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Abstract1

Infectious diseases, like COVID-19, pose serious challenges to university campuses, which typically2

adopt closure as a non-pharmaceutical intervention to control spread and ensure a gradual return3

to normalcy. Intervention policies, such as remote instruction (RI) where large classes are offered4

online, reduce potential contact but also have broad side-effects on campus by hampering the local5

economy, students’ learning outcomes, and community wellbeing. In this paper, we demonstrate6

that university policymakers can mitigate these tradeoffs by leveraging anonymized data from their7

WiFi infrastructure to learn community mobility —- a methodology we refer to as WiFi mobility8

models (WiMob). This approach enables policymakers to explore more granular policies like local-9

ized closures (LC). WiMob can construct contact networks that capture behavior in various spaces,10

highlighting new potential transmission pathways and temporal variation in contact behavior. Ad-11

ditionally, WiMob enables us to design LC policies that close super-spreader locations on campus.12

By simulating disease spread with contact networks from WiMob, we find that LC maintains the13

same reduction in cumulative infections as RI while showing greater reduction in peak infections14

and internal transmission. Moreover, LC reduces campus burden by closing fewer locations, forcing15

fewer students into completely online schedules, and requiring no additional isolation. WiMob can16

empower universities to conceive and assess a variety of closure policies to prevent future outbreaks.17

Keywords: COVID-19; mobility; modeling; policy; non-pharmaceutical intervention; passive18

sensing; WiFi19
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Introduction1

University campuses are often hotspots for infectious disease outbreaks and hence are tar-2

geted for interventions. In the wake of the Coronavirus Disease (COVID-19) [53], the U.S.3

witnessed more than half a million cases at universities [66], and colleges are still left with4

decisions for operations in Fall 2021 [39, 56]. Controlling the disease at universities can be5

pivotal to securing the surrounding environment [6]. To reduce on-campus infections and the6

likelihood of superspreading events, a recommended form of non-pharmaceutical intervention7

(NPI) is partial closure of the campus [22].8

During COVID-19, advancement in teleconferencing technology equips universities to9

continue operations by adopting a form of campus closure that relies on remote instruction10

(RI) [49]. As a consequence, the campus community has fewer opportunities to visit spaces,11

such as classrooms, to congregate and risk transmission [1, 3]. One common approach cam-12

puses consider to design RI policies is to use enrollment data (En) to assume contact and13

therefore, offer large classes online while other classes remain in person [9, 72]. In fact,14

during COVID-19, 44% colleges and universities in the U.S., primarily offered instruction15

online [64]. However, these policies can still have broad, negative, and indiscriminate impact16

on the community by forcing students into completely remote course schedules. Such policies17

can have adverse effect on learning outcomes [18], where students can lose close to 7 months18

of education [2]. Additionally, RI can disincentivize students to stay on campus and thus,19

universities incur losses in auxiliary revenue (e.g., boarding, parking, dining, etc.) [25, 17],20

with universities standing to lose up to $50 million because of unused services [75]. Even21

the local population unaffiliated with the university takes sustains losses to business due to22

university closures [32, 71]. Furthermore, with socioeconomic disparities and heterogeneous23

household contexts, the demands of remote instruction can lead to added anxiety and stress24

among students [12, 74]. Relying on RI, university campuses struggle to balance community25

health with the demands of learning, economy, and broad wellbeing [58]. Instead, there is26

a need for a more versatile approach to design closure policies that empowers policymakers27

to accurately assess impact of closure interventions and model more data-driven targeted28

intervention strategies.29

This paper showcases a new approach that universities can take to design closure poli-30

cies by leveraging data from their existing WiFi infrastructure. Our methodology, WiFi31

mobility models (WiMob), involves constructing anonymized mobility networks of cam-32

pus (Figure 1a), which helps determine extended periods of collocation — or “proximate33

contact” [30]— between individuals to describe contact networks on campus. Particularly,34

WiMob enables a more expressive toolkit for university policymakers that represents contact35

longitudinally and allows them to assess closure at the granularity of a room, suite, or hall.36

Thus, it lends itself to the design of targeted interventions that focus on localized closures37

(LC). We demonstrate the utility of WiMob with data collected over two years, of approx-38

imately 40, 000 anonymous occupants and visitors of the Georgia Institute of Technology39

(GT), a large urban campus in the U.S. — including about 16, 000 undergraduate students,40

9, 000 graduate students, and 7, 600 staff members. In general, on comparing WiMob to En41

as an approach to model contact, we find that WiMob captures contact behavior at a com-42

munity scale for a variety of campus spaces, describes temporal variations in contact, and43

provides a better estimate of local context by being aware of occupancy and the non-student44
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Figure 1: The WiFi mobility models (WiMob) methodology uses anonymized network logs to model
campus mobility and target spaces for localized closures (LC) (a) WiFi network logs reflect timestamps when
people’s devices associate with access points (APs) on campus. WiMob mines these logs to characterize
mobility as a bipartite graph that describes people (e.g., P1, P2) visiting campus locations (e.g., L1, L2)
during different times (e.g., t1, t2). Since people’s devices can proxy their presence, we estimate collocation
(e.g., P1 and P2 were collocated at L1 at t1), and movement (P2 dwelled at L1 and then at L2). (b) We
use the collocation network construct a SEIR–based epidemiological ABM, calibrated to Fall 2020 incidence
of COVID-19 (c) WiMob highlights mobility behavior to evaluate and inform policy. (c)–top-left: Mobility
on campus between the top 100 most frequented locations on the GT campus in the Fall semester of 2019.
Edges only connect points of significant dwelling and thus do not represent pedestrian routes. (c)–top-right:
RI is a form of broad closure which affects a large number of students and locations.(c)–bottom-right: By
contrast, we propose to use WiMob to parsimoniously identify a small set of spreader locations within
buildings and design LC policies. (c)– bottom-left: We use our epidemiological ABM to evaluate these
policies under different budgetary constraints and various behavioral scenarios (Persistence, Non-Residential
Avoidance, Complete Avoidance). Our study shows that LC policies provide equal or better control on the
disease spread, and yet minimize the burden on campus compared to RI.

population. Using WiMob also reveals that En overestimates the impact of RI on reducing1

contact on campus. Hence, we propose a less burdensome alternative to RI, by deriving2

more targeted LC policies based on WiMob (Figure 1) (indeed En is too coarse-grained for3

designing targeted LC policies).4

We further exhibit that LC presents better disease control outcomes than RI by con-5

structing and simulating an agent-based epidemiological model (ABM) over the people–6

people contact networks (Figure 1b) derived from the collocation identified with WiMob7

(Figure 1a). Our ABM was calibrated with GT on-campus COVID-19 cases from the Fall8

semester of 2020 [28] and infection rates from Fulton County [51]. To compare the effect of9

interventions, we construct a counterfactual semester — that is unaltered by other policy–10

induced behaviors of 2020 — by leveraging WiFi data from Fall 2019 to determine the11

contact structure of the simulation. We assess the effectiveness of closure NPIs (Figure 1c)12
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by simulating COVID-19 under various behavioral scenarios. We find LC is comparable to RI1

in controlling total infections but more effective at reducing the peak infections and internal2

transmission. Additionally, LC targets fewer locations, forces fewer students into fully online3

schedules, and does not isolate any more people than RI – illustrating that WiMob can help4

universities devise highly-specific closure policies, like LC, which can contain disease spread5

and mitigate campus disruption in comparison to RI policies.6

Our methodology also promises other advantages. Mobility generally has been used to7

dynamically model disease spread of influenza [59], rubella [73] and COVID-19 [3, 57] showing8

the effectiveness of mobility restrictions at a regional–, or city–level [79, 11, 7, 45, 34]. These9

studies typically rely on cell tower localization or aggregating GPS information from mobile10

phones [10]. Neither of these data sources is easy to access for university campuses. At the11

same time, studies to infer campus mobility networks have relied on accessing user devices12

with specialized data logging applications (e.g., contact tracing mobile apps) [13, 19, 61, 31],13

but these approaches are typically constrained for disease modeling because they require14

mass adoption to represent the entire community and continuous maintenance of software is15

needed to capture longitudinal behavior changes. In contrast, our work repurposes already16

existing managed WiFi networks to model mobility, which provides room level granularity17

for mobility [20, 70, 15, 67] and consequently indicates proximate contact [30]. Much like En,18

universities internally archive such data over a long term for other purposes and do not need19

to install any additional surveillance infrastructure to access it. Prior work has repurposed20

such data for campuses of size 10, 000−50, 000 in different locations including Singapore, the21

U.K., and the U.S [20, 76]. With the appropriate privacy considerations, a university can22

obtain such data at a low cost, continuously and unobtrusively. The possibility of pandemic23

still looms large in the future [37, 26]. As campuses prepare for the upcoming Fall semester24

and unforeseen contagious diseases of tomorrow, WiMob presents an attractive and practical25

method to inform better public health policies.26

Results27

We present two sets of analyses in our work. The first set contrasts structural characteristics28

of contact networks described by WiMob with current practices that use enrollment data29

(En). In the next set, we used WiMob to build an epidemiological model (an agent-based30

model over the contact networks, referred to as ABM) and analyze the remote instruction31

(RI) and localized closure (LC) interventions in terms of their differences in dynamic disease-32

control outcomes and burdens to campus.33

Note, throughout the paper we use the small-caps to denote different methodologies to34

model contact (WiMob and En) and sans-serif to denote different intervention strategies35

(RI and LC).36

WiMob provides local, holistic and dynamic structural insights for37

contact networks on campus38

Studies on RI policies tend to assume that contact in universities is largely informed by En—39

transcripts showing which courses a student is registered for. En can provide structural40
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Figure 2: Results show difference in structural characteristics of contact networks from En (course enroll-
ment) and WiMob (campus mobility). (a) In general, En overestimates connections (grey edges) between
students (green nodes) and does not anticipate changes through the semester. En assumes 90% of students
to be connected in a single component, but WiMob reveals (red edges) that on any given week only 69%
are in the largest component (those not on campus are isolated and shown in the circumference). Moreover,
WiMob reveals that density of connections changes over the semester. (b) En depicts campus contacts to be
connected closely into a “small world”. WiMob shows that contacts evolve over time. As mobility captures
interactions outside classrooms we observe that for the first 6 weeks the shortest transmission path between
people is shorter than what is reported by En. (c) Enrolling into a course does not necessitate physically
collocating with the class for extended periods (students can also choose to be entirely absent). WiMob
reflects this behavior and highlights a decline in average contacts over time. (d) These structural differences
can help policymakers anticipate the effect of closure policies by describing how it fragments the underlying
contact network. En shows that remote instruction leads to a 94% reduction in contacts and 50% increase
in transmission path length (similar to numbers reported in prior work [72], shown as En (Ext.)). However,
the estimate is significantly lower when measured using WiMob. As a result, WiMob emphasizes the limits
of remote instruction policies and in turn motivates new policies that can be designed and evaluated with
actual on-campus behavior.

insights on density of connections and disease transmission paths to inform modeling disease1

simulations [29]. However, such static data can overestimate attendance and ignore overlap2

between courses (via instructors) and organic interactions outside classes (e.g., waiting areas,3

dining, parties, and extra-curricular activities). Therefore, using En can overemphasize4

the disease-mitigating structural changes to the network by RI interventions. By contrast,5

WiMob is more grounded in community behavior as it captures multiple scheduled and6

serendipitous contact situations dynamically over the semester. We compared the features7

of contact networks constructed with WiMob, against networks constructed with En using8

data from GT for Fall semester of 2019 (August 19 – December 14), prior to any COVID-199

reported cases in the U.S. En approximates contact based on students enrolling for classes10

that could potentially collocate them in the same room during lectures. WiMob infers11

contact when any two individuals actually collocate near the same WiFi access point [15, 67]12

for extended period (see explanation in SI WiFi Mobility). We found that WiMob rendered13

new insight into contact on campus that was invisible to the En methodology.14
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WiMob characterizes temporal variation in proximity1

Variation in contact over the semester would naturally impact the severity of disease spread.2

However, En describes a static network that does not capture such dynamics (Figure 2a).3

Instead, we found that WiMob shows contacts got sparser over the semester. Figure 2c4

presents a notable decline in contacts after the first two weeks, which coincides with multiple5

orientation seminars and the so-called “course shopping" period of Fall 2019. In fact, contact6

decreased considerably in classrooms, with a steeper slope possibly because of reduction in7

attendance. WiMob was able to reveal other observable changes, such as drop in contacts8

during exam period (week 15) and increase after fall recess (week 10). En rendered a highly9

connected static network, which can miscalculate the speed at which a disease spreads. By10

contrast, the longitudinal behavior represented by WiMob can help universities anticipate11

disease spread more accurately.12

En overestimates contact-based risk13

Campuses can assess risk of an outbreak by characterizing the number of individuals that14

would be at risk of infection through contact. In our study, En indicated 99% of the indi-15

viduals on campus were clustered in a single component — if any of them would have been16

infected in Fall 2019, the entire component would be at risk. From the lens of En a virus17

can exhaust an entire population with infection very early. However, WiMob showed that18

only 69% of the population was connected in a single component (Table S2). This difference19

is because WiMob can distinguish how many individuals are active on campus. Therefore,20

WiMob provides a pragmatic estimate of risk by grounding it in local occupancy and helps21

campuses budget for resources better.22

WiMob reveals different paths for disease transmission23

Reports suggest that a key contributor to cases in the pandemic is actually clustering of24

individuals in non-academic spaces [49]. However, En does not depict a holistic view of25

campus contact. It is limited to classrooms and, therefore, fixates on contacts in lectures,26

while ignoring other spaces. In fact, WiMob showed that in the first 6 weeks of Fall 2019,27

the shortest path among individuals was smaller than that approximated by En (Figure 2b).28

With WiMob, we observed new paths in the contact network from situations outside classes.29

On a given week, WiMob showed the average shortest path with contact is 3.26(±0.5) when30

only considering lectures, whereas capturing all contexts reduced the average shortest path to31

2.67(±0.28). Characterizing shorter pathways is crucial for policymakers as closure policies32

by design aim to disconnect these pathways.33

En overemphasizes the impact of remote instruction34

Prior work uses En to posit that RI reduces contact and in turn significantly fragments35

the network for disease spread in universities [72, 9]. To compare policy effectiveness with36

WiMob, we operationalize RI in our study:37

Remote Instruction (RI): The status quo for data-driven policies offers strictly online in-38

struction for large class enrollment, while continuing the other classes in person. When39

Das Swain, V. et al • 6

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.03.16.21253662doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253662
http://creativecommons.org/licenses/by/4.0/


using En to model contacts, we implemented RI by removing connections between stu-1

dents who were only in contact through courses of size ≥ 30. When using WiMob to2

model contacts, we removed connections between students if they were only connected3

because of collocations during scheduled lectures of such courses.4

We evaluated the effectiveness of such a policy if it were applied in Fall 2019, with both5

WiMob and En. Figure 2d shows that RI with En reduced contact by 94% and increases6

shortest path by 50%. However, the same intervention with WiMob showed a relatively7

milder impact (contact reduction 45%; shortest path increase 11%). This reinforces that8

contact outside courses are significant and remain unaffected by enrollment-oriented policies9

like RI. WiMob provides a more encompassing view of the structural effects to a network10

and motivates design of more impactful closure policies.11

Epidemiological model built with WiMob shows that LC yields bet-12

ter infection reduction outcomes with lower burden13

As outlined above, En does not comprehensively capture the contact on campus. By contrast,14

contact networks built with WiMob demonstrate new structural insights, which are critical15

to describe disease spread. A campus is composed of many different spaces, and En does not16

have the flexibility to design closure of such spaces or assess its impact. These drawbacks17

naturally motivate a new approach to design interventions. Since WiMob mitigates the18

limitations of En, we leveraged it to demonstrate the effectiveness of localized closure (LC)19

policies.20

We used WiMob to define the contact structure of each day and simulate COVID-19 with21

an agent-based model. Our ABM was overlayed by a modified SEIR compartmental model22

for COVID-19 for each agent. GT also had implemented a robust surveillance program on23

campus. Hence we calibrated the ABM on the positivity rate for COVID-19 for GT [28] in24

the first 5 weeks of Fall 2020 also incorporating external seeding from the surrounding Fulton25

County, GA [51]. We validated our model by predicting future trends for the rest of Fall26

2020. For robustness, we performed additional calibrations by varying time windows and27

university context (details in SI Sensitivity Analyses). We studied interventions by applying28

the ABM over the contact networks produced by WiMob with data from Fall 2019 — a29

counterfactual to Fall 2020 if no closure had occurred (see SI Simulation Model for further30

details).31

WiMob can model RI and LC interventions with various configurations32

Prior works show a few locations are responsible for majority spread [11] and restricting33

movement between them leads to greater control [38]. In addition to RI, we modeled LC,34

which we formalize as follows:35

Localized Closure (LC): We identified rooms–level spaces that are highly central location36

nodes in the network. We removed contacts between people who are only connected37

because of collocating at these locations. While, we employed various centrality al-38

gorithms to identify such locations, for the results discussed in this section we use39

PageRank [54]). Details in SI Identifying Locations for Closure.40
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Figure 3: Results of policy interventions with our calibrated ABM on contact networks from Fall 2019,
derived from WiMob (a) This graph compares the mean active infections between LC and RI. LC show
improved outcomes (shaded regions) even when constrained to the same restrictions of RI policies. (a)–inset:
After the first wave, even though LC shows slightly higher active infections, the cumulative infections are
still lower, especially those that are a result of internal transmission on campus. Figure S11— Figure S18
show changes in cumulative infections under different policies, including 2.5th and 97.5th percentile intervals.
(b) Outcomes of policies within the same behavioral scenario are shown with boxes of the same color (RI
policies are solid, LC policies are hatched) and box heights represent the 2.5th and 97.5th percentile. In S1,
even though LC and RI are equally burdensome in terms of students avoiding campus, LC shows improved
outcome on peak reductions. In fact, for the other scenarios, LC shows better outcomes than RI, without
forcing as many students into online schedules, and, therefore, being even less burdensome with greater
impact. Figure S7— Figure S10 show comparison of all policy outcomes with different budgets.

We found that, if COVID-19 spread through Fall 2019 (a regular semester), the cases rose1

after 7 days (Figure 3a). Therefore, we applied both RI and LC interventions after the first2

week.3

To make the comparisons between the closure policies, we established fixed budgets to4

design LC based on the resource utilization on RI. We considered 2 kinds of budgets, (i)5

mobility reduction — to depict space use on campus, and (ii) risk of exposure — to reflect6

testing capacity. Also note, response to closure policies can lead to unpredictable side-effects7

in campus behavior, particularly when a student’s schedule is entirely online. Therefore, we8

design policies within three behavioral scenarios (each with a varying budget):9

S1: Persistence: Irrespective of the locations closed or classes restricted, individuals con-10

tinue their other visiting behaviors.11

S2: Non-Residential Avoidance: Non-residential students stop all visits to campus if12

they enrolled in at least 3 courses and the policy forces their entire academic schedule13

online.14
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S3: Complete Avoidance: Same as S2, but even residential students avoid campus based1

on their schedule.2

Similar to other works that model closure [72, 5], we assume that when a location is3

shutdown, the individuals who ought to have visited that location isolated during the time.4

To devise interventions,WiMob estimated how RI uses the budget and then designed LC5

to match this budget under every behavioral scenario Table 1 describes how the budget for6

each policy varies. Additional details are present in SI Modeling Policy and Scenarios.7

We present differences between LC and RI based on three infection reduction outcomes;8

peak infections (maximum active cases on a given day), internal transmission (exposure9

from infected individuals on campus), and total infections (cumulative cases at the end of10

the semester). Additionally, we measured the burden of policy interventions with the number11

of locations closed — requires resources to monitor and maintain super-spreader locations,12

the percentage of students that avoid campus — disruption to learning outcomes [18, 12],13

and the percentage of individuals completely isolated — worsens mental wellbeing [60].14

LC cause greater reduction in peak infections, while affecting fewer locations15

Controlling peak infections relaxes the burden on a university to support positive cases for16

any given day, and allows resources to be distributed over time. In all behavioral scenarios17

of our simulation of Fall 2019, we observed that the peak reduction was significantly better18

in LC (Figure 3) than RI. While RI impacted 58 different locations (classrooms and lecture19

halls), in S1 and S2, LC achieved better outcomes by closing fewer locations. For example,20

in S2, RI achieved a 28.9% peak reduction, but LC showed reductions of 49.3% (mobility21

budget) and 48.1% (exposure risk budget). This was attained by closing 38 or 50 locations22

respectively. Therefore, with such policies, policymakers need to restrict fewer locations to23

remarkably minimize the pressure of active infections on campus (e.g., diagnoses, treatment,24

quarantining).25

LC lead to comparable reduction in total infections, while keeping more students26

on campus27

Universities want to minimize the number of infected cases while ensuring majority of the28

population remains active on campus to continue successful operation. In Scenario S1, the29

total number of infections reduced by both LC was more than the reduction shown by RI.30

were similar. For other behavioral scenarios the total infection reduction between policies31

was similar ((Table S2). In contrast, the impact the policies had on the student schedules32

was remarkably different. RI forced multiple students to adapt to fully online schedules. In33

Scenario S2, 9% of students did not visit campus and in S3, 27% of students did not visit34

campus. On the other hand, in LC, the number of students expected to avoid campus could35

be as low as 0 and never exceeded 12%. Besides sustaining economic loss to the campus,36

remote instruction can increase anxiety among students and hinder learning outcomes [12,37

74]. Compared to RI, LC offers policymakers a way to defend against turnover in the student38

population, without compromising overall control of disease spread (Table 1). Limiting the39

number of students that avoid campus helps preserve on-campus businesses [32, 71] and40

minimally disrupts the student wellbeing.41
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Table 1: Comparison of policies in terms of controlling the disease and impacts on campus in Fall 2019.

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LC RI LC RI LC

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 25.34(±12) 36.92(±14)∗∗ 34.30(±13)∗∗ 35.44(±10) 49.33(±11)∗∗ 52.19(±10)∗∗ 61.62(±7) 69.34(±5)∗∗ 64.44(±6)∗∗

Total Infections (%) 6.99(±5) 10.63(±6)∗∗ 8.19(±5)∗∗ 14.88(±4) 13.96(±6)∗ 15.67(±6) 33.00(±5) 33.4(±5) 26.94(±5)∗∗

Internal Transmis-
sions (%)

17.13(±9) 22.62(±11)∗∗ 21.01(±11)∗∗ 27.58(±8) 35.35(±12)∗∗ 39.20(±11)∗∗ 54.00(±8) 70.89(±7)∗∗ 60.90(±9)∗∗

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.20 0.45 27.21 12.45 6.57

Completely Isolated
on Campus (%)

5.42 8.40 8.40 5.95 5.72 5.71 7.09 5.18 5.23

Within each behavioral scenario, we performed the Kruskal-Wallis H-Test [40] to compare outcomes of LC with RI. We found
that LC leads to significantly improved peak infection reduction and internal transmission. In terms of reduction in total
infections, the outcomes were comparable in general but varied by specific scenarios. In addition, every policy also exerted
some burden on campus, either in terms of locations affected, students avoiding campus or isolation. We observed that LC

policies focus on fewer locations (except in S3). Moreover, these policies affected fewer student’s schedules and therefore fewer
people avoid campus due to completely remote schedules. Finally, LC does not increase the percentage of people completely

isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).

LC cause greater reduction in internal transmission without causing further iso-1

lation on campus2

Universities are responsible for limiting spread on campus, but they must also ensure that3

aggressive policies do not worsen mental wellbeing of the community. In terms of inter-4

nal transmission the reduction is significantly larger with LC (Table 1). However, when LC5

restricted the infections early in Fall 2019, it left more individuals susceptible to external6

transmission. College student behavior outside campus on weekends and breaks is known to7

impact local transmission [16]. When policymakers consider LC they should also consider8

policies on re-entry or required testing based on off-campus activities. In terms of isolating9

individuals on campus, it’s notable that LC and RI were similar in S2. Interestingly, in S3,10

where LC closed more than 100 locations, the percentage of isolated individuals per week was11

less than that of RI. This finding implies that LC can keep individuals on campus without12

forcing them into complete isolation. Here “isolation” refers to no form of proximate con-13

tact with any individual on campus — extreme social distancing where individuals are not14

even collocated in the same suite or hall. While social distancing is a recommended coun-15

termeasure for COVID-19 [1], complete isolation can have adverse effects on psychological16

wellbeing [60, 41, 55]. LC can help alleviate concerns of closure interventions that increase17

loneliness and limit social connectedness [41].18

LC identifies a wider variety of auxiliary spaces.19

By using WiMob to design LC we were able to identify locations for closure at the granularity20

level of rooms, including unbound spaces such as lobbies and work areas. As policy design21

budgets changed with every behavioral scenario we found that LC identified different types22
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of locations for closure. First, in S1, we found that most locations that LC targeted are1

a subset of the auditoriums–like rooms where large classes would take place in Fall 2019.2

Note, LC needs to restrict only a few such spaces to utilize the same budget as RI. This is3

because, under S1, RI policies only altered visits to lectures, while these spaces are used for4

other purposes during other times (e.g., club activities and seminars). We also noted that5

LC targeted ‘high traffic’ locations like conference center lobbies which are typically used6

as waiting areas or for networking events. Next, in Scenario S2, we saw that in addition7

to spaces mentioned earlier, interestingly LC further restricted the use of smaller rooms8

(occupancy 13 − 35) which would not be affected by RI (as only classes of size ≥ 30 are9

offered online). LC also targeted areas in the recreation center (which includes locker rooms10

and indoor courts for 4− 20 people). This insight indicates that our methodology WiMob11

accounts for a diverse set of student activities. Moreover, we also found a selection of spaces12

that would not be frequented by the undergraduate population, such as lab areas and facility13

buildings like the police station. Lastly, in Scenario S3, LC targeted closure of activity in14

far more spaces than RI. However, the better outcomes can be attributed to the fact that15

LC diversified the potential restriction areas. LC restricted heavily used small study rooms16

or breakout rooms (for 1− 6 people). Furthermore, it restricts use of spaces where multiple17

small groups of people can organically assemble, such as cafes, dining halls, and reading18

areas. We also observed that LC restricted activity in about 10 Greek Houses but does not19

target other housing areas — demonstrating its ability to restrict social behavior that could20

amplify disease spread. Figure S19 shows the diversity in locations for various LC policies.21

Sensitivity and robustness analyses22

The results above use an ABM calibrated on the positivity rate of the first 5 weeks of Fall23

2020. This rate can be influenced by many latent factors (e.g., mask-wearing, hand washing,24

distancing, and compliance). To study any effect of these variations, we also calibrated on25

different time windows throughout the semester. We calibrate on weeks 5 − 9 and 10 − 1426

in Fall 2020, and validate on the remaining semester. In both cases, compared to RI, we27

found that LC still exhibits better reduction in peak infections (up to 90%) and internal28

transmission (up to 77%). In the original calibration, LC maintained the same level of total29

infections as RI, but with the new periods we found total infections were substantially less30

than RI (Table S8 and Table S9). Another important variable for positivity is the wider31

context of the campus e.g. urban/rural, the surrounding county, city, etc. To investigate32

this, we also calibrated our ABM on the positivity rate of different universities in the US in33

Fall 2020 (along with information from their county to seed external cases). Consider this34

as a hypothetical where the mobility of the GT community remains the same but disease35

outcomes resemble a different campus. We calibrated on data from University of Illinois36

at Urbana-Champaign and University of California, Berkeley. We found no remarkable37

differences from our findings with GT (Table S10 and Table S11).38
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Discussion1

Non-pharmaceutical interventions (NPI) are the first line of defense for universities to re-2

spond to contagious diseases like COVID-19 [21, 47] and are also crucial to control infections3

and continue operations until recovery. On a campus, a common form of NPI is closure [33].4

Universities consider enrollment data (En) to design remote instruction (RI) for closure to5

support continued operations safely [72]. However, En can misconstrue contact on campus,6

and RI policies can have broad impacts despite their effects on curbing the disease spread.7

This paper demonstrates that repurposing logs from a managed WiFi network (WiMob)8

can help design effective localized closure policies (LC). We show that WiMob uncovers rich9

contact dynamics and provides policymakers multiple dimensions to design policies like LC.10

We simulate COVID-19 with an ABM that harnesses WiMob to compare RI and LC. As11

universities plan for Fall 2021, our results present evidence that LC designed with WiMob12

can lead to improved infection reduction outcomes, while simultaneously relaxing burdens13

on the campus caused by coarse-grained broad RI policies.14

Generalizability for Other Contexts: In practice LC policies should be deployed in con-15

junction with the other tools as well like testing, tracing, and quarantining. WiMob can16

complement disease-specific knowledge to identify closure spaces. For example, small indoor17

spaces with poor ventilation increase the risk of infection for COVID-19 [63], while other18

algorithm-identified locations for closure might not require closure because users of a space19

are compliant with mask-wearing and testing. Further, as a pandemic progresses and public20

health guidance develops [62], with WiMob, campuses can regulate the restriction of LC21

policies and anticipate the path to ‘normal’ operations [39, 56]. Moreover, WiMob captures22

various spillover effects that cannot be captured in methods like En. For instance, with23

WiMob we observe that the mobility in Fall 2020 was 39% of that in Fall 2019 because the24

on-ground policies lead to certain staff working remotely as well. With additional informa-25

tion, WiMob enables policymakers to model such scenarios and design alternatives like LC26

with new budgets. Policymakers can use WiMob as a versatile tool to explore dynamic in-27

tervention strategies as well. Prior work shows that staggering policy restrictions could have28

variable impact on campus [78]. Accordingly, WiMob could be used to build an adaptive29

version of LC that updates at different points in the semester based on expected mobility30

changes. Additionally, depending on campus priorities and resource limitations, different31

campuses can use this same data to model policies differently. The effectiveness of reopening32

policies is expected to be sensitive to a campus’ specific context that includes physical infras-33

tructure, overarching guidelines, and human compliance [6]. For certain campuses policies34

might not need to be constrained by exposure risk as testing might be frequent, ubiquitous,35

and voluminous. Other campuses could have limits on quarantining capacity. Policymakers36

might even consider the cost trade-offs by actually forecasting actual financial losses incurred37

by reduction in mobility [7], or valuate loss of services based on community needs [65]. We38

elaborate on these considerations in the SI Implications for Policy Design.39

Operational Considerations: Beyond assessing cost-benefits, universities need to de-40

vise practical methods of obtaining, storing, and processing mobility of the community as41

WiMob. University can access logs from the managed network internally as it is passively42

collected. Moreover, it does not require any new form of surveillance sensing but universities43

must revise terms of use and stay sensitive to community perspectives. Despite population44
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mobility being valuable for many applications [77], accumulating localization data can be a1

major privacy concern [69]. Instead, operational applications need to conceive approaches2

that only retain insights on locations to shutdown but not individual data. Similarly, any3

operational use needs to employ differential privacy to limit what stakeholders can learn from4

the data [4] (e.g., decision-makers can only get a list of candidate locations to close). In the SI5

Discussion, we further detail approaches to reconcile privacy, ethics and legal considerations.6

Limitations and Future Work: For future investigations of better closure policies, re-7

searchers and policymakers need to be cognizant of the limitations of our work. Our analyses8

capture heterogeneity in individual behavior but does not account for differences in intrinsic9

vulnerabilities, which are related to severity of risk [35, 55, 23] and disparity in burden of10

shutdowns on demographic groups [11]. WiMob can be extended with other streams of data11

to characterize sub-contexts in the population and devise new forms of LC to explicitly study12

the impact of policies on specific vulnerable subgroups in the community. Additionally, our13

work explores the avoidance based behavioral responses to closure interventions with as-14

sumptions in line with prior work [72, 5]. Researchers and policymakers can be interested15

in substitution behaviors where the population visits new locations when others are closed.16

WiMob has the flexibility to model more nuanced spillover effects. Exploring different ways17

to remove and reallocate edges in the contact network is interesting future work. Further18

discussion in SI Limitations and Future Work.19

Methods20

This section summarizes (i) the data used to derive contact networks and policies, and (ii)21

the dynamics of our simulation and calibration approach. Additional information for every22

subsection is present in SI Methods.23

24

WiFi Mobility25

Here we describe the data for our methodology, WiFi mobility models (WiMob) and the26

process to yield Localized (LC) policies.27

Data Use and Access28

The IT management facility at Georgia Tech (GT) accumulates WiFi access point logs over29

time. This is common in most universities with managed WiFi infrastructure. We actively30

collaborated with IT management to define safety and security safeguards that allow us to31

obtain a de-identified version of these raw logs. Before accessing the data we established a32

data-use agreement and an ethics protocol that was approved by the Institutional Review33

Board (IRB) at Georgia Institute of Technology (Protocol H20208). For the WiFi data,34

we were provided access to logs from Fall 2019 and Fall 2020. We processed these logs to35

characterize mobility (WiMob) and it encompasses all 40, 000 unique visitors that connected36

to the network via 6, 959 different access points [15]. The logs did not contain any personally37
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identifiable information and locations are also coded. The logs indicated the WiFi access1

point (AP) a device associates with and can therefore be used to infer dwelling locations2

of users across the entire campus. This is limited to indoor spaces where APs are located3

and the scope of this localization is at the granularity of a room or suite [20, 76]). For En4

we only used aggregate insights for enrollment, which were derived from course registration5

transcripts. Note, we did not cross-identify any students. We used publicly accessible course6

schedules to approximate schedules of de-identified nodes and infer if they were students or7

staff, and non-residential or residential. We elaborate on our data in SI Data.8

Note. Like most universities, GT’s managed WiFi network is not equipped with any9

Real-Time Location System (RTLS) [14, 46]. RTLS systems use Received Signal Strength10

Indicator (RSSI) values from multiple neighboring APs to provide high precise localization of11

individuals in terms of time and space. However, deploying such systems requires surveying12

the entire network. Additionally, precision localization raises more privacy concerns. These13

factors together make it challenging for universities to justify the deployment of RTLS, unlike14

small retail settings that can monetize RTLS insights directly (e.g., insights on footfall can15

be tied to improving revenue).16

Contact and Movement Networks17

WiMob leverages the logs to create bipartite graphs Kt, for each day t, which connect P18

users to L access point locations (Figure 1a). Any edge, {p, l}i indicates the ith instance19

when a p was dwelling at l. These edges describe the time period of dwelling. Subsequently,20

by comparing all edges in Kt we can infer if different individuals are collocated near an AP21

to create a contact network, Gt, for each day t — between any collocated pi, pj ∈ P . These22

networks define the contact structure for an epidemiological agent-based model at every time-23

step. Similarly, by inspecting the sequence of dwelling locations for any p in graph K, we24

compute a mobility network, Ht — between locations l ∈ L. In our approach, we considered25

collocation as a form of proximate contact — people in the same room — and therefore26

established collocation only when this occurred for “an extended period” [30]. By varying27

this threshold between 30 and 40 minutes we found the contact networks to be structurally28

similar as their clustering coefficients (over the semester) were highly correlated (r = 0.97).29

In our experiments, we used the 40 minute threshold as it was more computationally less30

expensive. We provide more details of our approach in SI Data Processing and in SI Modeling31

Contact and Movement.32

Modeling Policies33

We compared the disease outcomes and burdens of 2 policies, Remote Instruction (RI) and34

Localized Closure (LC), both of which are modeled with WiMob. For RI we inferred en-35

rollment size of each course in Fall 2019 by determining the number of unique individuals36

that visited lecture locations during scheduled times. After the first week, we applied the37

RI by removing all visiting edges in Kt for any lc ∈ LRI if visits were during lecture times of38

course c with an enrollment ≥ 30. This helped create counterfactual contact networks G′t.39

The removal of edges from K described the mobility budget of RI and the structure of G′t40

indicated the risk of exposure budget. We designed LC with these budgets by identifying41
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locations for closure (LLC) with different algorithms, such as PageRank [54], Eigenvector1

Centrality [8], Load Centrality [48], and Betweenness Centrality [24]. When a location was2

closed, we removed all edges in Kt connected to any lx ∈ LLC. We aggregated the movement3

graph Ht over a week and apply the algorithms to identify locations. Subsequently, we iden-4

tified the number of top-ranked locations to remove such that the resultant counterfactual5

contact network G′′t has is within 1% of the budget. The budgets varied for different be-6

havioral scenarios and we only compared policies within the same scenario. This is further7

elaborated in SI Modeling Policies and Scenarios.8

Disease Simulation9

Here we summarize our epidemiological model and calibration process.10

Agent-Based Model11

We constructed an agent-based model (ABM) that captures the spread of COVID-19 be-12

tween individuals active on campus. This ABM leveraged the contact networks produced by13

WiMob. The simulation iterated a time-step each day with the underlying contact networks14

i.e., Gt for no interventions, G′t for RI, and G′′t for LC. Each agent in our ABM follows a mod-15

ified version of susceptible–exposed–infectious–removed (SEIR) template that disambiguates16

the infectious compartment into asymptomatic and symptomatic. New infections were in-17

troduced to the model either externally or internally. External transmission arose because18

individuals could contract the virus outside campus and bring the infection back for local19

spread [43, 49]. We adopted data of positive cases from Fulton county [51] with a scaling20

factor α to estimate the probability that a susceptible individual, who is active on campus,21

was infected from interactions that take place outside campus. Internal transmissions are22

determined by p, as the probability of susceptible individuals in contact with an infectious23

one. We calibrated the parameters related to disease transmission by training and validating24

our models on the positivity rate reported by GT surveillance testing [28]. SI Agent-Based25

Model details the disease progression and describes the various parameters.26

Calibration27

In our study, we estimated three key parameters: (i) infectious individuals at day 0, (ii)28

transmission probability between infectious and susceptible individuals, and (iii) the proba-29

bility of infection transmission from contacts outside the network. We estimated the range30

of optimal parameters for disease transmission by minimizing the root means square error31

(r.m.s.e) between the Georgia Tech surveillance testing positive rates [52, 28] and the ob-32

served positivity rate of the model every week— percentage of new asymptomatic cases out33

of the total testable population. The surveillance testing conducted by Georgia Tech was34

designed for detecting individuals who contracted Covid-19 without showing Flu-like symp-35

toms within the community [52]. We calibrated the model on the positivity rates on the36

first 5 weeks of Fall 2020. To attain a point estimation of the optimal parameters, we fitted37

the model to predict trends in the remaining weeks by running a numerical optimization38
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Table 2: Model Parameters of the ABM

Parameter Definition Value Std Source

p Transmission probability: For any edge between a susceptible and infectious individual
in the contact network, p is the probability that the susceptible person will enter into
the exposed state. This only dictates internal transmission

0.034 0.007 Calibration

α Scaling factor of the normalized confirmed cases in the surrounding county (1). This is
the parameter for us to generate Iout(t)

0.032 0.0032 Calibration

I0 Proportion of population that is asymptomatic at day 0 0.012 0.0009 Calibration

pS Probability of exposed persons becoming symptomatic 0.66 - [36]

∆S Incubation period (days) since the first day of exposure 5 - [36]

∆Asym→R Asymptomatic duration (days); it is the time taken for an asymptomatic person to
recover since the first day of exposure

7 - [36]

∆I , σI Time of an symptomatic entering isolated since the first day of exposure of a symp-
tomatic person

8 2 [27]

∆R, σR Time for recovery for a symptomatic, since the first day of exposure 12 2 [42]

pD Death rate under isolation 0.0006 - [42]

The variables p, α, and I0 are estimated by calibrating the simulation model on the first 5 weeks of positivity rates provided by GT surveillance
for Fall 2020, while incorporating external cases from Fulton County. These parameters were found by validating the ABM on the remaining

weeks of Fall 2020. SI Calibration provides additional details.

algorithm, Nelder-Mead [44]. To account for quantitative uncertainty, we estimated a range1

of parameters, within 40% of optimum r.m.s.e [11]. For other model parameters, we adopted2

values proposed by previous studies on similar populations [36, 27, 42]. Table 2 shows a full3

list of our parameters.4

Note that our calibration characterized latent factors associated with pandemic-related5

cautious behaviors, including the relationship with external transmission. And these factors6

could be related to “county characteristics, partisanship, media consumption, and racial and7

ethnic composition” [1]. To account for the effect of these varying latent factors on dis-8

ease outcomes, we performed additional calibrations for hypothetical variations in disease9

spread. For these analyses we kept the GT mobility behavior constant while calibrating the10

model on different time periods of surveillance testing and on positivity rates of different11

U.S. universities — University of Illinois at Urbana-Champaign [50] and University of Cali-12

fornia [68], Berkeley. We evaluated RI and LC on these variations and describe the design of13

these complementary experiments in SI Sensitivity Analyses. See SI Calibration for details14

on the calibration process and results of all variations are in Table S3.15

Data Availability16

Interested parties can request deidentified version of this data through appropriate data use17

agreements. The data are not publicly available as disclosing them would breach our IRB18

protocol.19

Code Availability20

The code used for processing the WiFi logs into mobility networks can be requested un-21

der requisite terms of use agreements. The code for simulation is publicly available at:22
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https://github.com/AdityaLab/cv-wifi-GT1
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Supplementary Information Appendix

Supplementary Methods1

In this section, first, we describe the primary data source for mobility models (WiMob),2

the data used for calibrating our simulations, and for comparison of contact networks with3

methods using enrollment data (En). Next, we describe how we construct counterfactual4

mobility networks under the two main policies of interest in our study: remote instruction5

(RI) and localized closures (LC). Finally, we describe an agent-based-model (ABM) of disease6

transmission, which has a contact structure based on WiMob, and how this model was7

calibrated.8

Data9

10

WiFi Mobility11

We use data provided by the IT management facility at Georgia Institute of Technology (GT)12

which accumulates WiFi access point (AP) logs over time. The primary use of WiFi network13

logs is for maintenance and security purposes. We mine these logs post-hoc to describe the14

mobility of individuals on campus, which we refer to as WiMob. Here mobility is expressed15

by visits to certain locations that are demarcated by a corresponding AP. WiMob can also16

describe dwelling (duration of visits) and collocation (dwelling in the presence of others17

around the same AP).18

The campus WiFi network spans 6959 APs distributed between 240 buildings (and some19

outdoor locations). We label APs according to which building they are inside, along with20

the closest room or space (e.g, hallway, lobby, suite, cafe, etc.). The AP may or may not21

reside inside the room, however, in most cases, only a single AP is associated with space.22

For less than 5% of the APs, the AP shared association to space with another AP. This23

many-to-one mapping is typically in the case of large halls and auditoriums. We resolve such24

many-to-one associations by using APs as a proxy of the space they are associated with.25

Therefore, individuals connected to different APs in the same space will still be identified26

as collocated. Similarly, an individual could connect to the network with multiple devices.27

However, less than 1% logs show that a user is connected to multiple APs around the same28

time. Therefore, WiMob is agnostic to which device connects to the APs to proxy the29

presence of the individual. For this study, we obtain the WiFi network logs retrospectively30

for all of Fall 2019, and the data for Fall 2020 was provided on a per-day basis. Each day,31

approximately 33, 000 different people connect their devices to the WiFi network on campus.32

Overall in Fall 2019, approximately 40, 000 different people connected to the campus network.33

Asymptomatic surveillance testing data34

We calibrated the ABM using the publicly reported positivity rate on the GT campus as35

reported through the asymptomatic surveillance and diagnostic testing program [52]. The36
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testing program used pooled saliva sample surveillance with follow-up diagnostic testing.1

The positivity rate was reported each day, but individuals must wait at least 1 week between2

tests. We aggregated the positivity rate by week during the Fall 2020 semester.3

Confirmed case data4

When calibrating our ABM, we considered the reported confirmed cases in Fulton County [51],5

the county in which GT is located. The ‘Confirmed COVID-19 Cases’ reported in this dataset6

are cases that have been confirmed with a positive molecular (PCR) test. We considered7

cases during the Fall 2020 semester to inform external transmissions in the ABM.8

Enrollment network summary statistics9

We compare structural properties of contact networks constructed with WiMob to contact10

networks constructed from GT’s course enrollment transcripts (En) To ensure that individ-11

uals cannot be identified by combining anonymous WiFi network logs and course enrollment12

transcripts, we only use aggregate statistics from En— structural characteristics of the con-13

tact networks described in Table S2. The En network was based on Fall 2019 transcripts for14

GT’s Atlanta campus. These were cleaned to account for cross-listed courses and was used15

to determine which students were classmates with each other to form a contact network.16

WiFi Mobility Models17

Inferring location from Logs18

WiMob is our approach to describe contact between people and movement of people be-19

tween locations. The first step requires using WiFi network logs to infer when individuals20

were at specific locations on campus by determining when devices were connected to the21

corresponding APs. Our system mines the WiFi network logs that are populated via the22

Simple Network Management Protocol (SNMP) — a standard and widely used monitoring23

protocol to organize device association behavior to a WiFi network. Periodic SNMP updates24

can be caused either by poll requests to the APs that log which devices are associated with25

it at that time. However, devices can appear invisible to detached from an AP for multiple26

reasons, for example, when devices are idle. Otherwise. SNMP updates can occur whenever27

a new device connects, which is typical when individuals move between APs. Our approach28

exploits this factor to first mine periods when individuals are moving, then identify periods29

of dwelling between movements, and finally determine collocation when two or more individ-30

uals are dwelling near the same AP. This system follows from other studies that mine WiFi31

logs [20, 70] and the detailed processing pipeline and evaluation is presented in [15]. This32

system to infer collocations has been tested against lecture attendance and reports a high33

precision of 0.89, but a relatively lower specificity of 0.79 [15]. While it is not likely to show34

false-positives, it has a possibility to erroneously mark people absent from a location even35

though they were there. However, for the purposes of our study, a contact network is made36

over an entire day and it only needs a single collocation instance for us to consider contact.37

And therefore we believe this limitation would not significantly affect our models.38
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Figure S1: In a managed network, SNMP updates the logs by describing device association to an AP at
a certain timestamp. WiMob mines these logs to characterize mobility as a bipartite graph. The nodes
are partitioned to describe people nodes (e.g., P1, P2) connected to locations nodes (e.g., L1, L2). Every
edge across the partition describes people visiting locations on campus during different times (e.g., t1, t2).
Projecting the bipartite on people nodes helps construct a contact network (e.g., P1 and P2 were collocated
at L1 at t1), while projecting it on locations helps construct a directed movement graph (P2 dwelled at L1
and then at L2).

Characterizing Logs as Contact and Movement Networks1

After inferring where an individual is located on campus, we represent the entire community2

behavior as graphs. We describe a bipartite graph, K, that shows when a user is at a given3

location on campus (Figure S1). This bipartite graph has edges connecting a set of m4

people, P , to a set of n locations, L. An individual can have multiple edges connecting to5

the location if they visited that location multiple times (e.g., t1, t2). The edge data contains6

the start and end times of these dwelling periods. For these bipartite graphs, we make a7

projection on set P to describe collocation. This projection graph, G, contains an edge8

between users if they were visiting the same location during overlapping times. Since we9

do not use RTLS, our approach can only identify if people were in the vicinity of the same10

AP, but does not describe the distance between them. However, it can reasonably determine11

collocation in the same room [15]. Since our study is limited to localizing people indoors,12
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we adapt the definition of proximate contact [30] where people might be “more than 6 feet1

but in the same room for an extended period”. In our work, we use a lower bound threshold2

of 40 minutes to determine proximate contact. Therefore, individuals are only considered3

in contact when they are collocated in a room for 40 minutes or more. This threshold4

was set up to account for typical lecture duration on campus (for standard 3-credit hour5

courses taught 3 times a week). Additionally, we compared the clustering coefficient of the6

contact networks for different days by varying contact thresholds as 30 and 40 minutes. The7

Pearson’s r correlation of these was very high 0.97. Thus, we chose to use the 40 minute8

threshold as it produced structurally similar graphs while requiring lower space constraints.9

Every edge between two individuals contains a list of locations where they were possibly10

in contact. G forms the basis of the contact-network that we use an agent-based model11

to simulate. Alternatively, we also make a projection on the set L. This projection is a12

directed graph, H, where an edge from Li to Lj represents movement from the first location13

to the next within a span of 60 minutes. GT’s large urban campus with pedestrian pathways14

and motorized transit services enables direct movement between any two places on campus15

within the threshold. The 60 minutes threshold helps discount erroneously labeling returning16

from outside campus (e.g., non-residential students visiting two different locations between17

2 days). H effectively describes how locations are connected and which locations could be18

more conducive to attracting and disseminating the virus. As a consequence, the H helps19

inform policy design. We compute the bipartite graph and its projections for each day of20

the semester.21

Modeling Policies and Scenarios22

23

RI: Offering Large Classes Online24

As a response to COVID-19, prior work has recommended using En to enforce a form of25

RI— moving classes large to an online remote instruction setup while other classes are offered26

in–person [29, 9, 72]. While we have access to aggregate insights on En contact networks,27

our study protocol prohibits us from accessing course-specific information at an individual28

level. Therefore to infer individual enrollment, we analyze the edges of the bipartite graph29

K. For this, we first scrape the GT’s course roster for Fall 2019 (filtered to only represent30

the Atlanta campus). This process provides us with a location and weekly schedule for every31

lecture conducted on campus, including its various sections. With this information, we are32

able to identify which edges represent visits to lectures, and subsequently, we can account33

for unique visitors to a lecture. Thus, we can first identify the number of unique individuals34

on campus who are enrolled in classes. The aggregate data from course enrollment reports35

that 21, 299 students were enrolled in Fall 2019. In comparison, our inference identifies36

22, 248 students. The excess number can be explained by the fact that our method does37

not distinguish between instructors, TAs, and students. Next, we study the unique visitors38

to every lecture in the scraped course schedule which gives us an estimate for the size of39

every class. Given the limitations of our data processing, actual enrollment sizes could be40

larger, but our process is less likely to count false positives [15]. Finally, to model RI, for the41

Das Swain, V. et al • 27

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.03.16.21253662doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253662
http://creativecommons.org/licenses/by/4.0/


contact network Gt, we create a counterfactual network G′t for each day t. These exclude1

collocations that took place at lecture locations during lecture times. If two people were2

connected solely by proximity during lectures — in a class with large enrollment — they will3

appear disconnected in the counterfactual network.4

LC: Closing Important Locations5

This article demonstrates the effectiveness of localized closures,LC, which are targeted in-6

terventions to seize mobility at different spaces on campus. For this, we identify important7

locations on campus by analyzing H. In the main paper, LC uses PageRank [54] as an illus-8

trative algorithm to identify important location nodes. For robustness, we apply various ad-9

ditional algorithms to identify highly authoritative nodes in H — betweenness centrality [24],10

eigenvector centrality [8], and load centrality [48]. In the SI Appendix, we distinguish these11

different policies as LCPRank, LCBCen, LCECen, LCLCen. Since RI captures a weekly schedule to12

determine enrollment, LC is implemented to find locations based on behavior from the past13

7 days of mobility. We apply the weighted version of the algorithms mentioned earlier on14

the directed graph representing movement, H. The edge weight is based on the number of15

instances of movement between any Li and Lj. After sorting the locations by importance,16

we determine the number of locations to shut down based on different budgets induced by17

RI— mobility and risk of exposure. For this purpose, we take the approach of a greedy algo-18

rithm which successively removes highly-ranked locations till the constraint is met (within19

1% margin of error). Similar to RI, LC also render counterfactual collocation networks, G”t20

for each day t. In these networks, we remove instances of collocations that occurred at the21

shutdown locations. Figure S19 and Figure S20 shows the categories of buildings where22

different spaces are closed by LC policies.23

Inducing Budgets and Characterizing Behavioral Scenarios24

We now describe how we compare the RI and LC policies. First, we consider the effects of25

these policies under three behavioral scenarios. These scenarios express the spillover effects of26

closure that lead to students avoiding campus entirely because their entire schedule is forced27

online. This analysis assumes that the motivation to be present on campus is determined28

primarily by enrollment. We consider that, if a student has a full course load (enrolled in a29

minimum of 3 classes) and all their classes are offered online, that student might have less30

incentive to visit campus at all (for any engagement) and thus practice Avoidance. Since LC31

could end up closing classrooms, it can also lead to academic schedules being affected and32

elicit Avoidance behavior. As a result, we describe three behavioral scenarios. Persistence,33

is the preliminary, or null scenario, which represents no Avoidance. This counterfactual34

collocation graph only removes edges directly affected by RI or LC. The second scenario35

we model is Non-Residential Avoidance where only non-residential students with full online36

schedules stop visiting campus entirely. Here the counterfactual graph will remove all edges37

of non-residential students with fully online schedules. Lastly, the third scenario we model is38

Complete Avoidance where any student with fully online schedules stops activity on campus39

entirely (including residential students). Here the counterfactual graph will remove all edges40

from any student with fully online schedules. Since our study protocol prohibits us from41
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mapping our data to other sources, we heuristically infer which individuals are likely to1

be residential and which are not. We label individuals as residential when they dwell an2

average of at least 15 minutes at residential locations between 6pm and 10am, on workdays3

(Monday–Thursday).4

Under each behavioral scenario, we limit the number of locations that can be closed under5

the LC policy to ensure the level of restriction is constrained to be similar to the RI policy.6

We limit the number of locations under two types of restrictive budgets. The first budget7

is based on mobility, which is the percentage of edges remaining in the bipartite graph if8

a policy were to be implemented. The second budget is based on exposure risk, which is9

the number of unique individuals who would be in the 1-hop collocation neighborhood of10

positive individuals. We compute this budget by randomly sampling 2.5% of the population11

as positive, based on the highest 7-day average positivity rate reported by GT [28] in Fall12

2019. Note, however, the effect of RI on campus can vary in different behavioral scenarios,13

thereby changing the budget available to design a comparable LC policy. For instance, the14

number of people at exposure risk is much lower in Complete Avoidance. As a result, we15

build multiple alternate networks representing the effect of policies under counterfactual16

behavioral scenarios.17

The infection reduction outcomes and burdens of different policy interventions (under18

various behavioral scenarios and budgets) is described in Table S4—Table S7 presents box-19

plots that compares the distribution of disease control outcomes. Figure S11—Figure S1420

show cumulative plots of disease control outcomes21

Agent-based Model22

23

Agent-Based Model24

We constructed an agent-based model (ABM) that captures the spread of COVID-19 be-25

tween individuals active within the GT community. The model is used to evaluate the26

effectiveness of different policy interventions. We consider a modified version of the SEIR27

framework for simulating the spread of COVID-19 [34, 11] by using an underlying contact28

network given by WiMob. Figure S2 shows the compartments of the framework. The29

susceptible state (S) represents individuals who have not been infected and can contract the30

disease by having contact with an infectious individual. The exposed state (E) is canoni-31

cally equivalent to the “incubation period” and is similar to the pre-symptomatic state found32

in related work [39, 36]. Individuals are considered infectious when they are in either the33

asymptomatic state (Asym) or symptomatic state (Sym). Individuals in the asymptomatic34

state are assumed to be the major “spreaders” [36] and transmit the infections to susceptible35

individuals before they are recovered (R) [23] — after 7 days [36]. Since asymptomatic36

is considered a state of mild severity [32], individuals in this state do not have a risk of37

fatality. By contrast, for individuals in the symptomatic state, will be eventually isolated38

(Iso) (e.g. self-quarantine, or hospitalization on campus). Once in the isolated state, they39

cannot transmit the disease to individuals in the susceptible state. Unlike the asymptomatic40

track, the symptomatic state is considered critical severity. Therefore, after moving to the41
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Figure S2: (a) The schematic of the compartments in our modified SEIR model. By the design of the GT
surveillance testing [52, 28], the total testable population is defined as the summation of susceptible, exposed,
and asymptomatic. Infectious persons are in either symptomatic or symptomatic. For every effective edge
in the mobility network, a susceptible individual that is exposed to an infectious person becomes infected
with probability p. Individuals may also get infected due to an exposure not captured by the WiMob
network which occurs with probability Iout(t) on day t. account for new infected cases. (b) The mobility
behavior represented by WiMob changes every day of the semester (shown weekly here). The contact
network constructed from WiMob forms the underlying contact structure of the ABM.

isolated state, individuals have risk of fatality and entering the death state (D). If the iso-1

lated individual survives, they enter the recovered state. We assume immunity is preserved2

and therefore after recovery the individual is no longer susceptible.3

Definitions4

Let t = {0, 1, 2, 3, ..., T} be the index of days in simulations. We denote the sequence of5

dynamic collocation networks indexed by day t, as {Gt(At, Bt)}Tt=0. At is the set of vertices,6

i.e. individuals on campus, and Bt is the set of edges. The universe set of the population7

throughout the simulation time period is given by M =
⋃T
i=1 At. For convenience, we use8

ai ∈M to index every person in the universe population set.9

The SEIR model consists of seven compartments. Each of these corresponds to a function10

of population subsets with respect to day t: susceptible S(t), exposed E(t), asymptomatic11

Asym(t), symptomatic Sym(t), isolation I(t), recovered R(t), and dead D(t). For example,12

ai ∈ I(t) means ai is in the isolation state at day t. We use N t
S→E, N t

E→Asym, N t
E→Sym,13

N t
Asym→R, N t

Sym→I , N t
I→R, and N t

I→D to denote the transitions between states between day t14

and day t+ 1.15

Model Initialization16

The entire populationM is fixed whereM = S(t)+E(t)+Asym(t)+Sym(t)+I(t)+R(t)+D(t)
for all t. To capture the positivity out of the students coming back to campus at the start
of the semester, we initialize the system by setting a subset of M into Asym(0) and the
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reminder into S(0). The initial percentage of asymptomatic is described by:

Asym(0) ∼ Binomial(M, I0)

S(0) ∼M − Asym(0)

where I0 is a parameter defined as the initial percentage of Asymptomatic at day t = 0.1

New exposures2

We consider two ways that an individual in the ABM could be exposed: (i) exposures3

that occur due to contacts among individuals captured by the mobility network (internal4

transmission) and (ii) exposures that occur due to contacts that occur outside of the mobility5

network (external transmission).6

Internal transmissions happen exclusively among individuals in the model. On any given7

day, an edge becomes effective, when one of the susceptible individual comes in contact with8

the other which is infectious, i.e. asymptomatic or symptomatic, individual. Therefore, for9

every effective edge between two such people, the probability of the susceptible individual10

getting exposed is described by the transmission probability p, which is another model pa-11

rameter. The probability for an susceptible individual ai entering exposed at the end of day12

t is given by the following function:13

14

fp(ai, t, p) =

{
1− (1− p)e(t,ai), if ai ∈ Vt
0, otherwise

Here, e(t, ai) is the number of effective edges of individual ai at time t. Since (1− p)e(t,ai)15

is the probability that ai does not contracted the disease at time t under e(t, ai) Bernoulli16

trials, 1− (1−p)e(t,ai) is the probability that at least one effective edge leading ai to exposed.17

In addition to exposure due to internal transmission, we also consider new exposure due18

to external transmission. We consider external transmission to be exposure resulting from19

the physical collocations outside the scope of mobility network. For instance, the WiMob20

does not capture the connections between individuals without access to the campus WiFi or21

someone contacting infectious persons outside the campus. To reflect this risk in our model,22

for any day t, Iout(t) describes the probability of infection on day t from a collocation that is23

external to the mobility network. We assume that the probability an individual is infected24

due to an external source is proportional to the number of cases in the broader community.25

Therefore, we model the probability of external infection as a function of confirmed cases26

in Fulton county, where GT is located [51]. Ct represents the confirmed cases reported by27

Fulton County where Cmax is the maximum number of the cases over the whole period,28

Iout(t) is given by29

Iout(t) = α ∗ Ct
Cmax

(1)

Das Swain, V. et al • 31

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.03.16.21253662doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253662
http://creativecommons.org/licenses/by/4.0/


where α is a parameter scaling the normalized confirm cases in the surrounding county. The1

resulting number of external infections on day t is then modeled to be are Binomial with2

|S(t)| trials with probability of success Iout(t).3

In summary, for every day t > 0, the overall number of individuals that become newly
exposed is represented as N t

S→E which is the result of both external and internal transmis-
sions.

4

Nt
S→E ∼ Binomial(|S(t)|, Iout(t))︸ ︷︷ ︸

external infections

+
∑
ai∈M

fp(ai, t, p)︸ ︷︷ ︸
internal transmissions

Model dynamics after exposure5

After exposure, individuals in the model will progress through other disease states in our6

model. We update the number of individuals in each state daily to reflect transitions between7

them. The transitions between the states on day t are summarized according to the following8

equations:9

10

S(t+1) - S(t) = - Nt
S→E

E(t+1) - E(t) = Nt
S→E −N t

E→Asym −N t
E→Sym

Asym(t+1) - Asym(t) = Nt
E→Asym −N t

Asym→R

Sym(t+1) - Sym(t) = Nt
E→Sym −N t

Sym→I

I(t+1) - I(t) = Nt
Sym→I −NI→D −NI→R

R(t+1) - R(t) = NI→R

D(t+1) - D(t) = NI→D11

After an individual has been exposed, they will spend ∆S days in an incubation period. At
day ∆S after their exposure, individuals will become a symptomatic infection with probability
pS. Otherwise the agent will become an asymptomatic infection This process is given by the
following two equations:

12

Nt
E→Sym ∼

{
Binomial(|E(t−∆S)|, pS), t ≥ ∆S

0, otherwise
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Nt
E→Asym ∼

{
|E(t−∆S)| −N t

E→Sym, t ≥ ∆S

0, otherwise
1

Individuals who enter the asymptomatic state will recover after ∆Asym→R days since they2

were first exposed. Thus, we represent the number of transitions from asymptomatic to3

recovered on day t as:4

5

Nt
Asym→R ∼

{
N
t−∆Asym→R
E→Asym , t ≥ ∆Asym→R

0, otherwise
6

On the other hand, individuals who enter the symptomatic will eventually enter the7

isolation state [36]. The time that individuals spend in the symptomatic state before entering8

the isolated state is normally distributed δtI ∼ Normal(∆I , σ
2
I ). We simulate each individual’s9

transition between symptomatic and isolated by using a sampling function Γ(ai, t,∆t) and a10

function τ(ai, t) that returns the days since exposed respectively:11

12

Γ(ai, t, δ
t
I) =

{
1, t− τ(ai, t) ≥ δtI
0, otherwise

τ(ai, t) =

{
first day of ai entering exposed , ai ∈ Sym(t)

+∞, otherwise
13

The aggregated transitions N t
Sym→I between symptomatic and isolated is the sum of the14

distribution above on each day t.15

N t
Sym→I ∼

∑
ai∈M

Γ(ai, t, δ
t
I)

Individuals who enter the isolated state may end up with one of two states: dead or16

recovered. We defined N t
I→D as following another binomial distribution with parameter pD:17

N t
I→D ∼ Binomial(|I(t)|, pD)

The transitions between isolation and recovered is quite similar to the transitions between18

symptomatic and isolation except δtR ∼ Normal(∆R, σ
2
R) where ∆R and σR are the two19

parameters standing for the mean and standard deviation of days for an individual in the20

isolation state entering recovered since the first day of infection. This leads to:21

N t
I→R ∼

∑
ai∈M

Γ(ai, t, δ
t
R).
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Table S1: Model Parameters of the ABM

Parameter Definition Value Std Source

p Transmission probability: For any edge between a susceptible and infectious individual
in the contact network, p is the probability that the susceptible person will enter into
the exposed state. This only dictates internal transmission

0.034 0.007 Calibration

α Scaling factor of the normalized confirmed cases in the surrounding county (1). This is
the parameter for us to generate Iout(t)

0.032 0.0032 Calibration

I0 Proportion of population that is asymptomatic at day 0 0.012 0.0009 Calibration

pS Probability of exposed persons becoming symptomatic 0.66 - [36]

∆S Incubation period (days) since the first day of exposure 5 - [36]

∆Asym→R Asymptomatic duration (days); it is the time taken for an asymptomatic person to
recover since the first day of exposure

7 - [36]

∆I , σI Time of an symptomatic entering isolated since the first day of exposure of a symp-
tomatic person

8 2 [27]

∆R, σR Time for recovery for a symptomatic, since the first day of exposure 12 2 [42]

pD Death rate under isolation 0.0006 - [42]

The variables p, α, and I0 are estimated by calibrating the simulation model on the first 5 weeks of positivity rates provided by GT surveillance
for Fall 2020, while incorporating external cases from Fulton County. These parameters were found by validating the ABM on the remaining

weeks of Fall 2020. Figure S3 shows model estimate during the calibration and validation period.

Model calibration1

Most of our model parameters can be estimated from previous studies (see Table S1).2

However, three parameters in our study are not easily estimated from previous studies: (i)3

the proportion of the agents that begin the semester asymptotically infected, I0, (ii) the4

probability of transmission between a given infectious individual and susceptible individual5

given a contact in the mobility network, p, and (iii) the scaling factor α used to determine6

probability of transmission due to contact outside of WiMob network on day t, Iout(t) (see7

(1)). We fit these three parameters to the published weekly positivity rate (percentage8

of asymptomatic cases) as reported by GT’s asymptomatic surveillance testing program9

[52]. To fit the parameters, we performed calibration to minimize the root mean square10

of error(r.m.s.e) between the simulation estimates of the weekly positivity rate and the11

observed weekly positivity rate on GT’s campus of the Fall 2020 semester as reported by the12

surveillance testing program.13

To perform the calibration, we used two sets of public data pertaining to 2020 Fall14

semester at GT: (i) the confirmed cases in Fulton County [51], and (ii) the aggregated15

surveillance test positivity rate for each week [52]. The former helps estimate the daily16

external infection percentage. The latter is the ground truth trajectory we fit our model on.17

We consider the data aggregated by week because each individual on campus can only get18

tested once per week. The positivity rate provided by the surveillance testing data can be19

interpreted as the estimated percentage of new asymptomatic cases out of the total testable20

population which includes susceptible, exposed, and asymptomatic — with an assumption21

that every testable population get tested at the same rate.22

To formalize the calibration problem, let Rw be the surveillance-testing aggregated result23

at week w. Let S(I0, α, p, w) be the function of the simulation model which returns the24

percentage of new asymptomatic in week w out of the total testable population. For every25

combination of parameters, the predicted result for each week w is estimated by taking the26

average of N simulation outputs. The objective function is:27
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f(I0, α, p) =

√√√√ 1

W

W∑
w=1

(∑N
i=1 S(I0α, p, w)

N
−Rw

)2

The optimization problem is:
min
I0,α,p

f(I0, α, p)

We fit our model to the first 5 weeks of Fall 2020 and validate the results on the remaining1

weeks. After obtaining the optimal set of parameters, for robust comparison of policies with2

different viral variants, we generate a range of parameters by compromising the r.m.s.e within3

40% of the minima [11]. First, we implement the Nelder Mead method [44] to discover4

the optimal set of parameters that minimizes the r.m.s.e. Next, we sample 40 different5

combinations of parameters within 40% of the minimum r.m.s.e to estimate the means and6

standard deviations of these parameters ( Table S1). Throughout this paper, we pool together7

all simulation results across those parameters over multiple runs (N = 15) and report the8

2.5th and 97.5th percentiles of the simulation outputs for every policy experiment.9

Sensitivity Analyses10

In this section, we design complementary experiments to inspect the robustness LC policies11

under different setups and calibration approaches. These variations are defined as follows:12

• Calibration periods (V1): For the results in the main paper, we discuss results with13

our ABM calibrated on the first 5 weeks of surveillance testing data. For additional14

analyses, the model parameters are re-estimated based on the surveillance data from15

week 5−9 and 10−14 in Fall 2020 at GT. The calibration is validated on the remaining16

weeks in the semester. Figure S3 shows the calibration and validation. The results17

of policy comparison with these variations can be found in Table S8 and Table S9,18

for weeks 5 − 9 and 10 − 14 respectively. Additionally, Figure S9 shows boxplots to19

compare the distributions of different policies, while Figure S15 and Figure S16 show20

cumulative plots of the disease control outcomes, for weeks 5−9 and 10−14 respectively.21

22

• Campuses and counties (V2): For the results in the main paper, the calibration of23

our ABM reflects certain latent factors inherent to GT that could affect both mobility24

behavior as well as testing results. To complement this we consider calibrating our25

data under different settings informed by surveillance testing from other similar large26

universities. This analysis is intended to represent the GT community in a different27

geographic setting, which is influenced by a different surrounding community, policies28

and resources. The new parameters are estimated based on the first 5 weeks of surveil-29

lance testing from the University of Illinois at Urbana-Champaign (UIUC) and the30

University of California, Berkeley (Berkeley) [50, 68], and the corresponding county31

data [10, 9] The calibration is validated on the remaining weeks in the semester.32

Figure S4 and Figure S5 show the calibration and validation for UIUC and Berkeley33

respectively. The results of policy comparison with these variations can be found in34

Table S10 and Table S11. Additionally, Figure S10 shows boxplots to compare the35
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distributions of different policies, while Figure S17 and Figure S18 show cumulative1

plots of the disease control outcomes.2

3

The estimated parameters with these calibration variations are described in Table S3.4

Both RI and LC are evaluated in the same infection reduction metrics and burden metrics5

again under behavioral scenarios S1, S2, and S3. Since the budgets are structural (mobility,6

and exposure risk) the LC policies are unchanged among the variants. Moreover, since the7

burden metrics are structural, those results are invariant.8

Supplementary Discussion9

Implications for Policy Design10

To evaluate the efficacy of policies, we inspect infection reduction by simulating the disease11

with contact networks from Fall 2019. Since managed WiFi networks accumulate logs for12

long periods of time, policymakers can use WiMob to model data from previous semesters13

and experiment with closure policies like LC. We show that WiMob can provide retrospective14

disease–mitigating insight into multiple counterfactual behavioral scenarios. For instance,15

policymakers can consider studying seasonal behaviors over multiple semesters for more ro-16

bustness. Since the underlying data is longitudinal, it provides the flexibility to realistically17

assess policy interventions at different time points and also study updating policies. Re-18

stricting movement on campus at different time-points is known to exert varying degrees of19

control on disease spread [11]. Our data also shows that mobility on campus varies across20

the semester and therefore, allows policymakers to consider loosening shutdowns depending21

on the phase of the semester.22

Policy design is determined by practical budgets. We model two kinds of budgets, mo-23

bility reduction and risk of exposure. The former represents disruptions in space utilization,24

availing services, and social life. The latter translates to the testing burden on campus. Our25

analysis determines the budget in different behavioral scenarios by observing the changes26

to the graph when large classes are moved online. This is to ensure an equitable com-27

parison with targeted policies. However, in real situations, these budgets can be relaxed28

or restricted based on that campus’ preparedness to tackle a pandemic. For instance, a29

hypothetical campus that can test everyone every day might not be constrained by risk of30

exposure. Alternatively, policymakers can model other tangible budgets such as the capacity31

in isolation wards or available hospital beds. This can be informed by practical limitations of32

the campus. Similarly, this paper only assesses limited forms of cost, e.g., students avoiding33

campus or closing locations. From a financial perspective, university campuses can digitize34

their core service—education—but still realize losses from other curtailed services [21, 7, 71].35

When students avoid campus it can lead to direct losses from meal passes and parking and36

also quantifiable losses to learning outcomes [2, 18] Policymakers can compute actual costs37

by complementing this data with information from other sources (e.g., revenue generated38

by cafes and stores on campus). This can help qualifying WiMob to reflect different costs39

and in turn help design policies that optimize for financial losses. Different campuses have40

different priorities and challenges in implementing policies.41
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Privacy, Ethics and Legal Considerations1

We purposefully compare our prototype targeted policies against moving classes online2

because of practical budgets within the university. Both the WiMob and En based contact3

networks are derived from archival data accumulated by universities. This does not require4

instrumenting campus or its community with any new form of surveillance infrastructure.5

However, its use for a different purpose demands approval by an IRB. Moreover, acquiring6

these kinds of data would require collaborating with data-stewards (e.g., the IT department)7

to establish a data-use agreement. This document must clarify how the data will be de-8

identified, transferred, and stored.9

For this form of data, the critical privacy challenge might not be localization itself, but10

rather the aggregation of data over a period of time [69]. Data spanning a longer period are11

more susceptible to cross-analyzing and identifying. To mitigate over-accumulation of data,12

we suggest an adherence to principles of data minimization [31]. Instead of storing entire13

mobility graphs, the campus can compute and preserve only high-level insights, such as the14

importance of locations. This redacts any underlying individual behavior and corresponding15

identifiable information. Actually, for future purposes campuses can consider a form of16

differential privacy that authorizes limited forms of data querying depending on the privileges17

of the stakeholder [4].18

An operational application would require the university to update the terms of use for19

its managed network. Particularly, the university should disclose how this data can be used20

in critical circumstances that invoke shared vulnerabilities [6]. On notifying the campus21

community of this change it offers individuals the choice to refrain from using the university22

network. Prior work on a sample within the same university campus shows that 90% of23

students are connected to the network on any given day [15]. Therefore, proposing such24

an opt-out condition can be viewed as an unfair choice. As a result, the campus needs to25

develop a contingency plan to accommodate network access to users who do not want their26

mobility behavior to constitute the aggregated insights.27

Limitations and Future Work28

This work presents evidence that university campuses can repurpose existing data sources29

to inform the design of LC policies that can control COVID-19. We evaluate these policies30

as alternatives to other data-driven, but, broad impact policies that universities consider31

implementing, such as moving large classes online. One of the drawbacks of this analysis,32

however, is that it assumes all edges to be the same. For example, when constraining by33

mobility, in real scenarios losing certain visits might be more valuable than others. Decline in34

mobility around profit-making services, such as shops and cafeterias, versus losing mobility at35

common rooms have a different tangible effects on campus. Currently, we take an agnostic36

stance towards the mobility behavior, where all visits at all locations are the same. In37

reality, implementing policies could have inequitable qualitative impacts despite appearing38

to have a similar network configuration. This can be improved by embedding more qualitative39

information into the network and conceiving ingenious ways to associate costs to edges.40

Similar to the assumption that all visits and locations, the current work also assumes41

all people to be equal. However, different people have different underlying conditions that42
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can make their vulnerabilities more concerning [55]. The privacy safeguards of this study1

restricted the research team from acquiring any additional demographic or historical in-2

formation. Further work can attempt to characterize the nodes by randomly seeding the3

network to reflect the approximate demographic break up of the community. Alternatively,4

researchers could try to estimate some demographic based on behavior as well. However,5

to leverage accurate individual information, even for operational use during a public health6

emergency, policymakers and researchers need to develop new privacy protocols [24].7

Lastly, this paper only studies three rudimentary behavioral scenarios, persistence, non-8

residential avoidance, complete avoidance. Yet, other substitution behaviors are possible9

and the richness of networks leveraged with WiMob enables the exploration of various new10

scenarios that can be triggered by policy interventions on campus. For instance, individuals11

might not even visit transitory spaces, such as lobbies or cafes between classes. Certain12

collocations could be the consequence of social ties which might never be developed because13

of a shutdown (e.g., project teams meeting outside of class). Further research can illuminate14

the effects of policies in more specific scenarios by modeling post-intervention behavior more15

accurately.16
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Table S2: Comparison of Contact Network Structure (Fall 2019)

Cornell Georgia Tech

Contact Network En En WiMob

Contact Situations Course
Lectures

RI Course
Lectures

RI All Spaces Course
Lectures

RI

Number of Active
Nodes

22051 21299 15379(±3353) 15379(±3353) 15380(±3353)

Average Contacts 529 22− 41 341 30 152(±63) 86(±35) 86(±34)

Density 0.024 0.001 0.016 0.001 0.009(±0.002) 0.005(±0.001) 0.0053(±0.0014)

Largest Connected
Component(%)

0.991 0.763 0.994 0.627 0.999(±0.001) 0.999(±0.02) 0.978(±0.025)

Average Shortest
Path

2.47 3.75 2.54 3.54 2.67(±0.28) 3.26(±0.5) 2.953(±0.35)

We create a contact network of only students with WiMob and compare it with insights from contact networks created with En. On average, we
find the contact network constructed with WiMob shows fewer average contacts, lower density and higher average shortest path (between
reachable paths). Moreover, within WiMob itself, characterizing all spaces reveals more contacts and shorter paths than only focusing on

contacts in lectures. While the proportion of the largest component appears similar, note that with WiMob, on average about only 70% of the
students visit campus on a given week. We further inspect the disease–mitigating structural changes of the RI policy on the network. We observe

that the changes across all metrics with En appear to be more drastic than compared to WiMob.

Table S3: Calibration outcomes with variations

Calibrating on Positivity Rate at GT Calibrating on Positivity Rate with other University Behavior

Parameter weeks 0− 4 weeks 5− 9 weeks 10− 14 UIUC Berkeley

p 0.034± 0.007 0.073± 0.005 0.0024± 0.0003 0.024± 0.0009 0.041± 0.003

α 0.032± 0.0032 0.0042± 0.0006 0.0159± 0.002 0.0069± 0.0013 0.038± 0.006

I0 0.012± 0.0009 0.00057± 0.00007 0.0030± 0.0007 0.0039± 0.0013 0.0048± 0.0003

Optimal r.m.s.e 0.0034 0.0007 0.0015 0.0028 0.0031

Effective R0 (min - max), Fall 2020 1.15− 1.18 1.17− 2.14 0.33− 0.95 1.12− 1.19 1.24− 1.28

Effective R0 (min - max), Fall 2019 2.87− 5.68 5.15− 12.93 1.27− 1.36 3.35− 5.35 3.32− 7.00

The results in the main paper use variables p, α, and I0 as estimated by calibrating the simulation model on the first 5 weeks of positivity rates
provided by GT surveillance for Fall 2020, while incorporating external cases from Fulton County. For sensitivity analyses, we perform

calibrations on GT data for weeks 5− 9 and 10− 14. Additionally, we perform calibrations on first five weeks of UIUC and Berkeley positivity
rate (along with data from their respective county). These parameters were found by validating the ABM on the remaining weeks of Fall 2020.
To assess the basic reproductive number (R0) of our ABM we study the first 4 weeks of the disease. We find the effective R0 to be higher for

Fall 2019 than Fall 2020 as the mobility behaviors between the 2 semesters was vastly different. Note, Fall 2020 exhibits only 39% of the mobility
we observe in Fall 2019. In fact, the ABM is calibrated on Fall 2020, where behavior was subject to pandemic related closures, but in Fall 2019

the mobility was not hindered by any interventions. Thus, Fall 2019 reflects a counterfactual of Fall 2020 without any closures.
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Table S4: Comparison of different LCPRank policies in terms of controlling the disease and impacts on
campus in Fall 2019; calibrated from week 0− 4 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LC RI LC RI LC

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 25.34(±12) 36.92(±14)∗∗ 34.30(±13)∗∗ 35.44(±10) 49.33(±11)∗∗ 52.19(±10)∗∗ 61.62(±7) 69.34(±5)∗∗ 64.44(±6)∗∗

Total Infections (%) 6.99(±5) 10.63(±6)∗∗ 8.19(±5)∗∗ 14.88(±4) 13.96(±6)∗ 15.67(±6) 33.00(±5) 33.4(±5) 26.94(±5)∗∗

Internal Transmis-
sions (%)

17.13(±9) 22.62(±11)∗∗ 21.01(±11)∗∗ 27.58(±8) 35.35(±12)∗∗ 39.20(±11)∗∗ 54.00(±8) 70.89(±7)∗∗ 60.90(±9)∗∗

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.20 0.45 27.21 12.45 6.57

Completely Isolated
on Campus (%)

5.42 8.40 8.40 5.95 5.72 5.71 7.09 5.18 5.23

Note that this table is the same as Table 1. We repeat the results here for easier comparison of LCPRank to other algorithms shown in Table S5,
Table S6 and Table S7. Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCPRank with RI.

We find that LCPRank leads to significantly improved peak infection reduction and internal transmission. In terms of reduction in total
infections, the outcomes are comparable in general but can vary by specific scenarios. In addition, every policy also exerts some burden on

campus, either in terms of locations affected, students avoiding campus or isolation. We observe that LCPRank policies focus on fewer locations
(except in S3). Moreover, these policies affect fewer student’s schedules and therefore fewer people avoid campus due to completely remote
schedules. Finally, LCPRank does not increase the percentage of people completely isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).

Table S5: Comparison of different LCBCen policies in terms of controlling the disease and impacts on campus
in Fall 2019; calibrated from week 0− 4 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCBCen RI LCBCen RI LCBCen

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 25.34(±12) 19.14(±12)∗∗ 30.93(±13)∗∗ 35.44(±10) 30.79(±13)∗∗ 51.87(±10)∗∗ 61.62(±7) 65.07(±6)∗∗ 61.38(±7)

Total Infections (%) 6.99(±5) 4.85(±4)∗∗ 7.74(±5) 14.88(±4) 7.76(±5)∗∗ 15.30(±6) 33.00(±5) 25.32(±5)∗∗ 22.08(±6)∗∗

Internal Transmis-
sions (%)

17.13(±9) 11.96(±9)∗∗ 19.64(±10)∗∗ 27.58(±8) 19.63(±10)∗∗ 38.74(±11)∗∗ 54.00(±8) 63.29(±8)∗∗ 54.00(±8)

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.07 0.45 27.21 11.47 6.74

Completely Isolated
on Campus (%)

5.42 8.63 8.63 5.95 5.49 5.47 7.09 5.15 5.19

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCBCen with RI. We find that LCBCen leads
to significantly improved peak infection reduction and internal transmission, when designed with the exposure risk budget, but can be worse with
the mobility budget. In terms of reduction in total infections, the outcomes are typically worse. In addition, every policy also exerts some burden
on campus, either in terms of locations affected, students avoiding campus or isolation. We observe that LCBCen policies focus on fewer locations

(except in S3). Moreover, these policies affect fewer student’s schedules and therefore fewer people avoid campus due to completely remote
schedules. Finally, LCLCen does not increase the percentage of people completely isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S6: Comparison of different LCECen policies in terms of controlling the disease and impacts on campus
in Fall 2019; calibrated from week 0− 4 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCECen RI LCECen RI LCECen

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 25.34(±12) 36.15(±13)∗∗ 36.13(±13)∗∗ 35.44(±10) 44.52(±12)∗∗ 51.33(±10)∗∗ 61.62(±7) 65.13(±6)∗∗ 62.15(±7)

Total Infections (%) 6.99(±5) 8.66(±6)∗∗ 8.69(±6)∗∗ 14.88(±4) 11.75(±6)∗∗ 14.96(±6) 33.00(±5) 25.39(±5)∗∗ 22.82(±6)∗∗

Internal Transmis-
sions (%)

17.13(±9) 22.33(±11)∗∗ 22.37(±11)∗∗ 27.58(±8) 29.95(±12)∗ 37.94(±11)∗∗ 54.00(±8) 63.56(±8)∗∗ 57.07(±10)∗∗

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.20 0.55 27.21 13.11 6.96

Completely Isolated
on Campus (%)

5.42 8.59 8.59 5.95 5.53 5.51 7.09 5.17 5.23

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCECen with RI. We find that LCECen leads
to significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes vary by

specific scenarios. In addition, every policy also exerts some burden on campus, either in terms of locations affected, students avoiding campus or
isolation. We observe that LCECen policies focus on fewer locations (except in S3). Moreover, these policies affect fewer student’s schedules and
therefore fewer people avoid campus due to completely remote schedules. Finally, LCECen does not increase the percentage of people completely

isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).

Table S7: Comparison of different LCLCen policies in terms of controlling the disease and impacts on campus
in Fall 2019; calibrated from week 0− 4 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCLCen RI LCLCen RI LCLCen

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 25.34(±12) 22.42(±13)∗∗ 30.73(±13)∗∗ 35.44(±10) 32.85(±13)∗ 51.44(±10)∗∗ 61.62(±7) 65.01(±6)∗∗ 61.40(±7)

Total Infections (%) 6.99(±5) 5.48(±5)∗∗ 7.64(±5) 14.88(±4) 8.23(±5)∗∗ 15.03(±6) 33.00(±5) 25.33(±5)∗∗ 21.98(±6)∗∗

Internal Transmis-
sions (%)

17.13(±9) 13.79(±9)∗∗ 19.37(±10)∗∗ 27.58(±8) 20.86(±11)∗∗ 38.08(±11)∗∗ 54.00(±8) 63.28(±8)∗∗ 55.28(±9)

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.07 0.43 27.21 11.47 6.73

Completely Isolated
on Campus (%)

5.42 8.63 8.63 5.95 5.49 5.47 7.09 5.15 5.20

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCLCen with RI. We find that LCLCen leads
to significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are

comparable in some scenarios but can vary in specific scenarios. In addition, every policy also exerts some burden on campus, either in terms of
locations affected, students avoiding campus or isolation. We observe that LCLCen policies focus on fewer locations (except in S3). Moreover,

these policies affect fewer student’s schedules and therefore fewer people avoid campus due to completely remote schedules. Finally, LCLCen does
not increase the percentage of people completely isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S8: Comparison of different LCPRank policies in terms of controlling the disease and impacts on
campus in Fall 2019; calibrated from week 5− 9 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 20.10(±4) 25.60(±3)∗∗ 25.63(±3)∗∗ 31.25(±3) 42.32(±4)∗∗ 47.29(±4)∗∗ 62.35(±2) 88.87(±2)∗∗ 76.89(±3)∗∗

Total Infections (%) 8.89(±2) 10.50(±3)∗∗ 9.70(±3)∗∗ 20.26(±2) 20.02(±3) 23.71(±4)∗∗ 46.72(±2) 67.92(±4)∗∗ 51.30(±4)∗∗

Internal Transmis-
sions (%)

9.97(±2) 11.51(±2)∗∗ 10.95(±2)∗∗ 21.84(±2) 22.51(±3) 26.64(±3)∗∗ 49.80(±2) 74.96(±3)∗∗ 56.89(±4)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCPRank with RI. We find that LCPRank
leads to significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are
better in general but can be comparable in specific scenarios. The burden exerted on campus is the same as structural impacts of LCPRank

(Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).

Table S9: Comparison of different LCPRank policies in terms of controlling the disease and impacts on
campus in Fall 2019; calibrated from week 10− 14 in Fall 2020 at GT

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) −1.75(±8) 3.65(±8)∗∗ −1.95(±8) 3.88(±8) −2.24(±8)∗∗ −2.06(±8)∗∗ 20.39(±7) 7.57(±8)∗∗ 2.81(±8)∗∗

Total Infections (%) 3.93(±9) 10.36(±8)∗∗ 5.13(±9) 9.87(±8) 6.36(±9)∗∗ 6.48(±9)∗∗ 26.02(±7) 16.37(±8)∗∗ 11.80(±8)∗∗

Internal Transmis-
sions (%)

42.33(±10) 61.15(±7)∗∗ 56.25(±8)∗∗ 49.83(±9) 67.10(±6)∗∗ 69.10(±6)∗∗ 74.74(±5) 84.80(±3)∗∗ 79.90(±4)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCPRank with RI. We find that LCPRank
leads to significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are
better in general but can be comparable in specific scenarios. The burden exerted on campus is the same as structural impacts of LCPRank

(Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S10: Comparison of different LCPRank policies in terms of controlling the disease and impacts on
campus in Fall 2019; calibrated from week 0− 4 in Fall 2020 at UIUC

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 41.40(±3) 60.44(±2)∗∗ 59.52(±2)∗∗ 49.75(±2) 74.22(±2)∗∗ 76.44(±2)∗∗ 78.14(±1) 85.81(±1)∗∗ 83.71(±1)∗∗

Total Infections (%) 18.46(±3) 27.12(±3)∗∗ 25.25(±3)∗∗ 27.09(±3) 38.00(±4)∗∗ 40.68(±4)∗∗ 51.97(±3) 59.93(±5)∗∗ 54.07(±5)∗∗

Internal Transmis-
sions (%)

28.22(±3) 40.93(±3)∗∗ 39.09(±3)∗∗ 37.89(±3) 58.47(±2)∗∗ 65.45(±2)∗∗ 68.04(±2) 86.45(±1)∗∗ 80.08(±1)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCPRank with RI. We find that LCPRank
leads to significantly improved peak infection reduction, internal transmission and total infections. The burden exerted on campus is the same as

structural impacts of LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).

Table S11: Comparison of different LCPRank policies in terms of controlling the disease and impacts on
campus in Fall 2019; calibrated from week 0− 4 in Fall 2020 at UC Berkeley

Behavioral Scenario S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure
Risk (18800)

- Mobility
(92.3%)

Exposure
Risk (16900)

- Mobility
(69.2%)

Exposure
Risk (12700)

Infection Reduction Outcomes

Peak Infections (%) 29.13(±3) 36.46(±5)∗∗ 36.34(±5)∗∗ 38.83(±3) 54.95(±4)∗∗ 58.88(±4)∗∗ 66.69(±2) 78.18(±1)∗∗ 77.65(±2)∗∗

Total Infections (%) 6.34(±3) 8.59(±3)∗∗ 7.28(±3)∗∗ 14.71(±3) 13.18(±4)∗∗ 14.83(±4) 33.86(±4) 33.98(±5) 27.10(±5)∗∗

Internal Transmis-
sions (%)

15.99(±3) 20.43(±4)∗∗ 19.17(±4)∗∗ 27.01(±3) 34.60(±4)∗∗ 38.78(±4)∗∗ 55.01(±2) 74.65(±2)∗∗ 63.57(±3)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [40] to compare outcomes of LCPRank with RI. We find that LCPRank
leads to significantly improved peak infection reduction, internal transmission and total infections. The burden exerted on campus is the same as

structural impacts of LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).
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(c) Calibrating on the weeks 5-9
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(d) Calibrating on the weeks 10-14

Figure S3: We calibrate ABM on positivity rates from Fall 2020 at GT. The objective function of the
calibration is to minimize the r.m.s.e. with the weekly average of positivity rate obtained from surveillance
testing results at GT [28]. (a) The parameter that determines external transmission of infections on a given
day, Iout(t), is a function of cases in Fulton county (where GT is located). (b) The models discussed in the
main paper are calibrated using the first 5 weeks of data. We illustrate the output for a range of parameters
that incorporate quantitative uncertainty, i.e., within 40% of the r.m.s.e. (c, d) illustrate calibration on the
second period of 5 weeks and third period of 5 weeks respectively. These only show the optimal parameter
output. The shaded region around the lines show the 2.5th and 97.5th percentile.
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(b) Calibrating on the weeks 0-4

Figure S4: We calibrate ABM on positivity rates from first 5 weeks of Fall 2020 at UIUC. The objective
function of the calibration is to minimize the r.m.s.e. with the weekly average of positivity rate obtained
from surveillance testing results at GT [28]. (a) The parameter that determines external transmission of
infections on a given day, Iout(t), is a function of cases in Champaign county (where UIUC is located). (b)
We illustrate the output for a range of parameters that incorporate quantitative uncertainty, i.e., within 40%
of the r.m.s.e. The shaded region around the lines show the 2.5th and 97.5th percentile.

0 2 4 6 8 10 12
week

1000
2000
3000

Ca
se

s

(a) External cases

0 2 4 6 8 10 12
Week

0.0

0.5

1.0

1.5

Po
sit

iv
ity

 R
at

e

(b) Calibrating on the weeks 0-4

Figure S6: We calibrate ABM on positivity rates from first 5 weeks of Fall 2020 at UC Berkeley. The
objective function of the calibration is to minimize the r.m.s.e. with the weekly average of positivity rate
obtained from surveillance testing results at GT [28]. (a) The parameter that determines external transmis-
sion of infections on a given day, Iout(t), is a function of cases in Alameda county (where UIUC is located).
(b) We illustrate the output for a range of parameters that incorporate quantitative uncertainty, i.e., within
40% of the r.m.s.e. The shaded region around the lines show the 2.5th and 97.5th percentile.
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(d) Peak Infection Reduction Percent-
age (LCBCen)
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(f) Internal Transmission Reduction
Percentage (LCBCen)

Figure S7: Disease control outcomes in Fall 2019 for different algorithms of LC with the ABM is calibrated
on weeks 0−4 of Fall 2020 at GT. (a−c) Comparison of RI with LCPRank. Under all behavioral scenarios, for
peak infection reduction (b) and internal transmission reduction (c), LCPRank shows better disease control
outcomes than RI. For total infection reduction (b), LCPRank is better in S1, worse in S3 when designed
within an exposure risk budget, and comparable in others. (d − f) Comparison of RI with LCBCen. Under
all behavioral scenarios, for peak infection reduction (d) and internal transmission reduction (f) LCBCen is
better when designed within an exposure risk budget. For total infection reduction (e), LCBCen is always
worse than RI
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(d) Peak Infection Reduction Percent-
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Figure S8: Disease control outcomes in Fall 2019 for different algorithms of LC with the ABM is calibrated
on weeks 0 − 4 of Fall 2020 at GT. (a − c) Comparison of RI with LCECen. Under all behavioral scenarios,
for peak infection reduction (b) and internal transmission reduction (c), LCECen shows better disease control
outcomes than RI. For total infection reduction (b), LCECen is better in S1 and worse in S3 when designed
within an exposure risk budget. (d− f) Comparison of RI with LCECen. Under all behavioral scenarios, for
peak infection reduction (d) and internal transmission reduction (f), LCECen shows better disease control
outcomes than RI. For total infection reduction (e), LCECen is better in S1 and worse in S3 when designed
within an exposure risk budget.
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Figure S9: Disease control outcomes in Fall 2019 for LCPRank. (a− c) The ABM was calibrated on weeks
5− 9 of Fall 2020 at GT. Under all behavioral scenarios, for all outcomes, LCPRank is better than RI. (d− f)
The ABM was calibrated on weeks 10 − 14 of Fall 2020 at GT. Under all behavioral scenarios, for all
outcomes, LCPRank is better than RI.
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Figure S10: Disease control outcomes in Fall 2019 for LCPRank. (a− c) The ABM was calibrated on weeks
0 − 4 of Fall 2020 at UIUC. Under all behavioral scenarios, for all outcomes, LCPRank is better than RI.
(d−f) The ABM was calibrated on weeks 0−4 of Fall 2020 at UC Berkeley. Under all behavioral scenarios,
for all outcomes, LCPRank is better than RI.
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Figure S11: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0 − 4
of Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than
no-intervention and is lowest in the S3 scenario. In this behavioral scenario, the mobility budget is 69% of what it would
be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer
infections which is because the mobility was 39% of that in Fall 2019. (d − f) Internal transmissions are lower with LCPRank
in comparison to RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission
is controlled, more individuals remain susceptible to infections from outside campus.
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Figure S12: Cumulative infections in Fall 2019 while comparing RI and LCBCen with ABM calibrated on weeks 0 − 4
of Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than
no-intervention and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCBCen in comparison to RI,
only when constrained under the exposure risk budget. (g − i) External transmissions are higher with LCBCen in comparison
to RI. Since internal transmission is controlled, more individuals remain susceptible to infections from outside campus.
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Figure S13: Cumulative infections in Fall 2019 while comparing RI and LCECen with ABM calibrated on weeks 0 − 4 of
Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than no-
intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d − f) Internal transmissions are lower with LCECen in comparison to
RI. (g − i) External transmissions are higher with LCECen in comparison to RI. Since internal transmission is controlled, more
individuals remain susceptible to infections from outside campus.
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Figure S14: Cumulative infections in Fall 2019 while comparing RI and LCLCen with ABM calibrated on weeks 0 − 4 of
Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than no-
intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d − f) Internal transmissions are lower with LCLCen in comparison to
RI. (g − i) External transmissions are higher with LCLCen in comparison to RI. Since internal transmission is controlled, more
individuals remain susceptible to infections from outside campus.
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(f) S3 (ABM calibrated on weeks 5 - 9
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Figure S15: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 5− 9 of
Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than no-
intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g− i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more
individuals remain susceptible to infections from outside campus.
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Figure S16: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 10 − 14
of Fall 2020, GT. The bands show the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-
intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g− i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more
individuals remain susceptible to infections from outside campus.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.03.16.21253662doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253662
http://creativecommons.org/licenses/by/4.0/


Das Swain, V. et al • 56

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

10

20

30

40

To
ta

l I
nf

ec
tio

ns
 (%

)

(a) S1 (ABM calibrated on UIUC data)
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(b) S2 (ABM calibrated on UIUC data)
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(c) S3 (ABM calibrated on UIUC data)
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(d) S1 (ABM calibrated on UIUC data)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

5

10

15

20

25

30

35

In
te

rn
al

 T
ra

ns
m

iss
io

ns
 (%

)

(e) S2 (ABM calibrated on UIUC data)
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(f) S3 (ABM calibrated on UIUC data)
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(g) S1 (ABM calibrated on UIUC data)
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(h) S2 (ABM calibrated on UIUC data)
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(i) S3 (ABM calibrated on UIUC data)

Figure S17: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0− 4 of
Fall 2020, UIUC. The bands show the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-
intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would be without
interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer infections which
is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g− i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more
individuals remain susceptible to infections from outside campus.
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(a) S1 (ABM calibrated on UC Berkeley
data)
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(b) S2 (ABM calibrated on UC Berkeley
data)
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(c) S3 (ABM calibrated on UC Berkeley
data)
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(d) S1 (ABM calibrated on UC Berkeley
data)
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(e) S2 (ABM calibrated on UC Berkeley
data)
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(f) S3 (ABM calibrated on UC Berkeley
data)
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(g) S1 (ABM calibrated on UC Berkeley
data)
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(h) S2 (ABM calibrated on UC Berkeley
data)
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(i) S3 (ABM calibrated on UC Berkeley
data)

Figure S18: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0− 4 of
Fall 2020, UC Berkeley. The bands show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower
than no-intervention scenarios and is lowest in the S3 scenario. In this scenario, the mobility budget is 69% of what it would
be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far fewer
infections which is because the mobility was 39% of that in Fall 2019. (d − f) Internal transmissions are lower with LCPRank
in comparison to RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission
is controlled, more individuals remain susceptible to infections from outside campus.
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Figure S19: The locations shutdown by each policy are grouped into the the general building category.
The distribution of locations is different between policies, for example, in S1 (a) and S2 (b), LC closes fewer
locations that RI. Even when targeting spaces in similar buildings, the locations are qualitatively different
— RI only affects classrooms, whereas LC also closes smaller spaces like breakout rooms, reading areas and
cafes. LC In S3 (c) we find LC to target locations in a greater variety of buildings, but it also targets more
locations to utilize the budget.
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Figure S20: The locations shutdown by each policy are grouped into the the general building category.
The distribution of locations is different between policies, for example, in S1 (a) and S2 (b), LC closes fewer
locations that RI. Even when targeting spaces in similar buildings, the locations are qualitatively different
— RI only affects classrooms, whereas LC also closes smaller spaces like breakout rooms, reading areas and
cafes. LC In S3 (c) we find LC to target locations in a greater variety of buildings, but it also targets more
locations to utilize the budget.
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