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Abstract 

Background and objectives: Obstructive sleep apnea (OSA) is an underdiagnosed respiratory disease with 

negative metabolic and cardiovascular effects. The current gold standard for diagnosing OSA is in-hospital 

polysomnography, a time-consuming and costly procedure, often inconvenient for the patient. Recent studies 

revealed evidence for the potential of breath analysis for the diagnosis of OSA based on a disease-specific 

metabolic pattern. However, none of these findings were validated in a larger and broader cohort, an essential 

step for its application in clinics.  

Methods: In the present study, we validated a panel of breath biomarkers in a cohort of patients with possible 

OSA (N = 149). These markers were previously identified in our group by secondary electrospray ionization 

high-resolution mass spectrometry (SESI-HRMS).  

Results: Here, we could confirm significant differences between metabolic patterns in exhaled breath from OSA 

patients compared to control subjects without OSA as well as the association of breath biomarker levels with 

disease severity. Our prediction of the diagnosis for the patients from this completely independent validation 

study using a classification model trained on the data from the previous study resulted in an area under the 

receiver operating characteristic curve of 0.66, which is comparable to questionnaire-based OSA screenings.  

Conclusions: Thus, our results suggest that breath analysis by SESI-HRMS could be used to screen for OSA. Its 

true predictive power should be tested in combination with OSA screening questionnaires.  

 

Clinical trial: “Mass Spectral Fingerprinting in Obstructive Sleep Apnoea”, NCT02810158, www.ClinicalTrials.gov  

 

Keywords: obstructive sleep apnea, biomarkers, validation study, breath analysis, metabolomics, secondary 

electrospray ionization mass spectrometry 
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1. Introduction 

Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder.[1] The repeated partial or 

complete collapse of the pharynx during sleep provokes apnea or hypopnea events, which may lead to 

repetitive oxygen desaturations. Frequent sleep disruptions and increased activity of the sympathetic nervous 

system are accompanying these apnea/hypopnea events resulting in poor sleep quality and increased daytime 

sleepiness.[2] Several metabolic and cardiovascular consequences, such as an increased risk for cardiovascular 

disease, arterial hypertension, diabetes, vascular dysfunction, as well as depression, are well known.[3–6] OSA 

can be effectively treated i.e. with continuous positive airway pressure (CPAP).[7–9] 

The conventional diagnosis of OSA is carried out by respiratory polygraphy or even polysomnography ,[10,11] 

which are time-consuming, costly and inconvenient for patients. In addition, there is emerging evidence for a 

high night-to-night variability of OSA, posing another challenge for diagnostics.[12] Thus, for a reliable 

diagnosis, testing during several nights would be required. Screening for OSA is conventionally based on 

questionnaires, such as the Epworth Sleepiness Scale,[13] the STOP-bang,[14] Berlin[15] or NoSAS score.[16] 

However, the results from such questionnaires are by nature subjective. 

Exhaled breath contains several hundreds of metabolites and thus provides insights into biochemical processes 

of the human body.[17] Many of the metabolites in breath do not originate from the lungs but are transported 

from blood to the airways via gas exchange in the lung. Therefore, breath metabolite levels mostly reflect 

systemic metabolic processes. Furthermore, consistent alterations of the molecular fingerprint of exhaled 

breath in patients with a certain disease may indicate disease specific metabolic changes. Such disease specific 

biomarkers detected in exhaled breath could be the basis for an objective and non-invasive diagnostic 

procedure, which is fast and easy to perform for patients. 

 

So far, many studies with small sample sizes have obtained promising results, suggesting a great diagnostic 

potential of exhaled breath analysis for various diseases. However, larger validation studies are missing and, to 

date, exhaled breath analysis is applied in clinical routine only for very few applications, such as the evaluation 

of bronchial inflammation by measuring fractional exhaled nitric oxide (FeNO).[18] To achieve a more 

widespread clinical application of breath analysis for disease diagnosis and monitoring, the validation of 

preliminary findings in large cohorts of patients is essential.  
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The investigation of exhaled breath in OSA patients using different technical approaches revealed convincing 

results for diagnosing this disease and for monitoring patients’ compliance to CPAP therapy.[19] In some 

studies, electronic sensors (e-noses) were used to recognize OSA specific patterns in exhaled breath.[20–23] In 

their attempts of diagnosing OSA against the gold-standard (polysomnography), areas under the receiver 

operating characteristic curves (AUROCs) in the range from 0.84 (no 95% CI provided) to 0.87 (95% CI 

0.61−1.00) were reported, suggesting future diagnostic applicability of breath analysis. However, e-noses do 

not allow for compound identification and thus do not provide mechanistic insights into the disease, but 

merely produce a complex “signal” whose statistical evaluation can give some valuable output. Furthermore, 

the data from studies with e-noses were not validated in larger and broader cohorts of patients with possible 

OSA. 

An untargeted investigation from our laboratories of an extensive spectrum of molecules in exhaled breath 

using secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) revealed specific 

markers, allowing identification of a disease specific molecular profile of exhaled breath in patients with OSA 

recurrence after two weeks of CPAP therapy withdrawal.[24] In that randomized controlled trial, significant 

correlations between metabolite levels in breath and change in oxygen desaturation index (ODI) upon CPAP 

withdrawal, and significant differences between the CPAP withdrawal and treatment group were found. 

Further, we achieved a successful classification (AUROC = 0.87) between the withdrawal group and the group 

that continued the treatment. In order to transfer our promising findings into the diagnostic algorithm of OSA, 

this observational study aims to validate these metabolic breath profiles in a larger treatment naive cohort of 

patients with possible OSA.  

 

2. Methods 

2.1 Study participants 

This study includes 149 participants with possible OSA in the age of 53.3  13.7 years with a BMI of 

30.1  6.6 kg/m2 (table 1). The study protocol was approved by the local ethical committee (KEK-ZH 2016-

00384). The experiments were conducted in accordance with the Declaration of Helsinki and written informed 

consent was obtained from all participants before participation. The clinical trial was registered at 

ClinicalTrials.gov (NCT02810158). 
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All patients underwent in-hospital respiratory polygraphy (RP). Inpatient RPs were recorded by Alice 6 

Diagnostic System (Philips Respironics, PA, USA), scored with validated Somnolzyer 24x7 software (Philips 

Respironics, PA, USA), and reviewed manually. The data obtained was evaluated according to the guidelines of 

the American Academy of Sleep Medicine.[13] The participants were asked to fill in Epworth Sleepiness Scale 

(ESS) questionnaires.  

 

2.2 SESI-HRMS measurements 

Participants were asked to refrain from eating, drinking, chewing gum, alcohol, tobacco, caffeine use or 

brushing their teeth at least 1 hour prior to the SESI-HRMS measurements. Exhaled breath of 149 patients was 

analyzed by SESI-HRMS using a commercial SESI source (SEADM, Spain) coupled to a high-resolution TripleTOF 

5600+ mass spectrometer (AB Sciex, Concord, Ontario, Canada). The participants were sitting in upright 

position in front of the mass spectrometer and exhaled at least six times with a pressure drop of 12 mbar 

through a disposable mouthpiece into the heated sampling line, connected to the SESI source. A flow splitter at 

the front-end enabled sampling of end-tidal breath. The flow through the ion source was set to 0.2 L/min. Full 

scan mass spectra were recorded in positive ion mode with an accumulation time of 1 s in the rage of 50-

500 Da.   

 

2.3 Data preprocessing 

All mass spectral data was analyzed with MATLAB R2020a and R 4.0.0. Mass spectra obtained from exhaled 

breath were preprocessed as described elsewhere.[25] In short, mass spectra were interpolated, aligned, 

exhalation time windows were chosen and peak picking was performed on the average breath spectrum. As in 

the pilot study[24], breath signal intensities were normalized to the median intensity of the total ion current 

and then autoscaled. 

 

2.4 Statistical analysis 

Further, the features were filtered for markers that have been associated with OSA previously[24]. The mass-

to-charge ratio (m/z) tolerance was set to 0.005 Da. The remaining 78 m/z features were first tested for 

normality in a Shapiro-Wilk’s test.  Since the data was not normally distributed (p-value distribution from 
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Shapiro-Wilk’s test for normality is provided in Figure A1), we performed a correlation analysis between signal 

intensity and ODI as well as between signal intensity and ESS using Spearman correlation.  

Moreover, we tested for differences in signal intensities between individuals without OSA and OSA patients by 

performing two-sided Mann-Whitney-U tests. Here, we first applied stratification criteria as they are commonly 

applied in the clinics: OSA ODI > 30/h or ODI > 10/h & ESS > 10 points, control ODI < 5/h or ODI < 10/h & 

ESS < 11 points (stratification 1). We then also tested for between-group differences with stricter stratification 

criteria (OSA: ODI > 30/h & ESS > 10 points, control: ODI < 10/h & ESS < 11 points, stratification 2) in order to 

remove individuals with ambiguous diagnosis. We also calculated log2 fold changes between the groups. To 

account for multiple hypothesis testing, false discovery rates (q-values) were calculated for all obtained p-

values using Storey’s procedure.[26]  

 

2.5 Classification Procedure 

We combined the breath intensities obtained for the 78 m/z features mentioned above of the previously 

reported pilot study and this validation study. We used the data of the pilot study as training set and used the 

MATLAB classification learner app to find the best classification algorithm. For model evaluation we used a 

7-fold cross validation. We defined the OSA and control group with the above mentioned criteria of 

stratification 1. In order to obtain balanced group sizes we only used the before and after measurements of the 

9 individuals of the placebo group, who developed OSA in the previous study.[24] A Gaussian support vector 

machine model performed best. We thus trained such model on the training data and predicted the validation 

data set obtained from this study.  

 

2.6 Attempts of improvement of classification performance 

Since both data sets were acquired on different mass spectrometers and with different generations of SESI 

sources, we assessed by principal component analysis (PCA) the comparability of both data sets. A slight shift 

between both data sets was observed. We therefore performed a batch correction based on an empirical Bayes 

algorithm[27] and repeated the classification procedure described above (Figure A2). 

We also repeated the classification procedure with stratification criteria, which are more similar to the ones 

used in the pilot study. For the validation data set we defined the groups as follows: OSA: ODI > 30/h, control: 

ODI < 10/h. In order to get balanced group sizes in the training set, we reduced the control group to ODI < 2/h.  
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3. Results 

3.1 Study design and patient characteristics 

149 participants between 19 and 83 years with possible OSA underwent respiratory polygraphy and breath 

analysis by SESI-HRMS directly after the sleep study (Figure 1). Patient characteristics and results from 

respiratory polygraphy are shown in Table 1. Depending on the applied stratification criteria, the mean ODI in 

the OSA group varies between 38.3 and 46.8 events per hour. The control group had a mean ODI between 4.4 

and 5.2 events per hour. The mean Epworth Sleepiness Scale score (obtained from a questionnaire estimating 

the extend of daytime sleepiness) in the OSA group ranged from 10 to 11 points and in the control group from 

6 to 9.4 points. 

 
Figure 1: Study design. 149 study subjects with possible OSA underwent conventional diagnosis by respiratory 
polygraphy in the sleep laboratory and exhaled breath analysis by SESI-HRMS.  
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3.2 Metabolic patterns in exhaled breath associated with OSA 

The data obtained in this validation study from SESI-HRMS measurements was pre-processed in the same way 

as it was done in our previous study[24], which we refer to as pilot study in the following, i.e., the signal 

intensities were normalized to the median of total ion current and then autoscaled. We continued our analysis 

in a targeted fashion focusing only on the m/z features that have previously been associated with OSA in our 

pilot study. However, we were not able to detect all of them, which is most likely due to technical optimization 

of the acquisition method that was made in the meantime. Nevertheless, 78 of the features that have been 

previously reported either as significantly different between the CPAP and the withdrawal group, or as 

correlating with the change in ODI or as predictive for OSA, were also detected in this validation study. For 

those 78 m/z features, we tested for significant differences between controls (without OSA) and OSA patients 

and for correlation with ODI and ESS. Moreover, we trained a classification model with the data from the pilot 

study and predicted the OSA diagnosis of the validation cohort from this study.  

 

3.3 Significant differences in metabolic breath patterns between OSA patients and individuals without OSA 

We tested for significant differences in metabolite intensities in exhaled breath between OSA patients and 

controls without OSA (Mann-Whitney-U test). We assigned the participants to two groups (OSA and control) 

based on the following criteria, commonly applied in clinics: ODI > 30/h or ODI > 10/h & ESS > 10 points 

(definitive OSA); and ODI < 5/h or ODI < 10/h & ESS < 11 points (definitive without relevant OSA; control) 

(stratification 1). All subjects in between were assigned to an “unclear” group, since no unambiguous OSA 

diagnosis could be stated. For 19 features we found significant (p  0.05) differences between the two groups 

(Figure 2A-C, boxplots of two examples are shown in Figure 2D and E, all boxplots are provided in Figure A3).  

When we used stricter grouping criteria (OSA: ODI > 30/h & ESS > 10 points, control: ODI < 10/h & 

ESS <11 points, stratification 2) in order to consider only patients with an unambiguous diagnosis, significance 

increases as shown in Figure A4 (all boxplots are given in Figure A5). All numeric results are provided in Table 

A1. Hence, our results from this validation study confirm our previous findings of a specific metabolic pattern in 

exhaled breath in OSA patients. 
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Figure 2: Significant differences in metabolic breath patterns between subjects with and without OSA (OSA: 
ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points; unclear: in 
between; stratification 1). A p-values and fold changes of significant features sorted by significance. Not 
identified features are labelled with their m/z. B volcano plot for all 78 metabolites. C p-value distribution for 
between-group differences from Mann-Whitney-U test. D, E Exemplary boxplots (center line: median, box 
limits: 25th and 75th percent quantile, whisker length: 1.5 interquartile range)  of 4-hydroxy-2-octenal and 2-
butylfuran. The Boxplots for all significant features are provided in Figure A1, numeric results for significant 
features are summarized in Table 2 and numeric results of all 78 features are given in Table A1. 
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3.4 Association between disease severity and breath signal intensity 

To test whether the breath patterns are also correlating with the severity of OSA in this larger and more diverse 

cohort of patients, we performed a Spearman correlation analysis. For 21 features, we found a significant 

correlation between breath levels and ODI (p  0.05). (Figure 3A, correlation plots for two examples are shown 

in Figure 3B, all correlation plots are provided in Figure A6)  All except one show higher intensities for an 

increased ODI, suggesting that oxygen desaturation correlates with an enrichment of these metabolites. 

Amongst these metabolites correlating with the ODI are several unsaturated aldehydes as well as furanes and 

benzothiazole that have been identified before.[28–30] Thus, we could confirm the previously reported 

association between disease severity and breath signal intensity.  

 

3.5 Association between sleepiness and breath signal intensity 

For nine features we found a significant correlation between their breath intensities and the ESS (p  0.05) 

(Figure 4A). Amongst them, four features furthermore correlate with ODI, such as 2-pentylfuran and 4-hydroxy-

2-octenal. Correlation plots for these two examples are shown in Figure 4B (all correlation plots are provided in 

Figure A7).  
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Figure 3: Correlations between metabolite levels in breath and OSA severity. A p-values and correlation 
coefficients of features from exhaled breath with significant correlations with the ODI. Not identified features 
are labelled with their m/z. B Exemplary regression lines for 2-propylfuran and 2-pentenal. Regression lines for 
all features with significant correlations with the ODI are provided in Figure A4. Numeric results for features 
with significant correlations are summarized in Table 2 and numeric results of all 78 features are given in Table 
A1. (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points; 
unclear: in between; stratification 1) 
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Figure 4: Correlations between metabolite levels in breath and sleepiness. A p-values and correlation 
coefficients of features from exhaled breath with significant correlations with the ESS. Not identified features 
are labelled with their m/z. B Exemplary regression lines for 2-pentylfuran and 4-hydroxy-2-octenal. Regression 
lines for all features with significant correlations with the ESS are provided in Figure A5. Numeric results for 
features with significant correlations are summarized in Table 2 and numeric results of all 78 features are given 
in Table A1. (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & 
ESS < 11 points; unclear: in between; stratification 1) 
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3.6 Classification  

To assess to applicability of metabolite levels measured in exhaled breath using SESI-HRMS for the clinical 

diagnosis of OSA, we trained a classification model with the data from our pilot study and predicted the 

diagnosis of OSA or control in the validation cohort measured in this study. Figure 5 shows the classification 

procedure  schematically.  

First, we grouped the patients again as described above by the clinical criteria of stratification 1. In order to 

obtain balanced group sizes in the training set, we used only the “before” and “after” measurements of those 

patients in the CPAP withdrawal group, who developed significant OSA under placebo treatment (Figure 6A). 

With the training data, we estimated the performance of the classification model in a 7-fold cross-validation. 

This resulted in an AUROC of 0.59 (Figure 6B, the confusion matrix is provided in Figure 6C). The prediction of 

the diagnosis for the validation data (Figure 6D) yielded in an AUROC of 0.66 (Figure 6B, confusion matrix is 

given in Figure 6C). The accuracy of the prediction was 63% with a sensitivity of 76% and a specificity of 42%.  

 

 

Figure 5: Classification procedure. A classification model was trained with the data from our pilot study and its 
performance was estimated in a 7-fold cross validation. Subsequently, the diagnosis of the patient cohort from 
this validation study was predicted. 
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Figure 6: Classification results. A ESS and ODI of samples in the training set (left) and test set (right). B ROC 
curve from 7-fold cross validation of the classification model with the training set (left) and from predictions of 
the validation cohort. C corresponding confusion matrices. (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; 
control: ODI < 5/h or ODI < 10/h & ESS < 11 points; stratification 1) 

 

4. Discussion 

To the best of our knowledge, this is the first report of a validation of breath biomarkers for OSA. Previous 

studies using e-noses, offline gas-chromatography coupled to mass spectrometry, or enzyme immunoassays to 

analyze exhaled breath condensate have achieved promising results regarding the distinction between OSA 

patients and controls without OSA from exhaled breath.[19] However, sample sizes in all these studies were 
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limited and none of the results has been validated in an independent cohort of patients. In this study, we could 

confirm in a large and independent cohort that breath intensities of many of our previously discovered 

potential biomarkers for OSA differ significantly between OSA patients and controls without OSA. Most of the 

markers are consistently increased in OSA patients. We could also confirm a correlation between breath signal 

intensity and disease severity (represented by the ODI) for several metabolites, supporting the association of 

these metabolites with apnea-related nocturnal hypoxemia. Our findings of correlations between breath 

signals and ESS scores indicate that not only hypoxia but also sleepiness is reflected in the metabolic breath 

pattern. The results from this study suggest that the 33 metabolites shown in Table 2 represent a panel of 

biomarkers, being robust enough concerning inter-individual variability to form a promising diagnostic tool. 

Inter-individual differences are the most likely reason for lower correlation coefficients between signal 

intensities in breath and ODI that we observed in this diverse validation cohort compared to the correlations 

between the signal intensities and the within-subject change of ODI upon CPAP withdrawal, which we reported 

previously.  

 

It seems unlikely that there is one single biomarker, which is sufficient for diagnosing a disease like OSA, 

associated with complex metabolic and cardiovascular consequences. In contrast, a pattern of several 

biomarkers is more likely to be disease-specific. Therefore, classification algorithms based on machine learning 

are convenient tools for making clinical diagnoses based on biomarker patterns. Here, we achieved a 

classification of the validation data set with an AUROC of 0.66, 76% sensitivity and 42% specificity, when we 

trained the model with the data from the independent patient cohort of our previously reported study.  

Since the patient cohort of this study was much more diverse compared to the one in our pilot study, a lower 

classification performance would be expected. However, the support vector machine (SVM) model we used, 

performed already worse in the cross validation with the training data (AUCCV = 0.59) compared to the model 

presented in the pilot study. This is likely to be due to different stratification criteria used in both studies, since 

with such small training sets, few samples can have a considerable influence. To test this hypothesis, we 

applied different stratification criteria. When we stratified the training data only based on ODI (as it was done 

in the pilot study), the model performance becomes comparable with the results that were reported previously 

(AUCCV = 0.79, Figure A8A-C). This result supports our choice of an SVM model. However, the prediction of the 

validation data, which was also stratified only based on the ODI, not only failed to improve, but even declined 
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slightly (AUC = 0.62, Figure A8A-C). This indicates that groups that are defined based on ODI and ESS can be 

distinguished better from the breath pattern with this biomarker panel than groups that are defined by ODI 

only. This is desirable, since a combination of ODI and ESS better reflects the clinical picture of significant OSA 

than ODI on its own. All performance measures of this classification procedure (classification 2) are reported in 

the supplementary results and are summarized in Table A2.  

 

SESI is still a rather novel technique and its performance is constantly improving. Furthermore, in the time 

between the pilot study and this validation study, technical improvements have been implemented. For 

example, a new, more robust ion source[31], has been developed, and we adapted collision gas settings of the 

MS in order to prevent fragmentation, although this leads to increased cluster formation. This is most likely the 

reason why we did no longer detect all of the markers that were reported previously. The comparison of our 

data before and after batch correction between the data sets from both studies indicated that the data for the 

78 potential biomarkers detected in both data sets are comparable and there is only a very small batch effect. 

A negligible change of the results from the classification procedure applied after batch correction confirmed 

this observation (classification 3, PCA plot and classification outcome are shown in Figure A2 and Figure A9, and 

classification results are described in supplementary results and Table A2).  

 

Another factor that might impair the classification results is a lack of standardization of SESI-HRMS and the lack 

of real-time breath quality control samples, respectively, at the time when the study was conducted. 

Instrumental drifts are a common issue in large-scale metabolomics studies, which is overcome in offline-

techniques with quality controls.[32] These samples are then used for normalization, i.e., to separate the 

biological variation of interest from unwanted technical variation or other confounding factors, such as 

exogenous influences. Since such samples are not yet available for real-time breath analysis, a higher degree of 

standardization of sampling and methodology is required.[33] In future studies, a reference gas mixture could 

be used to check the instrument performance and thereby reduce technical noise. This might improve the 

effectiveness of SESI-HRMS for screening for OSA or other metabolic conditions. Ideally, in a next step, 

calibration with standards of validated and identified biomarkers, such as the ones identified in this study, 

could be applied using standard addition. The standard addition procedure brings the advantage that in 

addition to technical fluctuations, matrix effects such as the influence of humidity on ionization efficiency, and 
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ion suppression effects could be eliminated. However, the biggest challenge here is the availability of gaseous 

standards as well as the bottleneck of identification of metabolites. One possible approach is the use of 

permeation tubes.[34] Another confounding factor that might compromise the results are isobaric compounds 

since no separation step, such as chromatography, is used in real-time SESI-HRMS. To overcome this challenge, 

a targeted detection of the validated and identified biomarkers could involve MS-MS quantification or a 

coupling to ion mobility spectrometry and thereby provide a higher molecular specificity.  

 

To date, different scores are derived from questionnaires for an initial approach to OSA screening. Our 

classification performance is comparable with the performances of the STOP-bang[14] and Berlin scores[15]. 

The NoSAS score performs slightly better, AUROCs of 0.74 and 0.81 have been reported from two different 

patient cohorts. However, in terms of sensitivity our results are comparable with the NoSAS score.[16] For  

screening, this is most relevant, since ideally no subjects with OSA are missed. It has been previously shown 

that the combination of NoSAS and metabolomics data can improve predictive performance remarkably.[35] 

Here, real-time breath analysis could speed up diagnosis and make it even less bothersome for the patients. 

We think that the combination of exhaled breath analysis and the NoSAS score might provide an objective and 

easy-to-perform assay for screening patients with possible OSA. Only positively tested patients would then 

need to undergo the time-consuming, costly and inconvenient respiratory polygraphy to confirm or refute the 

screening result. During screening, even multiple testing would be possible, since the breath test is fast and 

non-invasive. This might help to overcome the problem of a considerable night-to-night variation of OSA. 

Further studies, looking at the combination of the NoSAS score and SESI-HRMS are needed. 

 

In addition, exhaled breath metabolomics can provide detailed information about metabolic changes because 

biological compounds can be identified. Here, we could confirm the association of unsaturated aldehydes, 

furans and benzothiazole with OSA. These findings are strengthening the hypotheses from our pilot study of 

increased oxidative stress levels and altered gut microbiota in OSA patients.[24] Moreover, our findings of 

metabolites such as 2-pentylfuran and 4-hydroxy-2-octenal, correlating with both, ESS and ODI, suggest an 

association of those metabolites with the sleep deprivation going along with OSA leading to increased 

sleepiness.  
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5. Conclusions 

In conclusion, we could confirm our previous findings of an OSA specific metabolic breath pattern and validate 

a panel of 33 biomarkers in a larger and broader cohort of patients with possible OSA. This is the first validation 

study for breath analysis by SESI-HRMS, bringing this technique an important step closer to its application in 

clinics. However, being implemented for clinical use, the added value of SESI-HRMS measurements to 

conventional OSA screening questionnaires, such as NoSAS, should be evaluated in further patient cohorts. 
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Table 1: Study participant characteristics. (AHI: apnea-hypopnea-index; BMI: body mass index; ESS: Epworth 
Sleepiness Scale; ODI: oxygen desaturation index; FVC: expiratory forced vital capacity; FEV1: forced expiratory 
volume in one second) 

 
all 

participants OSA healthy 

  stratification 1 
ODI>30 or 
(ODI>10 & 

ESS>10) 

stratification 2 
ODI>30 & 

ESS>10 

stratification 3 
ODI>30 

stratification 1 
ODI<5 or 

(ODI<10 & 
ESS<11) 

stratification 2 
ODI<10 & 

ESS<11 

stratification 3 
ODI<10 

Number of subjects (N) 149 51 18 36 33 26 47 

Age, mean (SD), years 53.3 (13.7) 55 (13.4) 51.6 (10.2) 53.6 (13) 48.5 (14.6) 49.7 (14.3) 49.3 (14.6) 

male sex, n (%) 108 (72.5%) 35 (68.6%) 13 (72.2%) 26 (72.2%) 20 (60.6%) 17 (65.4%) 30 (63.8%) 

BMI, mean (SD), kg/m2 30.1 (6.6) 33 (6.5) 33.1 (6.7) 34 (6.5) 27.2 (6.1) 28 (6.4) 27.1 (5.5) 

aktive smoker, n (%) 31 (20.8%) 17 (33.3%) 7 (38.9%) 14 (38.9%) 6 (18.2%) 5 (19.2%) 10 (21.3%) 

former smoker, n (%) 53 (35.6%) 16 (31.4%) 4 (22.2%) 9 (25%) 11 (33.3%) 10 (38.5%) 16 (34%) 

AHI at diagnosis, mean 
(SD), events per hour 19.6 (17) 34.8 (18) 42.9 (15) 42.7 (15) 5.9 (5) 5.3 (3) 6.4 (5) 

ODI at diagnosis, mean 
(SD), events per hour 20.8 (17.5) 38.3 (17.5) 46.5 (14.7) 46.8 (13.2) 4.4 (2.7) 5 (2.6) 5.2 (2.6) 

ESS at diagnosis, mean 
(SD), points 8.9 (4.5) 11 (4.8) 14.2 (2.8) 10 (5.2) 7.4 (3.4) 6 (2.4) 9.4 (4.5) 

FEV1/FVC, mean (SD) 78.5 (7.7) 77.6 (8.7) 79.1 (7.9) 78.5 (7.6) 78 (5.5) 78 (5.6) 78.1 (5.5) 

FVC, mean (SD), % 
predicted 101 (16.7) 97.5 (18.7) 96.1 (15) 96.2 (17.2) 108.5 (15.5) 106.3 (16.1) 105.4 (16) 

FEV1, mean 
(SD), % 

predicted 
99 (17.6) 95.3 (20.8) 94.9 (18.5) 94.5 (19.1) 103.9 (14.5) 102.4 (15) 101.2 (14.4) 
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Table 2: A panel of validated OSA biomarkers. 33 of the previously detected[24] biomarkers for OSA show a significant 
correlation with the ODI or ESS or significant differences between OSA patients and control subjects in the validation cohort 
(significance level: p < 0.05). (unsat. aldehydes: unsaturated aldehydes) 
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2-pentenal ([M+NH4]
+) unsat aldehydes 102.0913 yes no   yes 102.0912 0.23 0.005 0.017 0.07 0.430 0.34 0.029 0.087 0.43 0.003 0.004 0.75 

4-hydroxy-2-heptenal unsat. aldehydes 129.0908 yes yes 0.48 no 129.0908 0.20 0.015 0.020 0.13 0.110 0.26 0.022 0.081 0.42 0.003 0.004 0.83 

4-hydroxy-2-octenal ([M+NH4]
+) unsat. aldehydes 143.1063 no yes 0.42 no 143.1064 0.16 0.048 0.036 0.13 0.110 0.26 0.036 0.088 0.12 0.006 0.005 0.25 

4-hydroxy-2-octenal unsat. aldehydes 160.1329 yes yes 0.42 no 160.1331 0.18 0.026 0.023 0.16 0.050 0.19 0.020 0.081 0.47 0.001 0.003 0.85 

2-undecenal unsat. aldehydes 169.1584 no yes 0.38 no 169.1586 0.11 0.170 0.072 0.09 0.300 0.34 0.360 0.246 0.16 0.040 0.018 0.33 

2-ethylfuran furanes 97.0647 yes no   yes 97.0646 0.23 0.005 0.017 0.10 0.250 0.34 0.009 0.068 0.38 0.005 0.004 0.80 

2-propylfuran furanes 111.0803 yes yes 0.4 yes 111.0803 0.27 0.001 0.011 0.10 0.210 0.34 0.003 0.068 0.41 0.004 0.004 0.56 

2-butylfuran furanes 125.0958 yes yes 0.44 no 125.0961 0.23 0.004 0.017 0.13 0.130 0.28 0.005 0.068 0.26 0.001 0.004 0.48 

2-pentylfuran furanes 139.1116 yes yes 0.38 yes 139.1116 0.11 0.197 0.074 0.17 0.040 0.19 0.040 0.088 0.26 0.002 0.004 0.57 

benzothiazole thiazoles 136.0216 yes no   no 136.0213 0.20 0.016 0.020 -0.04 0.620 0.35 0.019 0.081 0.40 0.025 0.014 0.50 

4-(hexyloxy)phenol benzenoids 195.1379 no yes 0.38 no 195.1379 0.15 0.076 0.048 0.06 0.450 0.34 0.111 0.143 0.34 0.010 0.008 0.62 

unknown unknown 53.0391 no no   yes 53.0374 0.10 0.237 0.079 0.08 0.370 0.34 0.314 0.223 0.19 0.032 0.015 0.48 

unknown unknown 79.0409 no no   yes 79.0392 0.20 0.016 0.020 -0.06 0.490 0.34 0.094 0.143 0.51 0.067 0.024 0.71 

unknown unknown 81.0525 yes no   no 81.0525 0.06 0.466 0.120 0.19 0.020 0.19 0.153 0.152 0.46 0.051 0.021 0.74 

unknown unknown 83.0854 no no   yes 83.0853 0.19 0.021 0.022 0.16 0.050 0.19 0.037 0.088 0.27 0.030 0.015 0.48 

unknown unknown 93.0574 no no   yes 93.0548 0.19 0.022 0.022 -0.10 0.240 0.34 0.213 0.184 0.43 0.179 0.051 0.52 

unknown unknown 103.0943 no no   yes 103.0952 0.20 0.013 0.020 0.05 0.550 0.34 0.047 0.088 0.55 0.019 0.011 0.95 

unknown unknown 122.0835 yes no   no 122.0806 0.21 0.012 0.020 0.03 0.680 0.37 0.010 0.068 0.49 0.005 0.004 0.80 

unknown unknown 124.0835 yes no   no 124.0838 0.14 0.090 0.053 0.15 0.060 0.22 0.024 0.081 0.26 0.036 0.017 0.41 

unknown unknown 128.0701 no no   yes 128.0703 0.13 0.114 0.058 0.19 0.020 0.19 0.042 0.088 0.27 0.002 0.004 0.35 

unknown unknown 136.0471 yes no   yes 136.0511 -0.06 0.485 0.123 0.19 0.020 0.19 0.960 0.446 -0.18 0.401 0.084 -0.03 

unknown unknown 149.0971 yes no   no 149.0959 0.11 0.176 0.072 0.21 0.010 0.19 0.126 0.144 0.30 0.019 0.011 0.38 

unknown unknown 152.0699 yes yes 0.42 no 152.0705 0.13 0.104 0.055 0.02 0.820 0.41 0.178 0.164 0.23 0.045 0.02 0.55 

unknown unknown 158.1241 yes no   no 158.125 0.16 0.048 0.036 0.14 0.090 0.25 0.044 0.088 0.12 0.003 0.004 0.67 

unknown unknown 165.1272 no no   yes 165.1273 0.19 0.019 0.022 0.10 0.240 0.34 0.046 0.088 0.41 0.005 0.004 0.54 

unknown unknown 175.1117 yes no   yes 175.1134 0.21 0.010 0.020 0.16 0.050 0.19 0.007 0.068 0.41 0.001 0.003 0.64 

unknown unknown 182.0897 no yes 0.38 no 182.0809 0.12 0.146 0.071 0.14 0.090 0.25 0.064 0.11 0.18 0.001 0.004 0.55 

unknown unknown 207.1378 no yes 0.38 no 207.1381 0.15 0.065 0.043 0.02 0.820 0.41 0.245 0.204 0.35 0.028 0.015 0.58 

unknown unknown 209.1168 no yes 0.4 no 209.1173 0.18 0.025 0.023 -0.03 0.690 0.37 0.111 0.143 0.54 0.026 0.014 0.75 

unknown unknown 209.1536 yes no   no 209.1536 0.20 0.016 0.020 0.03 0.720 0.37 0.057 0.102 0.37 0.012 0.008 0.68 

unknown unknown 210.1568 no no   yes 210.1568 0.24 0.004 0.017 0.02 0.830 0.41 0.020 0.081 0.50 0.014 0.01 0.67 

unknown unknown 211.1325 no yes 0.38 no 211.1328 0.20 0.015 0.020 0.17 0.040 0.19 0.025 0.081 0.42 0.002 0.004 0.67 
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unknown unknown 228.0686 no no   yes 228.0642 -0.18 0.030 0.025 -0.05 0.580 0.34 0.119 0.143 -0.37 0.119 0.04 -0.40 
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