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Abstract 
Genetic penetrance is the probability of a phenotype manifesting given that one harbours a 
specific variant. For most Mendelian genes, penetrance is high, but not complete, and may 
be age-dependent. Accurate estimates of penetrance are important in many biomedical 
fields including genetic counselling, disease research, and for gene therapy. The main 
methods for its estimation are limited in situations where large family pedigrees are not 
available, the disease is rare, late onset, or complex. With the advance of high-throughput 
technologies, population-scale genetic data is available for an increasing range of genetic 
diseases. Here we present a novel method for penetrance estimation in autosomal 
dominant phenotypes. It uses population-scale data regarding the distribution of a variant 
among unrelated people affected and unaffected by an associated phenotype and can be 
restricted to samples of affected people by considering family disease history. The approach 
avoids kinship-specific penetrance estimates and the ascertainment biases that can arise 
when sampling rare variants among control populations. We test the method upon 
candidate variants and diseases, demonstrating that our estimates align with those derived 
using established methods. We have implemented the method in a public web server 
(https://adpenetrance.rosalind.kcl.ac.uk) and made it available as an open-source R library 
(https://github.com/ThomasPSpargo/adpenetrance). 
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Introduction 
Penetrance is the probability of developing a specific trait given that a person harbours a 
certain genetic variant or set of variants. Some pathogenic variants are fully penetrant, and 
people harbouring them always develop the associated phenotype. For instance, a 
trinucleotide CAG repeat expansion within the HTT gene is fully penetrant for Huntington’s 
Disease by 80 years of age among people harbouring an expansion variant larger than 41 
repeated CAG units (1). For many variants however, penetrance is incomplete, and those 
with risk variants can remain unaffected throughout their life. For example, the 
p.Gly2019Ser variant of the LRRK2 gene exhibits incomplete penetrance for Parkinson’s 
Disease (PD), meaning that it elevates risk for PD but does not necessarily result in its 
manifestation (2). 
 
In medical genetics, estimating the penetrance of a given variant or set of variants is 
important for the correct interpretation of genetic test results, something that will be 
increasingly valuable as genome sequencing becomes routine, both within and outside 
clinical practice. With the advance of precision medicine and gene therapy, being able to 
accurately estimate the penetrance of a large spectrum of human genetic variants is crucial 
(3-6). 
 
There are several existing methods for penetrance estimation. The first and most widely 
used is based on the statistical examination of how the variant segregates with the 
phenotype within pedigrees (7). However, the generalisability of estimates derived from 
specific families may be limited. Other approaches involve examination of the incidence of 
disease in a sample of unrelated people who harbour a variant (8, 9). Without systematic 
sampling, these estimates can be affected by ascertainment bias. Where large pedigrees are 
not available, or if disease is rare or late onset, these techniques may not be possible (10).  
 
Estimating penetrance for a variant of unknown significance identified, for example, as a 
result of genome sequencing-based screening can be particularly challenging. The problem 
is exemplified by the large number of reported SOD1 gene variants in amyotrophic lateral 
sclerosis (ALS): although SOD1 variants are cumulatively one of the most common causes of 
ALS, over 180 ALS-associated variants in the gene are reported to date (11, 12). Family 
pedigrees suitable for establishing penetrance are available for only a minority of these. 
 
We have developed a new method to calculate penetrance for variants with an autosomal 
dominant inheritance pattern using population level data from unrelated people who are 
and are not affected by the associated phenotype (case and control populations). It can be 
operated using variant information drawn only from affected populations, stratified 
according to family history between ‘familial’ and ‘sporadic’ disease presentations. This 
approach is based on our previously published model of disease which explains how variant 
penetrance and sibship size determine the presentation or absence of a disease for families 
in which the variant occurs (13). 
 
The method is complementary to, and fills an important gap left by, existing techniques. 
Using population-scale data, it takes full advantage of the rapidly growing quantity of 
genetic data that are being generated for a wide range of human disease and, therefore, it is 
ideally placed to be a valuable tool in the precision medicine era. Moreover, the capacity to 
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assess penetrance based on the distribution of a variant between samples of unrelated 
people drawn only from the affected population allows estimates unbiased by kinship-
specific effects or ascertainment of unaffected population members. 
 
We have tested the approach in four variant-disease case examples, drawing upon the most 
common and widely studied autosomal dominant risk variants for each disease: the 
p.Gly2019Ser variant of the LRRK2 (OMIM: 609007) gene for PD (2); variants in the BMRP2 
gene (OMIM: 600799) for heritable pulmonary arterial hypertension (PAH) (14); and 
variants in the SOD1 (OMIM: 147450) and C9orf72 (OMIM: 614260) genes, for ALS (15, 16). 
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Methods 
Model 
The disease model our method builds upon (13) makes the following assumptions: a rare 
dominant variant is necessary but not sufficient for disease to occur, therefore penetrance 
is not complete and people within a family who do not harbour the variant are not affected; 
all individuals harbouring the variant are ascertained; all variants are inherited from exactly 
one parent, thus there are no homozygous carriers or de novo variants. 
 
The model calculates three probabilities for a nuclear family where one parent harbours a 
given variant: that no family members are affected, !(#$%&&'()'*); that exactly one 
member is affected, !(,-./%*0(); and that more than one member is affected, 
!(&%1020%2). These probabilities are determined by penetrance, &, and sibship size, 3. In a 
family with	3	siblings: 
 

!(#$%&&'()'*) = (1 − &) 81 −
&

2
:

!
(1) 

where the parent is unaffected, and none of the sibs are affected (each being transmitted 
the high-risk variant with probability ½).  
 

!(,-./%*0() = & 81 −
&

2
:

!
+ 38

&

2
: 81 −

&

2
:

!"#
(1 − &) (2) 

where either the parent is affected and no siblings are affected, or the parent is unaffected 
and exactly one of the sibs is affected.   
Then, 
 

!(&%1020%2) = 1 − !(#$%&&'()'*) − !(,-./%*0()

= 1 − =81 −
&

2
:

!
+ 3 8

&

2
: 81 −

&

2
:

!"#
(1 − &)> (3)

 

 
Application to penetrance calculation 
Conversely, given the observed rates of the (unaffected, sporadic, familial) disease states in 
families where the variant occurs and the average sibship size for these families, we can 
estimate penetrance. We can also estimate penetrance based on the observed rates of 
families presenting as unaffected versus ‘affected’, a fourth disease state whereby 
!(%&&'()'*) = !(&%1020%2) + !(,-./%*0(). Observed disease state rates can be derived 
as a weighted proportion of estimates of heterozygous variant frequency given for people 
across a valid subset of the four defined states (see table 1); the appropriate weighting 
factors will vary based on the disease states for which variant frequencies are given. Sibship 
size can be estimated for the sample either directly, based on the average sibship size 
among the described families, or indirectly, by designating an estimate representative of the 
sampled population (e.g. available within global databases). 
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Variant frequencies provided Required weighting factors 
Familial (@$), 
Sporadic (@%) 

A$ = !(B|D), 
A% = !(E|A) 

Familial (@$), 
Unaffected (@&) 

A$ = !(B|A) × !(A), 
A& = 1 − !(A) 

Sporadic (@%), 
Unaffected (@&) 

A% = !(E|A) × !(A), 
A&	 = 1 − !(A) 

Familial (@$), 
Sporadic (@%), 

Unaffected (@&) 

W' = !(B|A) × !(D), 
A% = !(E|A) × !(D), 
A& = 1 − !(A) 

Affected (@(), 
Unaffected (@&) 

A( = !(D), 
A& = 1 − !(A) 

Table 1. Valid disease state combinations and weighting factors 
used to estimate disease state rates associated with a given 
variant as described in Figure 1 and the supplementary methods. 
@$,%,&,(	= variant frequencies in the familial, sporadic, 
unaffected, and affected states; A$,%,&,(	= weighting factors for 
the familial, sporadic, unaffected, and affected states; !(D) = 
the probability of a member of the sampled population being 
affected; !(B|D) = disease familiality rate; !(E|D) = disease 
sporadic rate.  

 
Our method involves three operations and an optional further step for deriving error in the 
estimate. These processes are summarised as a flowchart in Figure 1 and outlined in detail 
in the supplementary methods. In this approach, we assume that: in variant frequency 
estimates, disease state classifications are assigned according to the status of the sampled 
person and first-degree relatives only; individual families are represented only once in 
variant frequency estimates; weighting factors and average sibship size represent absolute 
values; the value specified for sibship size is representative of sibship size across disease 
state groups; in families where the variant occurs, the associated trait can only manifest 
owing to that variant.   
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Operation 1: Calculate !(#)!"# 
 

Estimate the rate of arbitrary 
state # observed in given data 

!(#)!"# 

Define variant frequencies 
and weighting factors 

%$,&,',( &$,&,',( 

Operation 2: Build lookup table 
Calculate state probabilities 

for N and ') = 0,… ,1 

-(
.'
'/
01
/2
) ) 

-('.3454.5))  

-(6789.240))  

-(:;.''/01/2))  

Construct lookup table for 
expected rates of # at ')  and N 

 <(=)*+, > 

F(N,f) 0 

F(N,f) … 

F(N,f) 1 

 

Operation 3: Query lookup table 
 Find !(#))-. value nearest to 

!(#)!"# and estimate ' 

<(=)*+, > 

F(N,f) 0 

F(N,f) … 

F(N,f) 1 

 

Query lookup table using 
estimate of the observed rate 

of state # 

!(#)!"# 

Optional step: Estimate error in & 
 Find nearest !(#))-. and 

estimate ' at error bounds 
 <(=)*+, > 

F(N,f) 0 

F(N,f) … 

F(N,f) 1 

 

Propagate error in %$,&,',( to 
derive error in estimate 

 

!(#)!"# ± @ 
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Figure 1. Flowchart summarising the key operations within this penetrance estimation 
approach. Operation 1: variant frequencies (M) and weighting factors (W) are defined for a 
valid subset of the familial (F), sporadic (S), unaffected (U), and affected (A) states to 
calculate rate of one of these states, arbitrarily labelled state X, among families in which the 
variant occurs drawn from those states for which data were provided. This is the observed 
rate of state X, I(J)*+,, and Table 1 summarises all valid state combinations. Operation 2: 
Equations 1-3 are applied to calculate P(familial), P(sporadic), P(unaffected), and P(affected) 
at a specified sibship size (3) and for a series of penetrance values, &- = 0,… ,1. The rate of 
arbitrary state X that is expected at each &-  among variant harbouring families from those 
states represented in Operation 1, I(J)-./, is calculated and stored alongside the 
corresponding &-  in a lookup table. Operation 3: The lookup table is queried using I(J)*+, 
to identify the closest I(J)-./ value and then the &-  to which this corresponds. This &-  is taken 
as the penetrance estimate. Optional step: upper and lower confidence intervals for I(J)*+, 
can be calculated from error in the given estimates of @ (17). Penetrance is estimated as in 
Operation 3 for the bounds of these intervals. 
  
Tool access 
We have made this method available as an R function (R version 3.6.1) and, leveraging the R 
Shiny package (version 1.4.0.2), also developed a publicly available web resource 
(https://adpenetrance.rosalind.kcl.ac.uk) that facilitates easy use of the method. The source 
code of the R library is available on GitHub 
(https://github.com/ThomasPSpargo/adpenetrance). The web tool is further described in 
the supplementary methods and Figure 2 presents an example of its usage. 
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Figure 2, example interface and output of the ADPenetrance web tool 
(https://adpenetrance.rosalind.kcl.ac.uk). Here we show the example of penetrance of SOD1 
variants for amyotrophic lateral sclerosis in a European population, applying variant 
frequency estimates for familial and sporadic ALS patients of European ancestry and the 
average Total Fertility Rate for the European Union in 2018 (18, 19). 
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Case examples 
Input parameters for the presented case studies have been estimated using publicly 
available data. We estimated variant frequency in the familial, @$, and sporadic, @%, states 
in all cases and, in case 1, additionally ascertained this for the unaffected state, @&, from 
control samples. In all cases, we derived the standard error	of these values, N0!11111, to allow 
for assessment of error in the penetrance estimate. Variant frequency estimates were 
weighted to calculate the observed rate of arbitrary state X, I(J)*+,, among variant 
harbouring families using the factors presented in Table 1. Accordingly, the frequencies of 
familial, !(B|D), and sporadic, !(E|D), disease among the affected population, D, were 
defined in all cases, based on the first-degree familiality rates of that trait; note that 
!(E|D) = 1 − !(B|D). The probability of a population member being affected, P(A), was 
defined for case 1 only, using estimates of lifetime risk for that trait. 
 
Sibship size, 3, was estimated in each case based on the Total Fertility Rates reported in the 
World Bank database (19) for the world region(s) which best represent the population from 
which variant frequency estimates were drawn. 
 
An R script detailing the calculations made for each case study can be found within our 
GitHub repository. 
 
Case 1: LRRK2 penetrance for PD 
We estimated the penetrance of the p.Gly2019Ser variant of the LRRK2 gene for PD. This 
case was used to illustrate the flexibility of this method for application using data drawn 
from several combinations of the defined disease states. 
 
The first-degree familiality rate of PD, about 0.105, was used to estimate !(B|D) and 
!(E|D) (Ref. 20, 21). !(D) was estimated as 1 in 37 (0. 027), the lifetime risk of developing 
PD (22). 
 
We estimated @$.%.& based on a report which aggregates data from 24 world populations 
(23). Of 5,123	unrelated people with familial PD manifestations, 201 (@$ = 0.039, N0!11111 =
2.71 × 10"3) harboured the LRRK2 p.Gly2019Ser variant, compared to 179 of 14,253 with 
sporadic PD manifestations (@% = 0.013, N0"11111 = 9.33 × 10"4) and 11 of 14,886 
unaffected controls (@& = 7.39 × 10"4, N0#11111 = 2.23 × 10"4). 
 
This intercontinental cohort largely describes people from European, North American and 
Asian countries but there is no single predominant region. We accordingly estimated that 
3 = 1.646 by aggregating Total Fertility Rate estimates available in the World Bank 
database (19) across each of the reported population samples. For each population, this was 
weighted by its proportional contribution to the total sample; see Table S1 for further 
details. 
 
Case 2: BMPR2 penetrance for heritable PAH 
We estimated the penetrance of variants in the BMPR2 gene for heritable PAH, a gene for 
which the low penetrance of pathogenic variants is well established (24).  
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Input parameters were defined based on only people with idiopathic (sporadic) or heritable 
PAH diagnoses (14). This captures people with and without family disease history and 
excludes those with PAH manifestations associated with comorbidities or drug exposure. 
 
We estimated !(B|D) and !(E|D) using the first-degree familiality rate of heritable PAH, 
about . 055 of people affected by either idiopathic or familial PAH (24). 
 
In this case, to minimise any study specific bias, we applied data from two reports to build 
independent estimates for each of @$,%.  
 
The first dataset (14), presents a moderately large sample of people with familial and 
sporadic PAH. Of 247 people with familial PAH, 202 harboured BMPR2 variants (@$ =
0.818, N0$11111	 = 0.025), compared to 200 of 1174 in the sporadic state (@% = 0.170, N0"11111 =
0.011). It is possible that this data may violate two assumptions of our approach. First, 
information on familial clustering was reportedly unavailable and so some families may be 
represented more than once in the familial state. Second, it is not specified whether disease 
familiality is defined only by the disease status of first-degree relatives. 
 
The second dataset (25), overcomes a limitation of the first as each family is represented 
only once in variant counts. However, the sample is smaller in size. It is reported that 40 of 
58 people with familial PAH (@$ = 0.690, N0$11111	 = 0.061) harboured BMRP2 variants, 
compared to 26 of 126 in the sporadic state (@% = 0.206, N0"11111 = 0.036). Variant counts 
are additionally reported separately for small genetic variations (point mutations and indels) 
and large genetic rearrangements in BMPR2, which allowed penetrance estimation 
stratified by variant type. It is not reported whether disease states are defined according to 
the status of first-degree relatives only. 
 
The first cohort samples people from Asian, European, and North American populations; 
French, German and Italian cohorts comprise about 60% of the sample (14). The second 
cohort samples people exclusively from Western Europe (25). We therefore estimated that 
3 = 1.543 in both instances, the Total Fertility Rate of the European Union in 2018 (Ref. 
19). 
 
Cases 3 and 4: SOD1 and C9orf72 penetrance for ALS 
We estimated the penetrance of variants in the SOD1 and C9orf72 genes for ALS. In SOD1, 
we examined the aggregated of penetrance of various SOD1 variants harboured by people 
with ALS. For C9orf72, we examined the penetrance of a single pathogenic variant, a 
hexanucleotide GGGGCC repeat expansion. These penetrances have been historically 
difficult to establish without incurring kinship-specific biases. It is an ideal candidate for 
usage of our method. 
 
The first-degree familiality rate of ALS, about 0.050, was applied to define !(B|D)	and 
!(E|D) in these cases (26, 27). 
 
We drew upon the results of two recent meta-analyses to estimate @$,% for SOD1 and 
C9orf72 (18, 28). As variant frequencies differed between Asian and European ancestries, 
we model these, and therefore penetrance, separately for each group. We derive A/!,#0000000	 
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using z-score conversion from the 95% confidence intervals (95% CIs) reported: for the 
arbitrary state X, 

N0!11111	 =
@6 −@6

78%:*;.<

V
	 (4) 

 
where V = 1.96 and @6

78%:*;.<  is the lower 95% CI bound of the estimate @6. 
 
Accordingly, we identified that, in Asian ALS populations: SOD1 variants were harboured by 
0.300 (N0$11111	 = 0.025) of people with familial and 0.015 (N0"11111	 = 2.55 × 10"3) with sporadic 
disease; the C9orf72 repeat expansion was harboured by 0.04 (N0$11111	 = 0.010) of people 
with familial and 0.01 (N0"11111	 = 5.10 × 10"3) with sporadic disease. In European ALS 
populations: SOD1 variants were harboured by 0.148 (N0$11111	 = 0.017) of people with familial 
and 0.012 (N0"11111	 = 2.55 × 10"3) with sporadic disease; the C9orf72 repeat expansion was 
harboured by	0.32 (N0$11111	 = 0.020) of people with familial and 0.05 (N0"11111	 = 5.10 × 10"3) 
with sporadic disease. 
 
In these datasets, the Asian ancestry cohorts were predominantly individuals from East Asia, 
with small proportion from South Asia. The European ancestry cohorts primarily comprise 
people from European countries, with some from North America and Australasia. 
Accordingly, 3 was estimated for the Asian population samples as 1.823, the Total Fertility 
Rate for East Asia and Pacific in 2018, and for the European population as 1.543, the Total 
Fertility Rate for the European Union in 2018 (19). 
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Results 
Here we summarise the input data and results of the case studies modelled (see table 2).  
 
In case 1, we estimated the penetrance of the p.G2019S variant of the LRRK2 gene for PD, 
taking estimates of @',=,> to allow estimation via four of the five possible disease state 
combinations presented in table 1. The output estimates (see table 2) were consistent 
across the modelled disease state combinations, with some discordance between estimates 
derived with and without the inclusion of the unaffected disease state. We expect this to 
reflect that the variant is rare in the unaffected (control) population and the variant 
frequency estimate may be affected by an ascertainment bias.  
 
In case 2, we estimate the penetrance of variants in BMPR2 for PAH, drawing estimates of 
@',= from two distinct reports (see table 2). For the first sample (14), we found penetrance 
of 0.395 (95%	XY:	0.356, 0.433), compared to 0.303 (95%	XY:	0.211, 0.390) for the second 
sample set (25), in which penetrance was comparable between the defined BMPR2 variant 
subtypes. The marginally higher penetrance estimate observed for first dataset reflects 
differences observed in @$,% between the cohorts and may be affected by unspecified 
family clustering within this sample set. It is not known for either dataset whether family 
history classifications were restricted to first-degree relatives only and so the estimates 
obtained may be slightly inflated. With the available data these possibilities cannot be 
explored further.   
 
In cases 3 and 4, we estimated the penetrance of variants in SOD1 and C9orf72 for ALS, 
drawing estimates of @',= for each gene in Asian and European populations separately 
based on the findings of recent meta-analyses (see table 2). We found the penetrance of 
SOD1 variants to be 0.749	(95%	XY:	0.629, 0.864) in Asian and 0.660 
(95%	XY:	0.494, 0.812) in European populations, and the penetrance of the pathogenic 
C9orf72 hexanucleotide repeat expansion to be 0.282 (95%	XY:	0.023, 0.514) in Asian and 
0.449 (95%	XY:	0.377, 0.518) in European populations. These estimates demonstrate 
consistency within genes across populations and indicate that the penetrance for ALS is 
greater in people harbouring SOD1 variants than in those harbouring the C9orf72 expansion. 
Table S2 presents additional penetrance estimates made for widely-described SOD1 
variants: penetrance was estimated to be 0.917 for p.Ala5Val, 0.617 for p.Ile114Thr, and 
0.0009 for p.Asp91Ala. 
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Case 

study 
Data subset 

Variant 

frequency in 

familial state 

(standard error)	

Variant frequency 

in sporadic state 

(standard error)	

Variant 

frequency in 

unaffected state 

(standard error) 

Lifetime 

risk of 

disease§	
Proportion 

familial*	
Average 

sibship 

size†	

States 

modelled
# 

Familial disease rate 

among those 

harbouring the variant 

across states modelled 

(95% confidence 

interval) 

Penetrance 

(95% Confidence 

interval) 

- - "! 	(!!""""""	) "#	(!!$""""") "%	(!!&""""") #(%) #('|%) ) - *(+) , 

LRRK2 
p.G2019S 

for PD 

(Ref. 23) 

- 
0.039 

(2.71x10-3) 

0.013 

(9.32x10-4) 

7.39x10-4 

(2.23x10-4) 
0.027 0.105 1.646†a 

F, S, U 0.098 (0.059, 0.137) 0.336 (0.258, 0.401) 

F, S 0.268 (0.229, 0.307) 0.453 (0.394, 0.511) 

F, U 0.134 (0.064, 0.205) 0.306 (0.221, 0.368) 

S, U 0.297 (0.170, 0.424) ø 0.196 (0.103, 0.306) 

BMRP2 
variants 
for PAH 

All variants 

(Ref. 14) 
0.818 (0.025) 0.170 (0.011) - - 0.055 1.543†c F, S 0.218 (0.195, 0.218) 0.395 (0.356, 0.433) 

All variants 

(Ref. 25) 
0.690 (0.061) 0.206 (0.036) - - 0.055 1.543†c F, S 0.163 (0.111, 0.215) 0.303 (0.211, 0.390) 

Small variants 

(Ref. 25) 
0.569 (0.065) 0.159 (0.033) - - 0.055 1.543†c F, S 0.173 (0.107, 0.238) 0.319 (0.204, 0.427) 

Large variants 

(Ref. 25) 
0.121 (0.043) 0.048 (0.019) - - 0.055 1.543†c F, S 0.129 (0.012, 0.246) 0.243 (0.023, 0.439) 

SOD1 
variants 
for ALS  

(Ref. 18) 

Asian 0.300 (0.025) 0.015 (2.55×10-3) - - 0.050 1.823†b F, S 0.513 (0.420, 0.606) 0.749 (0.629, 0.864) 

European 0.148 (0.017) 0.012 (2.55×10-3) - - 0.050 1.543†c F, S 0.394 (0.281, 0.506) 0.660 (0.494, 0.812) 

C9orf72RE 
for ALS 

(Ref. 28) 

Asian 0.04 (0.010) 0.01 (5.10×10-3) - - 0.050 1.823†b F, S 0.174 (0.013, 0.335) 0.282 (0.023, 0.514) 

European 0.32 (0.020) 0.05 (5.10×10-3) - - 0.050 1.543†c F, S 0.252 (0.208, 0.296) 0.449 (0.377, 0.518) 

Table 2. Penetrance estimation for the present case studies. §Lifetime disease risk is only required as a weighting factor where the unaffected (control) 

population are represented within the data given (see Table 1); *Proportion sporadic is defined as 1 – proportion familial (!(#|%) = 1 − !(*|%)); 
†Estimated using Total Fertility Rates reported for the: populations sampled to calculate variant frequencies (see Table S1) †a, East Asia and Pacific†b, or 

European Union†c regions in 2018 (Ref. 19);  #F=familial, S=sporadic, U=unaffected (controls); øRate of sporadic disease has been calculated here because 

the familial state is not represented; C9orf72RE = the pathogenic C9orf72 GGGGCC hexanucleotide repeat expansion. 
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Discussion 
We have developed a novel approach to estimate the penetrance of genetic variants which 
confer risk for autosomal dominant traits. The method was tested via application to several 
variant-disease case studies. 
 
Our penetrance estimates of the LRRK2 p.G2019S variant for PD closely matched those 
previously obtained when analysing data that is not liable to inflation owing to selection of 
familial cases (2). Such studies make lifetime penetrance estimates for this variant between 
0.24 (95%	)*:	0.135, 0.437) and 0.45 (CI not reported).  
 
Our estimates for the penetrance of BMRP2 variants for PAH also aligned with existing 
estimates. Longitudinal analysis of disease trends among 53 families harbouring BMRP2 
variants finds penetrance as 0.27 overall, 0.42 for women and 0.14 for men (29). Our slightly 
higher estimate could reflect that a broader definition of familiality was used in the assessed 
samples, however this cannot be tested with the data available. 
 
The estimates we generated in the SOD1 and C9orf72 case studies aligned with current 
understanding of the penetrance of variants in these genes for ALS. 
 
For SOD1 variants, penetrance for ALS in a normal lifespan is reportedly incomplete and 
differs between individual variants (10, 30). The widely-described p.Ala5Val (formally 
p.Ala4Val) variant has been recorded to have penetrance of .91 by age 70 (31). Among other 
variants, penetrance is less apparent and can be expected to be lower than this (10, 30). Of 
the best characterised variants, p.Ile114Thr approaches complete penetrance in some, but 
not all, pedigrees and p.Asp91Ala reaches polymorphic frequency in some populations, with 
ALS typically arising with an autosomal recessive pattern (10, 11, 31). We drew estimates 
which align with these observations when modelling penetrance of the heterozygous forms 
of these three variants individually (see Table S2), estimating it to be 0.917 for p.Ala5Val, 
0.617 for p.Ile114Thr, and 0.0009 for p.Asp91Ala. These findings highlight the spectrum of 
penetrance across variants in SOD1. Our estimate for the p.Asp91Ala variant in particular is 
compatible with and supports the hypothesis that it is associated with ALS via a recessive or 
oligogenic inheritance pattern (32). The absence of p.Asp91Ala within the familial ALS 
database sampled further corroborates this finding. Accordingly, our penetrance estimates 
in Asian and European populations can be taken to suitably represent an aggregated 
penetrance of risk variants in SOD1 for ALS; some variation between populations can be 
expected, reflecting differences in the admix of variants between them. 
 
For C9orf72, we modelled the penetrance of its pathogenic hexanucleotide repeat 
expansion for ALS. Pleiotropy is a well-established characteristic of this variant, additionally 
conferring risk for frontotemporal dementia and, to a lesser degree, other neuropsychiatric 
conditions (33). In people who harbour the variant, age-dependent penetrance for ALS and 
frontotemporal dementia is about equal and has been reported as almost complete at 
around age 80 (34). This estimate is however liable to inflation from biased ascertainment of 
affected people, and unaffected people are observed to harbour this variant more often 
than would be expected if it were accurate (16, 33, 34). Adjusted for possible ascertainment 
bias, the penetrance for either ALS or frontotemporal dementia is tentatively reported as 
0.90 by age 83. Accounting for lifetime risk of each phenotype and their respective 
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familiality rates, people of European ancestry who harbour the C9orf72 repeat expansion 
appear to develop ALS or frontotemporal dementia with comparable frequency, with 1.012 
cases of ALS emerging per case of frontotemporal dementia (See Table S3; 28, 35-38). It is 
therefore reasonable to predict that penetrance of this variant for ALS would be around 
0.45, a value comparable to our findings.  
 
The method we present has high validity. Criterion and face validity are shown across the 
penetrance estimates outlined in the present paper, aligning with those made using other 
techniques and current understanding of the assessed cases. Construct validity is also 
demonstrated. In the ALS case studies, we found disease risk to be greater for those 
harbouring a pathogenic SOD1 variant than for those with the C9orf92 repeat expansion. 
This aligns with the multi-step model of ALS, where harbouring SOD1 variants is associated 
with a 2-step disease process, converse to the 3-step process associated with the C9orf72 
repeat expansion (39).  
 
The data necessary to operate the present approach is distinct from that of prior 
penetrance estimation techniques which examine patterns of disease among affected 
people, allowing it to be assessed in unrelated populations rather than families. The 
estimates are therefore unaffected by kinship-specific modifiers and are instead applicable 
to the region from which data are drawn. 
 
Where the analysis is confined to people affected by disease, across the familial and 
sporadic states, we circumvent the ascertainment biases affecting designs which examine 
the distribution of a variant between affected and unaffected populations (9). In instances 
where analysis includes data for unaffected samples (i.e. controls harbouring the variant) 
these would not be avoided; ascertainment of controls compared to cases has equivalent 
challenges irrespective of the penetrance estimation approach. However, as our method 
does not require this information if data of familial and sporadic cases are available, it does 
not majorly limit the approach. 
 
Furthermore, limitations of ascertainment will diminish as huge datasets of genetic and 
phenotypic information available within public databases become increasingly available. 
Therefore, the usefulness of penetrance estimates generated through population data will 
grow as the size and scope of genetic data held in such datasets expands, facilitating 
accurate estimation how of disease manifestations are distributed within the population in 
relation to harboured genetic variation (9). 
 
A limitation of this approach is the definition of familiality, which we have defined as the 
occurrence of the studied trait in a first-degree relative. In practice, familial disease may be 
defined using various criteria, for example considering the disease status of second- or 
third-degree relatives, or including related diseases that may share a genetic basis (27, 40). 
For example, ovarian and breast cancer, or ALS and frontotemporal dementia each share a 
genetic basis, and it is reasonable to consider a family history of frontotemporal dementia 
when assessing familiality in a person with ALS. If the extended kinship is incorporated 
within familial disease state definitions, then the familial rate will trend upwards and inflate 
penetrance estimates. However, the use of a wider definition of being affected is 
acceptable, although it will yield penetrance estimates for the joint condition. 
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This method is suitable for calculating the point, rather than age-dependent, penetrance of 
a variant. It can be applied to derive penetrance for an individual variant or for an 
aggregated set of variants, with the latter indicating an averaged burden of variants meeting 
the given criteria. It can be applied to any form of germline genetic variation that is 
associated with a given trait via an autosomal dominant inheritance pattern. 
 
In a scenario where penetrance can be estimated via multiple approaches, we recommend 
that researchers use each method available to them, given the complimentary nature of 
these techniques. If the results of multiple approaches conflict, we would suggest inspection 
of the suitability of the input data given for each method and to prioritise the result 
obtained from the method which this fits best. 
 
In conclusion, our novel method for penetrance estimation fills an important gap in medical 
genetics because, making use of the available amounts of population-scale data, it enables 
the unbiased and valid calculation of penetrance in genetic disease instances that would be 
otherwise difficult or impossible using existing methods. It serves to expand the range of 
genetic diseases and variants for which high-quality penetrance estimates can be obtained, 
as we illustrate in the ALS case examples. Estimates drawn via this approach have clear 
clinical utility and will be useful for guiding the interpretation of genetic test results that 
reveal an individual to harbour a characterised risk variant. They have wider relevance to 
the population than those obtained by studying particular kinships and will be more 
interpretable for clinical professionals. 
 
The tool code is available on GitHub (https://github.com/ThomasPSpargo/adpenetrance) 
and the method is available and free to use via a public webserver 
(https://adpenetrance.rosalind.kcl.ac.uk). 
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