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Vaccinations are considered the major tool to curb the current SARS-CoV-2 pandemic. A             
randomized placebo-controlled trial of the BNT162b2 vaccine has demonstrated a 95% efficacy in             
preventing COVID-19 disease. These results are now corroborated with statistical analyses of            
real-world vaccination rollouts, but resolving vaccine effectiveness across demographic groups is           
challenging. Here, applying a multivariable logistic regression analysis approach to a large            
patient-level dataset, including SARS-CoV-2 tests, vaccine inoculations and personalized         
demographics, we model vaccine effectiveness at daily resolution and its interaction with sex, age              
and comorbidities. Vaccine effectiveness gradually increased post day 12 of inoculation, then            
plateaued, around 35 days, reaching 91.2% [CI 88.8%-93.1%] for all infections and 99.3% [CI              
95.3%-99.9%] for symptomatic infections. Effectiveness was uniform for men and women yet            
declined mildly but significantly with age and for patients with specific chronic comorbidities, most              
notably type 2 diabetes. Quantifying real-world vaccine effectiveness, including both biological and            
behavioral effects, our analysis provides initial measurement of vaccine effectiveness across           
demographic groups. 
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Introduction 
The mRNA-based BNT162b2 COVID-19 vaccine has demonstrated a 95% efficacy in preventing            
COVID-19 in phase III randomized placebo-controlled trial, with early protection from the disease             
evident already 12 days after the first dose ​1​. Despite the benefits of a controlled trial, it is limited in                   
resolution due to restrictions during the recruitment process and the relatively small sample size.              
For example, the phase III trial did not allow the participation of immunosuppressed patients, or               
patients with unstable chronic conditions​2​. The rapid national vaccination rollout in Israel provides             
an opportunity to test the effectiveness of the vaccine in real-world prevention of SARS-CoV-2              
infection and disease across a diverse population. However, estimating the real-world effectiveness            
of the vaccine is challenging due to strong temporal and spatial epidemic patterns, and association               
of testing with vaccination. 
 
Several approaches have been applied to tackle these challenges. First, comparing the infection             
incidence for the vaccinated population starting at the early protection period with incidence during              
the first 11 days after the first dose, when patients are not yet protected, has identified an                 
effectiveness of over 50% in later days​3​. Models accounting for disease dynamics in the general               
population suggest a 66-85% reduction in infections with over 90% reduction in severe             
hospitalizations​4​. In a different effort, leveraging known associations of vaccination with population            
characteristics such as age and geographical location, population-wide associations of infection           
incidence and hospitalizations with vaccination rates were identified ​5​. Finally, a comprehensive           
comparison of infection and disease incidences between a vaccinated population and a            
demographically and clinically matched unvaccinated control group has yielded an estimation of            
effectiveness similar to the randomized-control trial, and showed a reduction in vaccine            
effectiveness in patients with comorbidities​6​. Yet, quantifying the association of vaccine           
effectiveness with multiple patient-specific attributes and resolving behavioral versus biological          
effects, while controlling for patient demographics and the dynamically varying volume of the             
epidemic, remains challenging. Indeed, vaccinated and unvaccinated patients could also differ in            
their rate of testing. In recent years, machine-learning based approaches have become powerful in              
quantifying vaccine effectiveness in reducing infections per-test while accounting for confounding           
variables​7–10​. Here, generalizing these approaches, we build a multivariable logistic regression           
analysis for both per-day and per-test infections, that allows us to calculate infection risk for different                
post-vaccination time ranges, while adjusting for spatial and temporal patterns of the epidemic and              
for patient-specific characteristics such as age, sex and comorbidities. Adding interaction terms of             
time from vaccination with sex, age and comorbidities, we further resolve the associaitons of these               
patient attributes with vaccine effectiveness. Applying this methodology on infections observed           
either per-day or per test, and comparing associations at later times following vaccination with              
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associations observed at early days, before any presumed immunological protection, help us to             
further resolve behavioral and biological effects of the vaccine.  
 
Results 
Between 19th of December 2020 and February 25th 2021, Maccabi Healthcare Services (MHS) has              
vaccinated more than 1.2 million out of almost 1.8 million of its 16 years old and older population, as                   
part of a national rapid rollout of the vaccine. We collected, for each member of MHS, anonymized                 
data including vaccination dates, results of any oral-nasopharyngeal SARS-CoV-2 tests, age, sex,            
and city of residence, as well as tagging of comorbidities including: cardiovascular disease, type 2               
diabetes, high blood pressure, immunosuppression, chronic kidney disease (CKD) and chronic           
obstructive pulmonary disease (COPD, Methods). We then performed a logistic regression analysis            
on a gigantic matrix where each line (“observation”) corresponds to a given person at a given calendar                 
day (67 calendar days, over 120 million observations). The outcome of each of these observations               
indicates whether or not the specific person had a positive test at the specific calendar day (0/1). The                  
features include ​the calendar day, vaccinated versus unvaccinated, the number of days            
post-vaccination and patient-specific characteristics including sex, age, place of residence, and           
patient’s comorbidities. Finally, to characterize vaccine effectiveness, we also included interaction           
terms of age, sex and comorbidities with vaccination for three distinct post-inoculation time periods              
(1-11, 12-28, 29-50 days; Methods). We consider two models, one that includes all 67 calendar               
days for each patient (thereby predicting the “per-day” risk of a positive test result) and the other                 
that includes for each patient only the calendar days in which they were tested (thereby predicting                
the “per-test” risk of a positive test result).  
 
The odds ratio of infection for different days following vaccination, compared to unvaccinated             
reference, showed a gradual decrease in infection rate starting at day 12, ultimately plateauing,              
following 35 days post first inoculation, at levels of approximately 91% for the per-test model and                
95% for the per-day model. The model coefficients for post-vaccination days provide the odds ratios               
for infection relative to an unvaccinated reference (Fig. 1). In the per-day model, we observed an                
initial negative association of infections with vaccination at days 1-5, coinciding with a decrease in               
tests on these initial post-inoculation days (Supplementary Fig. 1, presumably due to a behavioral              
tendency to avoid testing immediately following vaccination). Consistent with the phase III            
placebo-controlled trial, an initial decrease in infection rate is observed at day 12. These rates               
further decrease until a plateau is reached following 35 days post-inoculation at levels of 95.2% (CI                
93.9%-96.2%) for days 44-50. Vaccinated individuals are not required to get tested for             
epidemiological reasons (e.g. after contact with a COVID-19 patient). Therefore, effectiveness at            
later days may be overestimated. To alleviate this potential bias, we used the per-test model,               
considering the risk of infection per test. We found an initial apparent effectiveness already in days                
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1-11 (green period), explained by a time-independent (existing even prior to vaccination) positive             
association of the vaccinated group with testing (Supplementary Fig. 1; likely due to association              
with access and tendency for treatment). Focusing on later days (orange and red periods), vaccine               
effectiveness gradually increased, reaching a plateau at a slightly lower effectiveness of 91.2% (CI:              
88.8%-93.1%).  
 
We next asked whether and to what extent vaccination effectiveness might vary across             
demographic characteristics and whether it may be associated with certain patient comorbidities.            
We considered the coefficients for interactions of sex, age and comorbidities with 3 distinct              
post-vaccination time ranges: 12-28 and 29-50 days, as well as with days 1-11 as a               
pre-immunization control period (where vaccination is not presumed to have a biological effect). In              
both the per-day and per-test models, the odds ratio of vaccine effectiveness with sex, age, and any                 
of the comorbidities considered was at most two-fold, indicating that the vaccine remains effective              
across demographics and comorbidities (Fig. 2). For sex, vaccine effectiveness for men and women              
was highly similar (Odds ratio for male versus female of 1.20 [CI: 1.05-1.37] for per-day and 1.15                 
[CI: 1.00-1.32] for per-test infections). For age, considering the per-day model (incidence rate),             
vaccine effectiveness seemingly declined at older age (80-90 age group), yet similar associations             
also appeared for this age group in the pre-immunization period (Fig. 2a, top, green), suggesting an                
underlying behavioral effect (pre-existing tendency for increased testing in vaccinated versus           
unvaccinated patients was indeed amplified for older patients, Supplementary Fig. 1). Correcting for             
this effect, the per-test model diminished the interaction of age with vaccine, revealing a mild but                
significant decrease in vaccine effectiveness with age at the post-immunization periods (days            
29-50, Odds ratio 0.68 [CI: 0.51-0.91] for 80-90 years old versus 1.23 [CI: 0.89-1.70] for 16-30                
years old). For comorbidities, considering the per-day model, blood pressure, COPD,           
immunosuppression and type 2 diabetes reduce vaccine efficacy, yet they also interact, to a lesser               
extent, with vaccination at the control pre-immunization time period (Fig. 2b, top). In the per-test               
model, a reduction in vaccination effectiveness is seen uniquely for the later, post-immunization,             
time periods (Fig. 2b, bottom, days 29-50; Odds ratio 0.72, [CI: 0.60-0.86] for type 2 diabetes; 0.55                 
[CI: 0.46-0.66] for immunosuppression and 0.61 [CI: 0.45-0.82] for COPD).  
 
Vaccine was even more effective in preventing symptomatic infections. A subset of the tests had an                
associated physician referral indicating symptoms (referrals are not required and were usually not             
issued; only 2.2% of the tests had an associated referral which also indicated symptoms). We               
repeated the logistic regressions with the same features as above, but when limiting to tests with                
symptomatic referrals (Fig. 3). Vaccine protection against symptomatic infections was higher than            
the effectiveness observed for all infections both when considering risk of infection per day              
(effectiveness in days 44-50 post-vaccination was 99.5% [CI: 97.2%-99.9%] for symptomatic           
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infections versus 95.2% [CI: 93.9%-96.2%] for all infections) and per test (99.3% [CI: 95.3%-99.9%]              
versus 91.2% [CI: 88.8%-93.1%]).  
 
Discussion 
Our study has several limitations characteristic of observational studies. First, our data reflects             
uncontrolled non-random testing and non-random vaccination, both potentially biased across the           
population. ​Second, the vaccinated population may differ from the unvaccinated population in its             
general health status, in its risk of being infected and in its health-seeking behavior. These               
differences may be both inherent, pre-existing even prior to vaccination, and time-dependent as a              
result of vaccination itself. Third, during the study period, several viral variants were circulating in               
Israel. Although the vaccine is expected to be potent against B.1.1.7 ​11​, which was the most common                
one ​12​, it is possible that additional variants introduced biases to our estimations of effectiveness              
across subpopulations, especially if vaccinated at different phases of the epidemic. We address             
differences in behavior by using the per-test model, which adjusts for differences in the tendency to                
get tested ​9​, while also comparing the associations identified for the immunization period (after day              
28) with those identified in the pre-immunization period for the same population. Yet, behavioral              
differences which themselves vary with post-vaccination time are harder to correct for. These             
potential biases are also somewhat minimized due to the rapid pace of freely offered vaccination,               
together with laboratory results which are also offered free of charge to all members. The high                
disease rate during the study period also makes this dataset suited for analysis, especially as we                
consider calenderic dates to account for the dynamics of the epidemic wave.  
 
Our analysis of the Pfizer BNT162b2 vaccination and infection records identifies an onset of              
infection prevention effectiveness at 12 days after the first-inoculation in a two-dose vaccine             
regimen, gradually increasing till a plateau at 91.2% [CI 88.8%-93.1%] for all infections and 99.3%               
[CI 95.3%-99.9%] for symptomatic infections. While the effectiveness against symptomatic          
infections is slightly higher than the efficacy reported in the clinical trial, providing daily time               
resolution, our analysis reveals that these high levels of vaccine effectiveness are only fully reached               
following day 35, in agreement with the expected period of two weeks after the second dose ​13​.                 
Vaccine effectiveness was almost the same for males and females. Comparing effectiveness            
across age groups, we find that although vaccine effectiveness is relatively similar for age groups               
between 16-80 years old, a statistically significant lower effectiveness is observed for older patients.              
We also find that specific chronic comorbidities, including high blood pressure, COPD,            
immunosuppression and type 2 diabetes, are negatively associated with vaccine efficacy. These            
results add to previous reports regarding lower vaccine effectiveness for diabetic patients​3 and             
patients with multiple coexisting conditions​6​. Our methodology provides a unified framework for            
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analyzing vaccine effectiveness and its dependence on patient’s attributes from dynamic spatially            
distributed datasets.  
 
Methods 
 

Data collection. Anonymized electronic health records were retrieved for the study period            

December 1st 2020 - February 25th 2021 for all individuals older than 16 (1.79 million). These                

records include: (a) Patient demographics, indicating for each MHS member: a random ID used to               

link records, year of birth, sex, coded geographical location of residence at neighborhood resolution,              

and chronic comorbidities including: cardiovascular disease, type 2 diabetes, high blood pressure,            

immunosuppression, chronic kidney disease (CKD) and chronic obstructive pulmonary disease          

(COPD). (b) Test results, indicating for any SARS-CoV-2 RT-qPCR test performed for MHS             

members: the patient random ID, the sample date, and an indication of positive and negative results                

(total 1,163,799 tests, with 66,944 positive results). (c) Referral for SARS-CoV-2 test, indicating the              

patient random ID, the referral date and a reason for referral (83,714 referrals, 26,095 of which                

indicated symptomatic infection; most tests are performed without a referral). (d) Vaccination,            

indicating patient by random ID and their dates of first and second inoculations with the BNT162b2                

mRNA COVID-19 (1.27 million vaccinees). We excluded from the study patients who had any one               

of the following indications: (a) a positive test prior to the study period, (b) more than 20 tests since                   

March 2020 (to avoid patients participating in extensive surveys), (c) age above 90 or below 16.  

 

Per-day multivariable logistic regression model for infection. We performed a logistic           

regression for the risk of a positive test for each patient in each calendar day. Given 1.79 million                  

patients, and 67 calendar dates (Dec 20 - Feb 25), we have >120 million patient-cross-date               

observations (PxD, or number of lines in the logistic regression input matrix). For each PxD, the                

predicted variable is Y=0/1, indicating whether the specific patient had a positive result on the               

specific calendar date (1 - positive test, 0 - no test or a negative test). The features for each PxD                    

observation (the “X” matrix) include: (a) Sex (0/1, Female/Male), (b) Age (length-6 dummy-variable             

vector designating 0/1 for age bins: 16-30, 31-40, [41-50], 51-60, 61-70, 71-80 and 81-90, with the                

[41-50] variable omitted such that all-zeros indicates this age bin as the reference), (c) comorbidities               

(length-6 binary vector indicating absence/presence of each comorbidity), (d) calendar date and            

neighborhood of residence (target encoding) and (e) post-vaccination time, encoded as           

post-vaccination period (PVP), and post-vaccination day (PVD). The PVP is a length-3            

dummy-variable vector designating 0/1 for periods 1-11, 12-28, 29-59 days post first-dose            
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inoculation (corresponding to the green, orange and red periods in Figures 1-3), with [0,0,0]              

indicating unvaccinated patients or patients at dates prior to their first-dose inoculation. The PVD is               

a dummy-variable vector representing post-inoculation days 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, [11], 12, 13,                   

14, 15, 16, 17, 18, 19, 20, 21, 22, 23-24, 25-26, [27-28], 29-30, 31-32, 33-34, 35-36, 37-43, [44-50].                  

To avoid over-parameterization due to dependency among PVD and PVP, the last bins of PVD in                

each of the three periods (bins [11], [27-28], and [44-50]) are omitted, such that PVD is a length-28                  

binary vector and all-zero represents the first day of the period indicated by PVP (or unvaccinated if                 

PVP is also all-zeros). This coding of post-vaccination day into period and days within the period                

allows quantifying interactions of Sex, Age and Comorbidities with vaccination, by including the             

interaction terms: Sex*PVP (length-3 binary vector), Age*PVP (length-18 binary vector), and           

Comorbidities*PVP (length-18 binary vector). Together, the model includes 83 features. In practice,            

to allow faster computation and to fit the data within a reasonable computer memory, only unique                

lines of this matrix are stored and, for each such unique line, the total number of PxD’s (or PxD’s                   

with a test) and total positive result are calculated. The model is then solved in Matlab with the                  

glmfit function. 

 

Per-test multivariable logistic regression model for infection. Starting with the feature matrix            

and outcome described above, we omitted all PxD lines at which a test was not performed (namely                 

keeping for each patient only observations on dates in which they were tested). We then performed                

the logistic regression as above on this trimmed input matrix. The model thereby calculates the               

probability for a positive result given that a patient had performed a test on a given date. 

 

Regression model for rate of testing. We repeated the logistic regression with the full PxD input                

matrix, with the following changes: (a) the outcome Y specifying whether or not a test was                

performed for the patient at the specific date (0/1); (b) adding PVD bins corresponding to negative                

times (days prior to vaccination); (c) excluded PVD of patients with times prior to the most negative                 

time bin, such that the unvaccinated control does not include patients at dates prior to vaccination;                

(d) ran the model separately on each age group. The results of this model, predicting the probability                 

of testing rather than the test result, are presented in Supplementary Figure 1.  

 

Model interpretation. Odds ratio for infection following vaccination (Fig. 1) were calculated as             

, where and are the regression coefficients of the model for thexp  e C( i
PV P + C j

PV D)   C i
PV P   C j

PV D           

post-vaccination period and post-vaccination day (except substituting =0 for  i     j    C j
PV D   j  
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corresponding to the reference post-vaccination days 11, 27-28, or 44-50). For example, the odds              

ratio of infection in day 38 post-vaccination is , and for day 27, which is in bin        xp  e C( PV P
29−50 + CPV D

37−43)          

27-28 which is a reference bin for period 12-28, the odds ratio is . The effect of             xp  e C( PV P
12−28)     

comorbidities on vaccine effectiveness was calculated as , where       xp  e −( Ck,i
Comorbidities PV P* )   k  

designates one of the 6 comorbidities and designates one of the 3 post-vaccination periods       i         

(green, orange, red; Fig. 2, bottom). Similarly, the effect of Age on vaccine effectiveness was               

calculated as , where designates one of the 6 age bins and designates one of  xp  e −( Ck,i
Age PV P* )   k          i     

the 3 post-vaccination periods (green, orange, red; Fig. 2, top). Finally, the effect of Sex on vaccine                 

effectiveness for each of the 3 post-vaccination time periods was calculated as xp  e −( C i
Sex PV P* ) .   

 

Ethics committee approval. ​The study protocol was approved by the ethics committee of Maccabi              

Healthcare Services, Tel-Aviv, Israel. The IRB includes an exempt from informed consent.  
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Figure captions 
Figure 1. Vaccine effectiveness following vaccination at daily resolution. Odds ratio for            
per-day (a) and per-test (b) infections of vaccinated to unvaccinated, for different days             
post-vaccination. Error bars indicate one standard error of the corresponding logistic regression            
coefficients.  
 
Figure 2. Vaccine effectiveness across age groups and comorbidities. ​Odds ratio of vaccine             
effectiveness for per-day (top) and per-test (bottom) infections, for age (a) and comorbidities (b) for               
three post-vaccination time periods: 1-11 (green), 12-28 (orange) and 29-50 days (red). Error bars              
indicate one standard error of the corresponding logistic regression coefficients. * p<0.05, ** p<0.01,              
*** p<0.001.  
 
Figure 3: Vaccine effectiveness for symptomatic versus all infections. ​Per-day (a) and per-test             
(b) risk of all (solid bars) and symptomatic (hashed bars) infections at days 11 (green, before                
immunity control), 27-28 (orange) and 44-50 (red) post first vaccine inoculation. 
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