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The concentration of SARS-CoV-2 RNA in faeces is not well established,11

posing challenges for wastewater-based surveillance of COVID-19 and risk12

assessments of environmental transmission. We develop versatile hierarchi-13

cal models for faecal RNA shedding and apply them to data collected in six14

studies. We find that the mean number of gene copies per mL of faeces is15

1.9×106 (2.3×105—2.0×108 95% credible interval) amongst hospitalised pa-16

tients. We find no evidence for a subpopulation of patients who do not shed17

RNA: limits of quantification can account for negative stool samples. Our18

models indicate that hospitalised patients represent the tail of the shedding19

profile with a half-life of 34 hours (28—43 95% credible interval), suggesting20

that wastewater-based surveillance signals are more indicative of incidence21

than prevalence and can be a leading indicator of clinical presentation. Shed-22

ding amongst inpatients cannot explain high RNA concentrations observed23

in wastewater, consistent with more abundant shedding during the early in-24

fection course.25

∗Corresponding author (t.hoffmann@imperial.ac.uk).

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.21253603doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:t.hoffmann@imperial.ac.uk
https://doi.org/10.1101/2021.03.16.21253603
http://creativecommons.org/licenses/by/4.0/


1. Introduction26

The novel virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infected27

over 80 million people in 2020, and more than 2.6 million people have succumbed to the28

resultant disease, COVID-19 (coronavirus disease 2019) [1]. Individuals infected by the29

virus primarily suffer from respiratory symptoms [2], but gastrointestinal manifestations30

of the disease have also been observed [3]. The presence of viral RNA in faeces allows31

for the surveillance of COVID-19 by quantifying gene copies in sewage [4]. So-called32

wastewater-based epidemiology (WBE) provides data that can complement traditional33

testing schemes and can be used to monitor the disease relatively cheaply by pooling34

wastewater from thousands of people [5]. Correlations between case numbers from in-35

dividual testing schemes and RNA concentrations in wastewater have been observed [4,36

6, 7]. However, associative studies cannot easily be used to calibrate WBE approaches:37

each sewerage system is different [8], and case numbers may not be a good indicator of38

prevalence [9]—especially when testing capacity is limited. The World Health Organi-39

sation considers “quantitative information on viral shedding” an imminent need to reap40

the potential benefits of WBE [10].41

Faecal shedding of RNA suggests that the virus could be transmissible via the faecal-42

oral route [11]. While presence of RNA does not imply presence of infective virus, the43

likelihood increases with higher RNA loads [12]. Sewer overflows could cause spillover44

events, leading to new viral reservoirs [13]. For example, mink are susceptible to SARS-45

CoV-2 [14] and can be exposed to untreated sewage [13]. Furthermore, wastewater46

workers are at risk of contracting sewage-borne pathogens [15], and wastewater is a47

possible infection mode in densely populated communities [16, 17]. Quantifying these48

risks is essential for making informed policy decisions.49

We developed a family of random-effect models [18, ch. 5] for SARS-CoV-2 RNA con-50

centrations in faecal samples and applied them to data from six clinical studies to study51

three aspects of faecal RNA shedding. First, we studied the shedding profile, i.e. the52

temporal variability of shedding over the infection course, which affects the interpreta-53

tion of WBE results [6]. We find that the profile decays quickly with a half-life of 3454

hours. Second, the proportion of patients with one or more positive faecal samples has55

been extensively studied [3, 19, 20]. We determined that the limit of quantification of56

assays can account for patients without positive samples. Bayesian model comparison57

revealed no evidence for a subpopulation of patients who do not shed RNA faecally.58

Third, we obtained estimates of the mean faecal RNA concentration: a quantity impor-59

tant for inferring disease prevalence or incidence from wastewater data [21]. We show60

that the models are able to predict summary statistics of held-out studies accurately61

and consider the implications of our results for wastewater-based epidemiology.62

2. Results63

To study faecal RNA shedding quantitatively, we developed a suite of hierarchical models64

for RNA concentrations in faecal samples, as described in section 4.1. In contrast to65
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Figure 1: A flexible hierarchical model can capture a wide range of aspects of real-world
data. The population-level distribution (shown in blue) captures variation in
shedding behaviour between patients, giving rise to location parameters µi
for each patient i (see section 4.1 for details). The location parameters (blue
squares) describe the amplitude of individual shedding profiles as illustrated
for three patients. The patient-level distribution (shown in orange for one pa-
tient) describes the variation between samples from the same patient, and the
shedding profile (solid black line) modulates typical RNA concentrations in
faecal samples over time. All samples are analysed using an RT-qPCR assay
with a given limit of quantification (LOQ) θ (dashed black line), and concen-
trations above the LOQ (orange circles) can be quantified. Concentrations
below the LOQ (orange cross) cannot be quantified. Currently available data
do not allow us to constrain the early shedding profile, and late-stage shedding
is consistent with an exponential decay profile.
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patients samples micro-
data

longi-
tudinal

LOQ

(log10 mL−1)study n + − m + −

Wang et al. [11] 14 6 8 14 6 8 yes no 1.4
Wölfel et al. [12] 9 8 1 82 68 14 yes yes 2.0
Lui et al. [25] 11 11 0 43 23 20 yes yes 2.8
Han et al. [26] 2 2 0 9 8 1 yes yes 3.8

Kim et al. [27] 38 8 30 129 13 116 no no ?
Ng et al. [28] 21 21 0 81 ? ? no no 2.5

Table 1: Six studies providing quantitative data on faecal RNA loads were analysed. Mi-
crodata, i.e. sample-level RNA concentrations, provided by the first four studies
were used to fit random effects models. The next two studies did not pro-
vide microdata, and we validated our models by comparing reported summary
statistics with model-based predictions, as discussed in section 4.4. Samples
with viral loads below the limit of quantification (LOQ) are considered nega-
tive for SARS-CoV-2. The table also reports the total number of patients n
and number of samples m, including a breakdown by positivity.

existing quantitative approaches [22, 23], our models can account for a variable number of66

samples per patient, incorporate data from studies with different levels of quantification,67

and capture variability between patients as well as variability between samples from the68

same patient. The baseline model assumes that all infected patients shed viral RNA69

faecally and that typical RNA concentrations in samples vary over the course of the70

infection. We considered three different shedding profiles: an exponential decay profile,71

a gamma profile, and the exponential rise-and-decay profile proposed by Teunis et al.72

[24] for norovirus RNA shedding (see section 4.1.1 for details). We call this the temporal73

standard model, and it is illustrated in fig. 1.74

We considered two modifications to the baseline model. First, we considered a constant75

model, where the time-variability of shedding was removed. Second, to assess whether76

there exists a subpopulation of patients who never shed viral RNA faecally, we introduced77

a shedding prevalence parameter ρ such that all samples of an infected patient are78

negative with probability 1 − ρ. We call this the subpopulation model (as opposed79

to the standard model in which all patients shed RNA faecally). Combining the two80

modifications (with and without a subpopulation of non-shedders, and with and without81

time-variability) gives rise to four models in total.82

We fitted each model to longitudinal data extracted from three studies [26, 25, 12]83

listed in table 1. All studies used RT-qPCR assays to quantify SARS-CoV-2 RNA copies84

in faecal samples collected from hospitalised patients. The two constant models were85

also fitted to an additional dataset collected by Wang et al. [11] that does not provide86

temporal information. As shown in table 2, we compared the models using the Bayesian87

model evidence [29] (i.e. the marginal likelihood of the data under each model), allowing88

us to draw two conclusions.89
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Figure 2: Faecal RNA concentrations decay rapidly over the infection course. Panel (a)
shows a histogram of the number of samples collected on each day post symp-
tom onset. The small number of samples collected within the first six days
after symptom onset and the absence of samples collected prior to symptom
onset make it difficult to constrain shedding during the early infection course.
Panel (b) shows longitudinal faecal RNA concentration data from three studies
together with the level of quantification for each study as dashed lines. The
time-dependent exponential shedding profile of the temporal standard model
is shown in black, and the shaded region represents the 95% credible inter-
val of the profile (see section 4.1 for details). Panel (c) shows the posterior
distribution for the half-life τ1/2 of the shedding profile.
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tem-
poral

subpop-
ulation log evidence

mean RNA conc.
(log10 mL−1)

half-life τ
(hours)

shedding
prevalence ρ

no no −1303.1± 0.2 6.28 [5.36, 8.30] constant 1 (by defn.)
no yes −1305.5± 0.2 6.28 [5.40, 8.04] constant 0.95 [0.74, 1.00]
yes no −1269.3± 0.2 variable 34 [28, 43] 1 (by defn.)
yes yes −1271.6± 0.2 variable 34 [28, 43] 0.97 [0.82, 1.00]

Table 2: Accounting for temporal variability of the shedding profile is essential, and there
is no evidence for a subpopulation of patients who do not shed RNA faecally.
Model evidences evaluated on three common datasets prefer temporal models
(evidence shown for an exponential decay profile) over constant ones, and stan-
dard models are preferred over models with a subpopulation of patients who
do not shed SARS-CoV-2 RNA faecally. Parameter estimates are consistent
with conclusions based on model evidences. They are reported as the posterior
mode together with the 95% credible interval in brackets. All reported credible
intervals are highest posterior density intervals. Estimates for constant models
include a fourth dataset without temporal information.

First, accounting for the time dependence of the shedding profile is essential. The90

three shedding profiles we considered are indistinguishable where data are available to91

constrain them (see section 4.1.1 for details). However, there are only few samples92

obtained prior to day six past symptom onset, as shown in fig. 2 (a), and shedding93

behaviour during the early infection course cannot be constrained given the available94

data. For simplicity, we use the exponential decay profile unless otherwise specified.95

Typical faecal RNA concentrations decay with a maximum a posteriori half-life of 3496

hours (28—43 hours 95% credible interval) amongst hospitalised patients, as shown in97

fig. 2 (b) and (c).98

Patients may not recall the number of days since symptom onset accurately, or they99

may present with atypical symptoms that are not easily identified as the onset of COVID-100

19 [30]. To assess the sensitivity of the inferred half-life to inaccurate reports, we repeated101

the inference after adding up to three days of reporting noise to the number of days102

since symptom onset. No sensitivity of the half-life inference to inaccurate reports was103

observed.104

The second result is that there is no evidence for a subpopulation of patients who do105

not shed viral RNA faecally; standard models (without a non-shedding subpopulation)106

are preferred for both the constant (log odds of 3.1 ± 0.3) and temporal models (log107

odds of 1.8± 0.3). Consistent with the model comparison results, the inferred shedding108

prevalence is large and the 95% credible interval includes ρ = 1 for both subpopulation109

models. Consequently, as discussed in more depth in section 4.4, the level of quantifica-110

tion of the assays used in the three studies can explain the number of negative patients111

and samples because “the level of viral RNA present in stool can fluctuate around the112

margin of laboratory detection” [28].113

To assess the out-of-sample predictive utility of the models, we considered predictions114
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Figure 3: The models can make accurate out-of-sample predictions. Predictions of the
maximum concentration observed by Kim et al. [27] and Ng et al. [28] are
shown in panels (a) and (b) as violin plots, respectively. The value reported
in the studies is shown as black dashed lines. Panel (c) shows predictions of
the median number of positive samples per patient reported by Ng et al. [28].
Only results for the constant models are shown because the two studies did
not provide temporal information.
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for two held-out datasets that do not provide microdata, as listed in table 1. The studies115

conducted by Kim et al. [27] and Ng et al. [28] provided sufficiently detailed descriptions116

of their protocols to simulate the studies and make predictions by sampling from the117

posterior predictive distribution (see section 4.4 for details). Since our models have not118

been fit to these data, their ability to predict summary statistics of those data is an119

indication of how well the models generalise. Temporal models are preferred by the120

data, but we do not have any temporal information about the studies conducted by121

Kim et al. [27] and Ng et al. [28]. Nonetheless, the constant models can make accurate122

out-of-sample predictions because all studies consider the same population: hospitalised123

patients.124

Kim et al. [27] collected 129 samples from 38 hospitalised patients, and they reported125

the largest observed concentration maxx = 2.7 × 107 gene copies per mL of faeces.126

Ng et al. [28] collected 81 samples from 21 patients, and the largest observed RNA127

concentration was maxx = 1.3 × 107 copies per mL. As shown in fig. 3 (a) and (b),128

predictions from our models are consistent with the reported values. Predictions of the129

maximum are smaller for the study by Ng et al. [28] than Kim et al. [27], which is130

expected owing to a smaller number of samples (so the tails of the distribution are less131

well sampled). Ng et al. [28] also reported the median number of positive samples per132

patient medianm•(+). Because they report the limit of detection of their assay, we can133

make predictions about the median number of positive samples per patient which agree134

with the reported value, as shown in panel (c) of fig. 3.135

3. Discussion136

We have inferred properties of the faecal SARS-CoV-2 RNA shedding distribution by137

fitting a suite of Bayesian hierarchical models to clinical data from four studies. The138

models account for the limits of quantification of RT-qPCR assays and a variable number139

of samples per patient. They are able to capture salient properties of the data and140

generalise well to two held-out datasets. There is no evidence of patients who do not141

shed viral RNA faecally.142

The inferred temporal shedding profile is robust to inaccurate reports of the number143

of days since symptom onset, and it suggests that hospitalised patients are in the tail of144

the shedding profile because faecal RNA concentrations decay by an order of magnitude145

over the course of four to five days. While extrapolation should be treated with caution,146

wastewater-based surveillance of COVID-19 lends additional credibility to the hypothesis147

that SARS-CoV-2 RNA concentrations in wastewater are higher than expected based148

on faecal shedding inferred from hospitalised patients [31]. Assuming mean faecal RNA149

concentrations Λ are not larger in mild cases in the community than amongst hospitalised150

patients, a daily per capita wastewater volume of V = 300 L [32], and faecal mass of151

m = 128 g per person per day [33], we would expect wastewater RNA concentrations on152

the order of mΛ/V ∼ 103 mL−1 if every person was infected. In practice, concentrations153

in excess of 103 mL−1 have been observed [4] at times when seroprevalence of SARS-CoV-154

2 antibodies was less than ten percent [9]. Substantial shedding during the early stages of155
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the infection likely explains these observations. The rapid decay of the shedding profile156

also implies that signals from wastewater-based surveillance of SARS-CoV-2 are likely157

more indicative of incidence, rather than prevalence. Wastewater-based surveillance is158

thus a promising approach for early detection of cases in the community. A better159

understanding of the shape of the shedding profile, including prior to symptom onset,160

is essential for interpreting signals from WBE correctly during critical phases of rapid161

changes in levels of infection.162

While one of the largest quantitative studies revealed no association between disease163

severity and faecal RNA concentration [34], results obtained from hospitalised patients164

are unlikely to apply to the general population, e.g. the former tend to be older and have165

more comorbidities. Faecal samples should be collected from a representative sample of166

patients over the entire infection course to refine quantitative estimates of faecal shedding167

of SARS-CoV-2 RNA. These data should include faecal volumes to estimate the total168

RNA load in faeces in addition to concentrations. The effect of vaccinations and emerging169

variants on faecal RNA shedding should also be investigated to make wastewater-based170

surveillance an effective quantitative monitoring tool.171

4. Methods172

4.1. Models173

We developed a suite of hierarchical models to characterise faecal shedding of SARS-174

CoV-2 RNA quantitatively. Starting with the standard constant model described in175

section 2, we discuss the generative model in three steps.176

First, the mean faecal RNA concentration λi for each patient i ∈ {1, . . . , n} follows177

a distribution with probability density function f , where n is the number of patients.178

Log-normal, Weibull, and gamma distributions are common choices for distributions that179

model positive, continuous data [35]. However, conclusions based on these distributions180

can differ substantially due to their tail behaviour [36]. We thus employed a generalised181

gamma distribution (GGD) with shape Q, location M , and scale S. The GGD is a182

flexible distribution which encompasses the log-normal distribution (Q = 0), Weibull183

distribution (Q = 1), and gamma distribution (Q = S) as special cases [37]. This184

choice comes at the cost of wider credible intervals, commensurate with our lack of prior185

knowledge about the shape of the shedding distribution.186

Second, mi samples are collected from each patient i. The RNA concentration yij187

in sample j from patient i follows a GGD with shape q, location µi, and scale σ. For188

the constant model (without time-varying shedding), the location parameter µ for the189

patient-level distribution is chosen such that 〈yij〉 = λi for each patient. Because of the190

properties of the generalised gamma distribution, we can express the location parameter191

in terms of the mean as192

µi = log λi +−2σ

q
log q + log Γ

(
1

q2

)
− log Γ

(
1 + qσ

q2

)
, (1)

where Γ denotes the gamma function (see appendix A for details).193
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Third, the RNA concentration yij is quantified using an assay with level of quantifi-194

cation (LOQ) θij (see Kitajima et al. [38] for an overview of different assays). If the195

concentration is below the LOQ, the sample is considered negative for the purpose of196

this study, and we denote the output of the assay as xij = ◦. Otherwise, the result of197

the assay faithfully captures the RNA concentration in the sample, i.e. xij = yij . We do198

not explicitly model measurement error or variability between technical replicates in this199

study because the relevant data are not available and assays tend to yield reproducible200

results. For example, the CDC N1 assay [39] has a coefficient of variation < 3.7%—201

much smaller than typical variability between samples from the same patient. The RNA202

quantification is censored by the LOQ, and the likelihood of observing a particular assay203

result xij is thus204

P (xij |q, µi, σ, θij) =

{
F (θij ; q, µi, σ) if xij = ◦
f (xij ; q, µi, σ) otherwise,

(2)

where f denotes the probability density function of the generalised gamma distribution205

and F denotes the corresponding cumulative distribution function [37].206

4.1.1. Time-variation207

RNA shedding varies over the course of the infection [40], and the constant model cannot208

capture these changes. We incorporate temporal variability by introducing a shedding209

profile such that the expected RNA concentration λi for each patient i varies over time.210

In particular, we let λi(t) = λi(t = 0)g(t), where t is the number of days since symptom211

onset, g(t) is the shedding profile that modulates the expected RNA concentration,212

and λi(t = 0) is sampled from the population-level distribution. The shape and scale213

parameters q and σ of the patient-level distribution are kept constant.214

Because all available data were collected from hospitalised patients several days after215

the initial onset of symptoms, we can only constrain the later part of the shedding216

profile. We used an exponential profile gexp(t) = exp (−αt), where α is the decay rate217

of the profile, because it provides an adequate fit for late-stage faecal shedding of other218

viruses [24]. Substituting into eq. (1), the exponential shedding profile gives rise to a219

location parameter that varies linearly with the number of days after symptom onset for220

each patient i such that µi(t) = µi(t = 0)− αt.221

Any reporting error associated with the number of days since symptom onset t can222

be compensated for by a corresponding change in µi(t = 0). This explains why the223

inferred shedding profile is robust to reporting inaccuracies, as discussed in section 2.224

The profile shown in fig. 2 (b) is exp (M − αt), and it captures the decay of the effective225

population-level location parameter M over time. The profile half life is τ1/2 = log 2
α .226

We also considered two further shedding profiles to assess the sensitivity of our infer-227

ences to the choice of g(t). First, we used a gamma shedding profile228

gγ(t) = (t− t0)α exp (−β(t− t0)) ,

where α > 0 and β > 0 control the shape of the profile and t0 is the time at which229

shedding can first occur, i.e. g(t < t0) = 0. Second, we considered the exponential230
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rise-and-decay profile proposed by Teunis et al. [24] for norovirus shedding231

gTeunis(t) = [1− exp(−α(t− t0))] exp(−β(t− t0)),

where α and β control the rise and decay of the profile, respectively.232

4.1.2. Non-shedding subpopulation233

To investigate whether there is a subpopulation of patients who do not shed SARS-CoV-234

2 RNA faecally, we extended the model by introducing a binary indicator zi ∈ {0, 1} for235

each patient i. If zi = 1, the shedding behaviour of the patient is unchanged. If zi = 0,236

patient i does not shed RNA, and xij = ◦ for all samples j. The indicator variables follow237

a Bernoulli distribution with probability ρ, i.e. the prevalence of shedding amongst the238

population of patients. This extension gives rise to what we refer to as the subpopulation239

models.240

We know that zi = 1 for any patient with one or more positive samples, and the likeli-241

hood follows eq. (2). However, for any patient i whose mi samples xi• = {xi1, . . . , ximi}242

are all below the LOQ, the likelihood is243

P (xi•|q, µi, σ, θi•) = (1− ρ) + ρ

mi∏
j=1

F (θij ; q, µi, σ) , (3)

where the first term accounts for a patient who cannot shed RNA (zi = 0) and the244

second accounts for a patient whose samples are all below the LOQ (zi = 1).245

4.2. Data acquisition246

We searched the literature for primary research that reported quantitative information247

on SARS-CoV-2 RNA loads in faeces, and we identified eleven studies of interest [3, 11,248

12, 26, 27, 28, 34, 41, 42, 43]. Semi-quantitative studies reporting only cycle-threshold249

values were excluded.250

Data from four studies were used to fit the hierarchical models described in section 4.1.251

First, Wölfel et al. [12] reported longitudinal faecal RNA concentrations for nine patients252

in Munich who had been in close contact with a common index case. Second, Lui et253

al. [25] followed the first eleven patients hospitalised due to COVID-19 in Hong Kong.254

Third, Han et al. [26] studied the viral dynamics of a neonate and her mother in Seoul.255

Fourth, Wang et al. [11] reported cycle threshold (Ct) values of RT-qPCR assays for256

faecal samples from a subset of patients admitted to three hospitals in China, and we257

transformed Ct values to RNA concentrations using conversion constants provided in258

the publication. Longitudinal information was not available. Table 1 lists information259

on the number of patients and samples for each study.260

Two studies provided summary statistics of viral RNA concentrations in faecal sam-261

ples, such as the highest concentration observed, together with sufficiently detailed de-262

scriptions of the study design to replicate the studies in silico, as described in section 4.4.263

In particular, Kim et al. [27] quantified RNA concentrations in faecal samples collected264
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from hospitalised patients, and Ng et al. [28] studied RNA concentrations in faecal sam-265

ples to assess transmission risks associated with faecal microbiota transplants. These266

data are not used to fit the hierarchical models but instead to assess the out-of-sample267

predictive utility of our fitted models.268

Five studies were excluded from the analysis despite providing quantitative informa-269

tion. First, using an assay originally developed for samples from ferrets [44], Jeong et al.270

[41] reported RNA concentrations of various specimen types, including faecal samples.271

However, the reported concentrations are orders of magnitude lower than reported in272

any of the other quantitative studies for any specimen type. Indeed, most measurements273

are below the limit of quantification of other studies. Second, Zhang et al. [42] reported274

detailed data in a figure, but it is not possible to extract the relevant information because275

of the low resolution of the figure, and the data could not be obtained by other means.276

Third, Zheng et al. [34] conducted a large study, comprising 85 patients and 842 faecal277

samples. Unfortunately, viral loads are only reported as the median for each patient278

(private communication). Finally, Pan et al. [43] and Cheung et al. [3] collected faecal279

RNA concentration data from 17 and 59 confirmed cases, respectively, but neither study280

provides information on the number of samples collected.281

4.3. Parameter inference and model comparison282

We used the nested sampler polychord [45] which draws samples from the posterior283

distribution and evaluates the model evidence, i.e. the marginal likelihood of the data284

under the model, as listed in table 2. The study by Wang et al. [11] was not used to285

estimate parameters for temporal models because longitudinal data were not available.286

Similarly, to facilitate a direct comparison between models, that study was also omitted287

from the evaluation of evidences. We used unit-scale half-Cauchy distributions for the288

shape parameters Q and q as well as the scale parameters S and σ. A flat prior on the289

interval 6—23 was used for the population location M which is sufficiently wide to avoid290

boundary effects. A flat prior on the unit interval was used for the shedding prevalence291

ρ. For models with temporal variability, a unit-scale Cauchy prior was used for the292

profile parameters α and β. We used uniform prior on the interval -14—7 for t0 such293

that the onset of shedding can differ from the onset of symptoms. All inferences were294

run in triplicate, and no sensitivity to different pseudo-random number generator seeds295

was observed (Gelman-Rubin diagnostic R̂ < 1.05 for all models [46]).296

In addition to the results discussed in section 2, we consider four technical implications297

of the inference here.298

First, the gamma and Teunis shedding profiles are both consistent with the exponential299

shedding profile for late-stage shedding where data are available to constrain them.300

However, the available data cannot constrain early shedding behaviour, as illustrated by301

the wide range of shedding profiles consistent with the data shown in fig. 4. Miura et al.302

[22] reported tight posteriors for early shedding behaviour using the shedding profile303

proposed by Teunis et al. [24], but their inferences rely on the assumption that the time304

of symptom onset and shedding onset coincide (i.e. t0 = 0), an assumption that is not305

yet supported by evidence.306

12

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.21253603doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253603
http://creativecommons.org/licenses/by/4.0/


0.00

0.05

Po
st

er
io

r P
(t p

ea
k)

(a)
Gamma profile

peak shedding
time tpeak

(b)
Teunis et al.  profile

peak shedding
time tpeak

10 0 10 20 30
Days past symptom onset t

101

103

105

107

109

1011

Ge
ne

 c
op

ie
s p

er
 m

L

(c)

gamma profile
exponential profile

10 0 10 20 30
Days past symptom onset t

(d)

Teunis et al.  profile
exponential profile

Figure 4: Different shedding profiles yield consistent results for late-stage shedding, but
early shedding behaviour (prior to day five after symptom onset) cannot be
constrained given the available data. Panels (a) and (b) show the the poste-
rior distributions for the time tpeak at which the inferred gamma and Teunis
shedding profiles peak, respectively. Because the data cannot constrain early
shedding, the posterior for tpeak has broad support. Panels (c) and (d) show
posterior samples of the gamma and Teunis profiles, respectively, in blue. The
exponential profile discussed in section 2 is shown as an orange line, and the
shaded region corresponds to the 95% credible interval.
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Second, the shape Q controls the tails of the population-level distribution: the larger307

Q, the lighter the tails (see Prentice [37] for details). The population-level mean RNA308

concentration, i.e. the expected RNA concentration in a random faecal sample from309

a previously unobserved patient, depends on the tail behaviour because the mean is310

sensitive to outliers [36]. As shown in fig. 5 (a), the inferred mean under the constant311

standard model is larger for smaller Q because of the heavier tails. The correspond-312

ing credible intervals are also wider because constraining the mean requires more data313

for heavier-tailed distributions. Employing log-normal, Weibull, or gamma distributions314

would have entailed a poorly-motivated implicit choice about the shape of the distribu-315

tion. Using generalised gamma distributions instead allows us to explicitly account for316

our prior uncertainty about the shape of the tails.317

Third, the 95% credible region for the population-level shape Q and scale S is consis-318

tent with the log-normal distribution (Q = 0) or Weibull distribution (Q = 1) for both319

the constant and temporal models, as shown in fig. 5 (b). However, the special case of320

the gamma distribution (Q = S) can be confidently excluded because its tails are too321

light. The same conclusions apply to the patient-level distribution.322

Fourth, the joint posterior distribution for the population-level shape and scale pa-323

rameters are similar under both the constant and temporal models (exponential shedding324

profile) without a subpopulation of non-shedders, as shown in fig. 5 (b): modelling the325

temporal shedding profile does not have a significant effect on the inferred variability in326

shedding behaviour between patients. However, as shown in fig. 5 (c), the patient-level327

scale σ is significantly larger for the constant than the temporal model. The constant328

model can only account for large (time-integrated) sample-to-sample variability with329

a broad distribution. In contrast, the temporal model can explain variability between330

samples from the same patient using the shedding profile and a narrower distribution331

that accounts for residual idiosyncratic noise.332

4.4. Posterior predictive model assessment333

We assess the goodness-of-fit of the model to the data using posterior predictive replica-334

tion of various summary statistics, and validate the ability of the fitted model to predict335

summary statistics of held-out datasets using posterior predictive validation.336

Posterior predictive replication is a useful tool for assessing the fit of a model to337

data [18, ch. 6]. In short, synthetic replicates of the data generated by sampling from338

the posterior predictive distribution should not be easily distinguishable from the data339

the model was fit to. For example, 104 of 148 samples were positive in the composite340

dataset used to fit the constant standard model. If posterior predictive replicates of341

the data have a similar number of positive samples, the model is able to describe this342

particular aspect of the data. In contrast, the model would evidently not be suitable if it343

confidently predicted that all samples should be positive. We assess the goodness-of-fit344

to the data via posterior predictive replication of two key summary statistics.345

The first summary statistics we consider are the number of positive samples m(+) and346

positive patients n(+) (i.e. patients with at least one positive sample) because these347

statistics have been extensively discussed in meta-analyses [3, 19, 20]. As shown in348
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Figure 5: The mean number of RNA copies per mL of faeces is sensitive to the shape
of the shedding distribution. Panel (a) shows the conditional distribution of
the mean number of RNA copies per mL of faeces given the population shape
parameter Q for the constant standard model. The mean tends to be larger for
smaller Q due to heavier tails. Panels (b) and (c) show the joint distributions
of the shape and scale parameters for the population-level distribution and
patient-level distribution, respectively. Parametrisations corresponding to the
Weibull distribution (Q = q = 1) and gamma distribution (Q = S and q = σ)
are shown as black dot-dashed and dotted lines, respectively. The patient-level
scale parameter σ is larger for the constant than the temporal model (both
without a non-shedding subpopulation) because the patient-level distribution
needs to account for both temporal variability and idiosyncratic sample-to-
sample variability.
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Figure 6: Sampling from the posterior predictive distribution can replicate summary
statistics of the data well. Heat maps in panels (a) to (d) represent the joint
distribution of the number of positive patients nrep(+) and samples mrep

(+) un-

der posterior predictive replication. The observed numbers (shown as black
crosses) are consistent with the 63% credible region of the replications. Note
that the values differ between the temporal and constant models because in-
ference for the latter included an additional dataset that did not provide lon-
gitudinal information. Panel (e) show posterior predictive replications of the
sample mean (excluding negative samples) for all models as violin plots. Mark-
ers represent the mode of the distribution, and the observed values are shown
as black dashed lines.
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fig. 6 (a) to (d), replicates from all models are consistent with the observed number of349

positive patients n(+) and number of positive samples m(+), corroborating our result that350

the limit of quantification of assays is sufficient to account for negative samples. Repli-351

cates from the two subpopulation models exhibit larger variability because assay results352

xi• for samples from the same patient i are correlated due to their mutual dependence353

on the shedding indicator zi.354

Second, we evaluate the sample mean (i.e. the mean of all positive samples) across355

posterior predictive replicates and compare it with the sample mean of the data. The356

models can indeed replicate the statistic well, and the observed sample mean is consistent357

with the predicted sample means, as shown in fig. 6 (e).358

Posterior predictive replication can only assess the models’ ability to explain the data359

they were fit to. In other words, a model that satisfies such posterior predictive checks360

may nevertheless fail to generalise to other datasets. To assess the out-of-sample pre-361

dictive utility of the models, we consider predictions for two held-out datasets.362

Kim et al. [27] collected 129 samples from 38 hospitalised patients, and we assumed363

that at least one sample was collected from each patient. The remaining 91 samples364

were assumed to be collected from patients with equal probability. This information365

is sufficient to generate model-based predictions in two steps by sampling from the366

posterior predictive distribution. First, we sampled the patient-level means λ from the367

population-level distribution. Second, we sampled the assay results according to eqs. (2)368

and (3) for the standard and subpopulation models, respectively. While Kim et al. [27]369

also report the number of positive and negative samples, as shown in table 1, we could370

not replicate these summary statistics because they do not provide the limit of detection371

of their assay. Ng et al. [28] collected 81 samples from 21 patients, and we used the same372

allocation of samples to patients to generate predictions as for the study by Kim et al.373

[27].374

Data and code availability375

The data analysed during the current study and custom computer code are available at376

https://github.com/tillahoffmann/shedding.377
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where s is a gamma random variable with shape q−2. The probability density function
used in eq. (2) is thus

f(x; q, µ, σ) =
q

σxΓ (q−2)
[s(x)]q

−2
exp (−s(x)) ,

where s(x) = q−2 exp
( q
σ

[log x− µ]
)
.

Similarly, the cumulative distribution function is536

F (x; q, µ, σ) =
γ
(
q−2, s(x)

)
Γ (q−2)

,

where γ is the lower incomplete gamma function.537

The expected value is538

λ = exp(µ)q2σ/q
Γ
(
q−2 + σ/q

)
Γ (q−2)

,

and expressing the location parameter µ in terms of the mean λ yields eq. (1). The539

coefficient of variation is540 √
Γ (q−2) Γ (q−2 + 2σ/q)

[Γ (q−1 + σ/q)]2
− 1,

and the generalised gamma distribution has a constant coefficient of variation indepen-541

dent of the location parameter µ.542
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