

resistance to TB infection could move the field forward towards novel strategies of TB 

prevention.  

The rationale of comparing overlaps in mycobacteria-induced DNA methylation changes 

between different immune cells is based on the accumulated evidence of co-evolution of 

mycobacteria and amoeba 28,29 and the origin of phagocytic immune defense in metazoans from 
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amoeboid cells30,31, predicting evolutionary conserved pathways to be engaged in anti-

mycobacterial defense. In line with this prediction, we identified the ubiquitously expressed 

and evolutionary conserved Wnt signaling pathway, which is found in all metazoans32 and with 

homologs in amoeba33 to be strongly enriched across all cell populations, settings and species. 

The role for Wnt signaling in mycobacterial defense remains elusive, but many studies have 

ascribed Wnt pathways immunomodulating functions and induction during M. tuberculosis 

infection (reviewed in 20).  

In concordance with the macrophage being the main host cell for mycobacterial infection, the 

strongest enrichment of DNA methylation changes was observed in the HLA-DR-positive cell 

population, which is dominated by alveolar macrophages. The pathways identified to be 

enriched in the HLA-DR population have been described in the context of trained immunity, 

BCG exposure and TB. For example, activation of Hypoxia-Inducible Factor 1  and glycolysis 

pathways (P00030 and P00024, respectively) are hallmarks of macrophages that have 

undergone the epigenetic changes that are reflective of trained immunity (reviewed in 34,35), 

which is induced in myeloid cells upon BCG-stimulation36. VEGF-release (P00056) by 

macrophages has been shown to recruit immune cells during granuloma formation 37. Further, 

vitamin D has been shown to strengthen the anti-mycobacterial activity of macrophages17,38, 

and upregulation of components of the vitamin D pathway is linked to the production of anti-

microbial peptides18, providing a possible effector mechanism for mycobacterial control. 

Recent literature on immune regulation through T cell-derived acetylcholine39,40 attributes 

relevance to the acetylcholine receptor pathway identified among the HLA-DR pathways.   

 

Although macrophages and lymphocytes are not generally viewed as having many similarities, 

we found 34 of the identified pathways to overlap between HLA-DR and CD3. In data derived 

from the CD3 and PBMC populations, both of which represent lymphocytes, overlaps were 
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identified for glycolysis, glutamate receptor and angiotensin II pathways. Interestingly, a 

metabolic shift towards increased glycolysis, representative of the Warburg effect, has been 

strongly associated with trained immunity 34. However, the literature is dominated by the view 

that this event takes place in trained myeloid cells, while we identified this circuit in CD3 cells 

(lymphocytes) and not in the HLA-DR cells (dominated by macrophages). The glutamate 

receptor is widely expressed on immune cells and have been described as having an important 

regulatory role in T cells, which can also produce and release glutamate41
. The role for 

angiotensin II pathway in TB remains elusive, while Angiotensin II Converting Enzyme 2 is 

currently in the spotlight due to fact that the SARS-CoV2 virus utilizes it as a receptor for entry 

into host cells42. In the PBMC population, which over all showed a weaker epigenetic response, 

we found the interferon- signaling pathway, which has a well-established role in anti-

mycobacterial defense (reviewed in 43), to be among the reprogramed pathways.  

A weakness of our study is the small cohort, which warrants testing in larger cohorts performed 

in different clinical settings such as areas high- and low endemic for TB. Taken together, we 

present data supportive of DNA methylation changes that are induced through exposure to TB. 

The changes correlate with findings from studies on BCG vaccination including TB protection, 

heterologous and trained immunity.  
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Methods 

 

Study design and participants 

Patients with pulmonary TB, participants with occupational- or household-related TB-exposure 

and healthy controls, with an age ranging from 18 to 53 years, were enrolled at Linköping 

University Hospital and Linköping University, respectively. Included subjects (please see Table 

1 for demographics) donated peripheral blood and induced sputum samples12 following oral 

and written informed consent (ethical approval obtained from the regional ethical review board 

in Linköping, #2016/237-31). The study protocol included questionnaires on respiratory and 

overall health, the evaluation of IGRA-status and sputum samples for DNA extraction.  

 

Induced sputum and pulmonary immune cell isolation 

Induced sputum is a well-tolerated, non-invasive method to collect cells from the surface of the 

bronchial airways after inhalation of a hypertonic saline solution. The procedure of sputum 

induction takes approximately 30 minutes and is both cost effective and safe with minimal 

clinical risks44. Sputum specimens were collected as described by Alexis et al45, with the 

following modifications: premedication with an adrenergic β2-agonist, salbutamol (Ventoline, 

1ml 1mg/ml) was administrated before the inhalation of hypertonic saline, using a nebulizer 

(eFlow, PARI). The subsequent steps of sputum processing were adopted from Alexis et al. 

(2005)46 and Sikkeland et al. 14. The HLA-DR and CD3-positive cells were isolated using 

superparamagnetic beads coupled with anti-human CD3 and Pan Mouse IgG antibodies and 

HLA-DR/human MHC class II antibodies (Invitrogen Dynabeads, ThermoFisher, cat no 11041 

and 14-9956-82, respectively). An initial positive selection was done with CD3 beads followed 

by a positive HLA-DR selection. Bead-coating and cell isolation was performed according to 

manufacturer’s protocol.   
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PBMC isolation  

Following venipuncture, PBMCs were isolated using SepMate -50 tubes (StemCell 

Technologies), as per the manufacturer’s protocol. The blood from each subject was poured 

into 50 ml tubes (Falcon, ThermoFisher) and carefully diluted 1:1 with a Dulbecco’s PBS (D-

PBS, Gibco by Life Technologies) containing 2% fetal bovine serum solution. Then, 15 ml 

Lymphoprep (StemCell Technologies) was transferred into a SepMate -50 tube (StemCell 

Technologies) and the diluted sample subsequently added to the Lymphoprep-filled tube, by 

carefully pipetting down the side of the tube. After centrifugation (1 200 x g, 10 minutes, RT), 

the plasma layer was removed and the PBMCs poured off into a sterile 50 ml tube (Falcon, 

ThermoFisher) containing D-PBS (Gibco by Life Technologies). The tube was subsequently 

filled with cold D-PBS until a total volume of 50 ml and centrifuged (300 x g, 10 minutes, 4°C). 

The supernatant was removed, and the pellet gently resuspended in D-PBS (Gibco by Life 

Technologies), using a transfer pipette (Sarstedt). The sample was then filled up to 50 ml with 

cold D-PBS, centrifuged (220 x g, 5 minutes, 4°C), and the supernatant discarded.  In parallel, 

IGRA status was determined on whole-blood samples using QuantiFERON-TB Gold 

(Cellestis) following the manufacturer’s instructions. 

 

DNA methylation data analysis 

DNA of the HLA-DR, CD3 and PBMC was extracted using the AllPrep DNA/RNA Mini Kit 

(Qiagen) according to the manufacturer’s instructions. Genome-wide DNA methylation 

analysis was performed using the HumanMethylation450K BeadChip (Illumina, USA) array 

at the Bioinformatics and Expression Analysis Core Facility at Karolinska Institute, 

Stockholm. The methylation profiles for each cell type were analyzed from the raw IDAT files 

in R (v4.0.2) using the minfi (v1.36.0) with subset-quantile within array (SWAN) 
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normalization 47,48 and ChAMP (v2.19.3) with beta-mixture quantile normalization (BMIQ) 

49,50 packages. The type 1 and type 2 probes were normalized using the quantile normalization 

method. Using the default setup of the ChAMP package, following probes were filtered out: 

i) probes below the detection p-value (>0.01), ii) non-CpG probes, iii) multi-hit probes, and 

iv) all probes of X and Y chromosomes. Cell type heterogeneity was corrected for the PBMC 

cell types using the Houseman algorithm 51 and batch effects were fixed using ComBat from 

the SVA package (v3.38.0) 52 Differential methylation analysis were performed with the linear 

modeling (lmFit) using the limma package (v3.46.0) 53 in a contrast matrix of the TB-exposed 

and TB-non-exposed (Control) individuals. All Differentially methylated  CpGs (DMCs) were 

considered significant at the Bonferroni-Hochberg (BH) corrected p-value < 0.05 (for HLA-

DR cell types), <0.1 (for CD3 cell types) and <0.2 (for PBMC cell types).  

 

Unsupervised cluster analysis 

Hierarchical clustering of the all TB-exposed and control individuals was performed with the 

normalized -values obtained after the data filtration in each cell type individually. The 

distance was calculated using the Euclidean distance matrix. The dendextend (v1.14.0) 54 and 

ape (v5.4-1)55 packages in R were used to construct the horizontal hierarchical plots from the 

three different cell populations using the hclust and dendrogram functions. 

 

Structural annotations 

The EnhancedVolcano56 package (v1.8.0) was used to generate the individual volcano plots 

from all cell populations. The ChromoMap57 package (v0.3) was used to annotate and 

visualize the genome-wide chromosomal distribution of the DMGs. The interactive plots were 

generated using the plotly (v4.9.3) package 58.  
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The heatmaps were generated from the filtered DMGs with their respective CpGs for each 

cell type using the ComplexHeatmap (v2.6.2) package. The clustering dendrogram in 

heatmaps were plotted using the Euclidean distance matrix. 

 

Pathway and functional enrichment analyses  

We also used Panther database (PantherDB v15)59 to identify the enriched pathways related 

to our identified DMGs. In addition, to assess functional enrichment, we used the ReactomePA 

(v1.34.0)60 package with 1000 permutations and the BH-corrected p-values. Within the 

package, GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used and using 

clusterProfiler (v3.18.1)61, we performed KEGG pathway enrichment analysis (data not 

shown). To enhance the visualization and better understanding of the enrichment result, 

GOplot (v1.0.2)62, another R package was used. The pathway enrichment were also calculated 

using the topology-based ontology methods using RontoTools63 (v2.18.0)64 (v2.40.1), SPIA65 

(v2.42.0) and pathview66 (v1.30.1) was used to visualize the related pathways with the KEGG 

pathway maps (data not shown). 

 

Venn and overlap analyses 

Venn analyses were performed in order to detect the DMGs overlapping between cell 

populations and between studies. We constructed the Venn diagrams by using matplotlib-venn 

package (https://github.com/konstantint/matplotlib-venn) using in-house python script. The 

overlap analyses were calculated and plotted using the go.Sunburst function from plotly using 

an in-house python script.   
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Statistical analyses 

All differences with a p-value < 0.05 were considered significant if not otherwise stated. We 

calculated family-wise error rate (FWER) using the BH correction method. All analyses were 

performed in R (v4.0.2) with the mentioned packages. 
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Tables 

 

 

 

  

  

Characteristics  Exposed (n = 4)  Controls (n = 6)  

Mean age (year)†  36±12  27±6  

Mean height (cm) †  173±4  176±7  

Mean weight (kg) †  69±8  77±16  

Mean Body Mass Index (BMI) †  23±3  24±5  

Sex (male/female)  1/3  4/2  

Smoking (current/previous/never)  0/1/3  0/0/6  

BCG (yes/no)  3/1  6/0  

IGRA-positive/IGRA-negative  2/2  1*/5  

  

Table 1: Demographic data of the participants.   

†The standard deviation of the mean values is added to the age, height, weight and BMI.  

* Borderline-positive.  
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Characteristics  

Number of 

Differentially 

Methylated Genes 

(DMGs)  

Gene Symbol of 

DMGs  

Level 

of Significance   

(adjusted p -

value)  
Cell population  

TB  

Exposure  

exposed vs. 

controls  

9,266  (not shown) 0.05  HLA-DR  

4,131  (not shown) 0.05  CD3  

537  (not shown) 0.2  PBMC  

Age  

younger (< 

30) vs.  

older (≥ 30)  

0    

0.05  

CD3  

0    HLA-DR  

0    PBMC  

Gender  
male vs.  

female  

3  

GALNTL5;  

MIR3201;  

OPN3  

CD3  

3  

COL9A1;  

ACTG1;  

REAT1E  

HLA-DR  

0    PBMC  

IGRA  
positive vs.  

negative  

0    CD3  

0    HLA-DR  

0    PBMC  

BMI  

high (> 25) 

vs  

low (≤ 25)  

0    CD3  

0    HLA-DR  

0    PBMC  

  

Table 2: Differentially methylated genes emerging through comparison of different 

characteristics (TB-exposure, age, gender, IGRA status and BMI) of the participants in the three 

different cell populations, CD3, HLA-DR and PBMC.  
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Characteristics  TB patients (n = 2)  TB-exposed (n = 2)  

Mean age (year)†  19.5±1.5†  35.5±17.5  

Mean height (cm)†  176±7  171±3  

Mean weight (kg)†  62.5±6.5  80±10  

Mean Body Mass Index (BMI)†   19.9±0.6  27.3±2.5  

Sex (male/female)  2/0  1/1  

Smoking (current/previous/never)  2/0/0  1/0/1  

BCG (yes/no)  0/2  2/0  

  

  

Table 3: Demographic data of the participants in the second recruitment (“test dataset”)  

†The standard deviation of the mean values of age, height, weight and BMI.  
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Figure legends 

 

Figure 1: Flow chart of the project workflow. 

 

Figure 2: DNA methylome analyses. a, b, c) Dendrograms of the unsupervised hierarchical 

clustering of the DNA methylation -values of from HLA-DR, CD3 and PBMCs, respectively. 

“Con”:  green=controls, “Exp”: purple=TB-exposed, red=TB index case. The scale defines the 

clustering Euclidean distance. d, e, f) Volcano plots of DMGs from HLA-DR, CD3 and 

PBMCs. Red dots represent DMGs above cut-offs (±0.3 Log2 fold change and BH-corrected p-

value < 0.05, <0.1 or 0.2 as indicated).  

 

Figure 3. Panther pathway analysis of the identified DMGs with the cut-offs for the different 

cell populations given in Figure 2. Bubble charts show the gene ratio, gene counts and FDR-

corrected p-value for a) HLA-DR (top 20 pathways), b) CD3 (totally 17 pathways) and c) 

PBMC (top 20 pathways).  

 

Figure 4: Venn analyses comparing DMGs, pathways and GO terms between different datasets 

a) Overlapping DMGs derived from the HLA-DR, CD3 and PBMC DNA methylomes, b) 

Overlapping DMGs from this study and from our previous work (Verma et al). 

 

Figure 5. Pathway overlap with other studies’ results. a) Venn diagram describing the number 

of Panther pathways overlapping between the ones derived from the 185 common DMGs in 

this study (dark green) and Hasso-Agopsowicz et al (human BCG vaccine study, light green) 

10, b) Sunburst Plot describing the overlap of enriched GO biological processes emerging from 

a comparison between the GO data derived from the 185 common DMGs (Figure 4a) and 
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Kaufmann et al (BCG study performed in mouse PBMCs11, c) Sunburst Plot describing the 

overlap of enriched GO biological processes emerging from a comparison between the GO data 

derived from the 185 common DMGs and Saeed et al (study on trained immunity induced by 

-glucan24). 

 

Figure 6. Heatmap of the HLA-DR-derived β values of the signature’s 284 CpG sites of the 6 

initial subjects (Exp_1-4 and Con_1-6) and the three additional exposed subjects (Exp_6-8). 

Purple=exposed, red=TB index case, green=controls.  

 

Supplementary Figure S1. Chromosome maps showing the chromosomal distribution of all 

DMCs in 22 autosomes (hypomethylated regions in blue and hypermethylated regions in red). 

a) HLA-DR, b) CD3 and c) PBMC. 

 

Supplementary Figure S2. Gene Ontology (GO) enrichment functional analysis a) HLA-DR, b) 

CD3, c) PBMC and d) the list of functional categories identified in the dataset. The colour bar 

shows the logFC values ranging from -1 (blue) to 1 (red). 
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