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Abstract 13 

New COVID-19 diagnoses have dropped faster than expected in the United States.  14 
Interpretations of the decrease have focused on changing factors (e.g. mask-wearing, 15 
vaccines, etc.), but predictive models largely ignore heterogeneity in behaviorally-driven 16 
exposure risks among distinct groups.  We present a simplified compartmental model with 17 
differential mixing in two behaviorally distinct groups. We show how homophily in 18 
behavior, risk, and exposure can lead to early peaks and rapid declines that critically do 19 
not signal the end of the outbreak. Instead, higher exposure risk groups may more rapidly 20 
exhaust available susceptibles while the lower risk group are still in a (slower) growth 21 
phase of their outbreak curve. This simplified model demonstrates that complex incidence 22 
curves, such as those currently seen in the US, can be generated without changes to 23 
fundamental drivers of disease dynamics. Correct interpretation of incidence curves will 24 
be critical for policy decisions to effectively manage the pandemic. 25 

 26 
 27 
Introduction 28 
 29 

Early winter saw a rapid and rise in incidence of COVID-19 leading to unprecedented 30 
levels of hospitalizations and deaths (1). Although many epidemiological models 31 
predicted that the US winter outbreak would peak in January, the case counts have 32 
dropped much more precipitously than anticipated in late winter (Figure 1).  The wide 33 
swings in infection rates have led to broad pronouncements about causes (2), ranging from 34 
changes in social distancing policies (3, 4), seasonality (5), and disease strains (6, 7).   35 
 36 
Largely absent from such popular accounts is any recognition of the role of heterogenous 37 
population mixing and resulting differences in natural spread within groups, each with 38 
somewhat different epidemic thresholds, cumulative caseloads, and potential to approach 39 
(local) herd immunity. In a large, heterogenous population like the United States with 40 
wildly different approaches to masking, closures, and social distancing we would expect 41 
spread to be similarly uneven, though these sorts of features are often lost in national 42 
trends. Here, we present a simplified two-group model based on differential mixing that 43 
correlates with transmission risk (of course, real-world cases likely involve multiple 44 
populations, each with different behavior and risk profiles). This demonstration model is 45 
intended to highlight the simplest case for how homophily in behavior, risk, and contact 46 
makes compound epidemics with multiple “waves” likely by generating population(s) 47 
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where the epidemic moves quickly loosely coupled with other population(s) where the 48 
epidemic creeps along much more slowly.  49 

 50 
Background 51 

 52 
Explanations for wildly varying incidence rates.  Naturally, decreases in case incidence 53 
under the complex and shifting realities of the pandemic are unlikely to be the result of 54 
any sole cause. The explanations already being offered are compelling and likely influence 55 
observed incidence. There are undeniable impacts on transmission from the timing of the 56 
winter holidays, including the rise and drop in travel (8), increased propensity to gather 57 
with family despite restrictions (9), and also increased willingness to be tested despite not 58 
yet experiencing being symptomatic to allow travel and family gathering (10). The last of 59 
these may have meaningfully altered how effective we were as a nation at interrupting 60 
asymptomatic spread for a small period of time. Given the recent estimates of how much 61 
transmission may be driven by asymptomatic infections (11), this by itself may have had a 62 
profound impact on curtailing community spread and contributed greatly to current 63 
decreases in ways also not being discussed.  64 
 65 
There may also be a nontrivial impact of seasonality on the transmissibility of COVID-19 66 
due to virological features, impacted either by temperature and humidity in both outdoor 67 
and HVAC-controlled environments or else to crowding patterns and similar behavioral 68 
changes (12). The increasing availability of vaccines, especially among those who may 69 
have acted as conduits for transmission (e.g. essential workforce) is undoubtedly 70 
beginning to limit spread somewhat. Even winter weather challenges in testing and 71 
reporting may contribute to decreased observability in cases, on top of actual reduction in 72 
disease incidence (13). 73 
 74 
Beyond mixing changes due to the holidays or weather-related behavior, there are also 75 
likely ongoing gradual changes in local adoption rates of mask wearing or social 76 
distancing, especially as local case incidence created greater local awareness of potential 77 
disease severity than may have been believed before direct observable outcomes due to 78 
differences in national reporting and media consumption (14-17). These regional 79 
differences in behavior lead to differences in community vulnerability, causing a potential 80 
feedback loop between behavior and local outbreak severity (18). Certainly, there have 81 
been some areas of the country that have experienced such high prevalence that the 82 
number of individuals with natural immunity after recovery should now begin to slow 83 
transmission (19). This is especially true in regions where ongoing super-spreader 84 
facilities have raged uncontrolled, continually seeding additional infection into the broader 85 
community, such as jails, workplaces, congregate living environments, etc. (20-24).   86 
 87 
While all of these features likely affect spread to one degree or another, people are 88 
remarkably consistent over time in who they interact with (with holidays being the 89 
obvious exception that proves the rule).  As we show below, homophily in social contact 90 
can be sufficient in itself -- holding disease and context dynamics constant -- to generate 91 
widely varying disease incidence profiles. 92 
 93 
Heterogenous social mixing. Social segregation due to homophily is probably the single 94 
most well-known feature governing American social contact. For both strong and weak 95 
ties, people tend to come into contact with those who are like themselves at much higher 96 
rates than those with whom they differ, across multiple dimensions (25). These patterns 97 
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are reinforced by strong ethnic, educational, and geographic correlates in occupations (26, 98 
27).  While homophily causes social segregation, it can take remarkably little social 99 
contact to enable infectious disease to spread quickly across such boundaries, with super-100 
spreader events or rare high-activity nodes sufficient to bridge populations (28).  101 
 102 
Attribute homophily is generally well-correlated with behavior homophily, which in the 103 
context of contagious disease modeling means that we would expect people in close 104 
contact with each other to share general practices, cautions and behaviors relevant for 105 
disease spread.  For example, mask wearing might become de rigueur in some 106 
neighborhoods while largely spurned in others for a variety of reasons (29-31).  Similarly, 107 
people who work in high-contact settings at highest risk likely have friends, contacts and 108 
family members working in similar situations, themselves also at higher risk.   109 
 110 
These simple baseline features of social contact networks imply heterogenous 111 
transmission dynamics -- close contact networks with risk-behavior homophily should 112 
lead to rapid spread within groups that take on “Dangerous” behavior profiles, while the 113 
disease should spread slowly in those with “Safer” profiles.   114 
 115 
To illuminate how homophily in COVID-19 risk behavior can drive complex case 116 
dynamics, we used a simplified heterogenous social system with two relevant groups: a 117 
group of Dangerous actors who have high susceptibility and transmission rates and a 118 
group of Safer actors who have lower transmission rates (Figure 2).  The system is then 119 
governed by three sets of parameters: (1) the relative size of the two populations, (2) 120 
differences in transmission rates within & between populations, (3) contact rates between 121 
populations. 122 

 123 
Results  124 
 125 

To illustrate how these dynamics work, we start with a simple baseline scenario, as 126 
specified in Table 1 (see Figure 3a). In our baseline scenario there is a faster infection rate 127 
for the Dangerous population than the Safer, but the two are highly correlated in time and 128 
build on each other smoothly, resulting in a single-phase total infection curve. We then 129 
consider differences in well-known health disparities by assuming that the populations (x 130 
and y) differ in underlying health risks and access to care, captured by a longer infectious 131 

period in the Dangerous population (0.8*������) and higher death rates (1.2*��). Here we 132 

again see a smooth overall transmission pattern with rapid Dangerous population spread 133 
(Fig. 3b).  134 
 135 
If we now assume that mixing across populations is lower than mixing within populations, 136 

i.e. homophily such that ��,� � 0.01 � ��,�, we effectively allow spread to be much more 137 

highly compartmentalized (Fig. 3c). Adding homophily in this way leads to a classic 138 
“double hump” incidence curve with the Dangerous population leading infection early in 139 
the outbreak and a later, smaller peak in prevalence (slow burn outbreak) among the Safer 140 
population (see Figure 3c). 141 
 142 
If we include both homophily and concomitant differential health and recovery risks for 143 
the Dangerous population, we see a less pronounced second “hump”, though there is still a 144 
critical plateau after the decrease from the initial peak as case incidence falls (Fig. 3d). In 145 
this particular case, the peak is lower and slightly earlier, but then transitions from an 146 
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outbreak primarily among the Dangerous population into a “longer slow burn” outbreak 147 
among the Safer population.  148 
 149 
The examples above are draws from a much wider space of potential models governed by 150 
the between-group differences in transmissibility and relative sizes of the two populations. 151 
We can examine the wider state space by sweeping a wide range of potential values (Fig. 152 
4 and explored further in Supplementary Information). 153 
 154 
In Figure 4a we see that when transmission within groups is much higher than 155 
transmission between groups (low half of the figure), we get a quick outbreak among the 156 
Dangerous population that starts to burn out before the Safer population peaks, leading to 157 
a double-hump epidemic (Fig. 4d). As transmissibility between groups becomes more 158 
similar to transmission within groups this double-hump becomes of a plateau (Fig. 4c) and 159 
then is lost entirely (Fig. 4b). 160 
 161 
The shape of the compound epidemic curve will also depend on the relative sizes of the 162 
different populations. In our case, a double-hump epidemic occurred when the Safer 163 
population was similar in size or bigger than the Dangerous population (Fig. 5). When a 164 
substantial majority of individuals were in the Safer population it was possible for the 165 
second epidemic peak of a double-hump epidemic to be higher (Fig. 5c). 166 
 167 
One further complication in the observed incidence from aggregated populations with 168 
different health protective behaviors is that they may also have different rates of 169 
observability due to differences in testing access and willingness to be tested. Essential 170 
workers, for example, facing financial strain if diagnosed may have an incentive to avoid 171 
testing (32) or simply have little access to testing (33-36). The models thus far have 172 
assumed a transparent and complete disease detection system, however, to demonstrate 173 
this further potential confounder, we demonstrate one case that incorporates lower case 174 
detection rates within the Dangerous population. 175 
 176 
The lower detection of course does not change the underlying spread pattern in these 177 
models, so this creates a situation where rapid, early spread goes somewhat unnoticed, but 178 
the spillover infections to other populations is detected at higher rates.  This situation can 179 
be particularly problematic if the rise in infectivity among Safer populations could be 180 
attributed to new variants or other underlying disease dynamics, when in fact all we have 181 
is differential observability (Fig. 6). 182 

 183 

Summary of results 184 
 185 

Our simplified model demonstrates that myriad complex incidence curves can be 186 
generated without changes to fundamental disease dynamics or even overall changes in 187 
people’s everyday behavior.  Rather, disease spread in America may simply reflect (at 188 
least in part) the underlying inequalities and social segregation of Americans’ daily 189 
activities. These interaction patterns govern who spreads disease to whom, who has access 190 
to healthcare and prevention tools, and who is likely to be tested. Hence inequalities can 191 
lead simultaneously to differences in the way the disease spreads and is observed. 192 

 193 
 194 
Discussion 195 
 196 
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Explanations for the current trends in spread have been characterized largely by 197 
exogenous features. Some of these include policies aimed at increasing social distancing 198 
or incentivizing masking and testing. Others focus on policy-independent extrinsic factors, 199 
such as seasonality in transmissibility due to climactic factors, or temporal patterns in 200 
travel and interaction rates within the US population due to holiday travel. While such 201 
features are certainly likely to be relevant, there is also a fundamental mixing assumption 202 
built into these explanations that should be examined.  A simplified mixing model that 203 
distinguishes groups by risk can account for complex observed incidents curves without 204 
reference to radical policy, disease, or behavior change.   205 
 206 
Limitations of the study.  Our goal is to demonstrate the potential impact of homophily on 207 
observed dynamics, rather than to make concrete quantitative predictions about actual 208 
reported incidence curves.  Consequently, the model presented is only meant as a 209 
simplified example, and many potentially critical details are omitted, such as demographic 210 
or socioeconomic correlates with group behaviors. We also do not explicitly model the 211 
alternative explanations for the current trends. We do not mean to suggest that these 212 
factors are not playing a (large) role in the US COVID-19 pandemic, but aim to highlight 213 
a largely un-discussed, and potentially very important, additional influence of homophily 214 
among groups.  215 
 216 
We have here demonstrated the impact of homophily in only two behaviorally distinct 217 
groups, though of course the reality is likely the composite contribution of many distinct 218 
groups that may vary in both behavior and/or physiological susceptibility (37). 219 
Sociocultural factors may also play a critical role in the rates at which different groups 220 
interact, since even beyond the percentage of households with economic or “essential 221 
workforce” constraints against protective behaviors, crowded neighborhoods and 222 
multigenerational homes also complicate the ability to minimize exposure risks (38). 223 
While heterogeneous mixing among such distinct etiological and behavioral cohorts is 224 
certainly not the only factor influencing currently observed trends, it would be a mistake 225 
to ignore the potential contribution of this effect going forwards.  If these heterogeneities 226 
are sufficiently distinct, as they well may be (39, 40), the current rate of decline in new 227 
cases may easily slow, or even reverse, leading to additional future waves as an inevitable 228 
feature of social dynamics and disease behavior in the United States. Without including 229 
heterogeneous social mixing patterns into our considered factors, such dynamics may be 230 
attributed directly and completely to the gradual failures of previously successful 231 
mitigations, or to the emergence of new variants that are capable of overcoming available 232 
behavioral protections and/or vaccines. Health policy reactions to misattributed patterns 233 
could inadvertently abandon successful strategies, or even erode public trust and 234 
adherence without any shift in policy from leadership. It is therefore critically important to 235 
understand the contribution of such factors to potentially inevitable dynamics in patterns 236 
of incidence as the COVID-19 pandemic continues to unfold. 237 

 238 
Conclusions 239 

 240 
Homophily between sub-populations that vary in their behavior and susceptibility to an 241 
infectious disease can drive compound epidemics with multiple waves even in the absence 242 
of behavioral change, seasonality, or antigenic escape. Consequently, correctly accounting 243 
for the impact of homophily will be vital in unpacking the success of non-pharmaceutical 244 
interventions or impact of new variants of concern, and so critical to forming effective 245 
health policy that retains broad political and public support. 246 
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 247 
Materials and Methods 248 
 249 

Experimental design 250 
 251 
SIR simulation modeling.  There is a long tradition of using simplified mass-action 252 
compartmental models for disease spread (41-43), which are generally quite effective for 253 
diseases spread easily such as influenza or coronavirus related diseases.  Such models 254 
assume subsets of a population can be divided into compartments with uniform transitions 255 
across disease states.  Transitions between states are then governed by a set of 256 
transmission rates with the entire population system governed by a set of transmission 257 
rates. Using mass-action models to accurately fit for real-world data is complex, though 258 
versions are being used for short-term forecasting of the current pandemic (44, 45). 259 
However, simpler models remain effective as ways to build insights into the 260 
interdependencies of hypothesized system behavior, through building on a long social 261 
simulation tradition (46, 47).    262 
 263 
A Behavior-correlated Two Population Mixing Model. The system is designed as a two-264 
population Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) compartmental 265 
model with rates across states governed by a set of ordinary differential equations.   266 

���

��
� ���,����� � ��,�����    (1) 267 

���

��
� ��,����� � ��,����� � ��	�   (2) 268 

���

��
� ��	� � 
��� �����    (3) 269 

�	�

��
� 
���        (4) 270 

 
�
�

��
� ����        (5)  271 

 272 

Where 	�,� � ��,� 
 ��
���,�, ��,�� defined such that ��,� is the probability of contact 273 

between an individual in population x and population y (the two groups), and ��,� is the 274 

probability of transmission given that contact occurs between two individuals within the 275 
same group, �. In this way, we assumed that transmission risks were dependent on the 276 
behavior of the individual who was adhering to the most disease protective behavior in 277 
any interaction. (For simplicity, this model did not include either infectious pre-278 
symptomatic or asymptomatic individuals, though COVID-19 is known to involve such 279 
dynamics.)  280 
The implementation of these equations was initially parameterized as the Baseline Model 281 
(see Table 1) and then altered as per case described in each reported scenario in the 282 
Results and Supplementary Materials.  283 

 284 
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 488 

 489 
 490 
Fig 1. Trends in COVID-19 incidence in the US.  Estimated daily new SARS-CoV-2 cases in 491 
the United States from January 2020 to March 2021. 492 
  493 
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 494 
 495 

 496 
 497 
 498 
Fig 2. Simplified model schematic. A schematic of the simplified model of disease dynamics in 499 
two groups, one Safer with regard to behaviors affecting exposure risks and the other more 500 
Dangerous.   501 
 502 
  503 
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b. a. 

c. d. 

504 
Fig 3.  The impact of homophily and health disparities between the Safer and Dangerous 505 
Groups on observed case incidence. (A) The Baseline scenario with two groups that have 506 
different levels of behavioral exposure risk, but make contact across groups as often as within 507 
their group. (B) Building on the Baseline Scenario, the groups have uniform contact with each 508 
other, but now the Dangerous population also includes assumed increase in prevalence of 509 
underlying health conditions that increase the probability of severe infection outcomes. (C) 510 
Departing from the Baseline scenario, there is now homophily in group contact rates, rather than 511 
uniform contact across the groups. (D) Departing from the Baseline scenario, there are now both 512 
differential underlying health conditions and homophily. 513 

  514 
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 515 

 516 
Fig 4. Varying between-group transmissibility. The effect of the difference of the between-517 
group transmission rate (relative to the transmission rate in the Safer group) on epidemic curves 518 
when the transmission rate in the Dangerous group is 20 times that in the Safer group and each 519 
group makes up half the total population. Current prevalence in shown by color in panel (A) with 520 
panels (B-D) showing the epidemic curve for the parameter values indicated. 521 
 522 
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 524 

Fig 5. Varying relative group size. The effect of the relative sizes of Dangerous and Safer 525 
groups on epidemic curves. Current prevalence in shown by color in panel (A) with panels (B-D) 526 
showing the epidemic curve for the parameter values indicated. 527 
 528 
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 530 
Fig 6. Differential observability. Observed incidence curves with high in-group homophily such 531 
that mixing across groups is lower than mixing within groups (equivalent to Figure 3c above) but 532 
also assuming that new cases of infection in individuals in the Dangerous group are only 60% as 533 
likely to be tested (and therefore reported) as individuals in the Safer group. While the infection 534 
dynamics are not altered by the observability of the cases, the surveillance curves are.  535 
 536 
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 538 

Table 1. Values used in the Baseline Model presented in the main text. (For sensitivity of 
disease dynamics to these choices, see Supplementary Materials.) 

Parameter Meaning Value Used 

��,� Composite probability of 
contact and transmission 
between individuals in 
groups x and y 

��,� � 0.001 
��,� � 20 � ��,� 

��,� � ��,� � � ��,� 
��
� ���
���

0.01 � ��,�  
��
� ���������� 

Where here, x is the Safer group and y is the Dangerous group 

�� The rate of developing 
symptoms after catching 
the disease 

�� � �� � 1/14 

�� The rate of recovery from 
infection  

�� � �� � 1/10 

�� The rate of death from 
infection 

�� � �� � 1/1000 

States Initial Condition Value Used 

 �  � �  � 499 

!� !� � !� 1 

", #, and $ "� � "�, #� � #�, and 
$� � $� 

0 
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