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Summary. The concentration of SARS-CoV-2 RNA in faeces is not well established,
posing challenges for wastewater-based surveillance of COVID-19 and risk assessments
of environmental transmission. We develop versatile hierarchical models for faecal RNA
shedding and apply them to data collected in six studies. We find that the mean number
of gene copies per mL of faeces is 1.9 x 10° (2.3 x 10°—2.0 x 10® 95% credible interval)
among unvaccinated hospitalised patients. Using Bayesian model comparison, we find
no evidence for a subpopulation of patients who do not shed RNA: limits of quantification
can account for negative stool samples. Our models indicate that hospitalised patients
represent the tail of the shedding profile with a half-life of 34 hours (28—43 95% credible
interval), suggesting that wastewater-based surveillance signals are more indicative of in-
cidence than prevalence and can be a leading indicator of clinical presentation. Shedding
among inpatients cannot explain high RNA concentrations observed in wastewater, con-
sistent with more abundant shedding during the early infection course. We show that the
models generalise and can predict summary statistics of held-out clinical datasets. How-
ever, shedding prior to hospitalisation cannot be constrained due to lack of samples, and
information on viral variants was not available.
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1. Introduction

The novel virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has in-
fected over 500 million people, and more than six million people have succumbed to the
resultant disease, COVID-19 (coronavirus disease 2019) (Dong et al., 2020). Individuals
infected by the virus primarily suffer from respiratory symptoms (Huang et al., 2020),
but gastrointestinal manifestations of the disease have also been observed (Cheung et al.,
2020). The presence of viral RNA in faeces allows for the surveillance of COVID-19 by
quantifying gene copies in sewage (Medema et al., 2020). So-called wastewater-based epi-
demiology (WBE) provides data that can complement traditional testing schemes and
can be used to monitor the disease relatively cheaply by pooling wastewater from thou-
sands of people (Polo et al., 2020). Correlations between case numbers from individual
testing schemes and RNA concentrations in wastewater have been observed (Medema
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et al., 2020; Wu et al., 2022; Morvan et al., 2022). However, associative studies cannot
easily be used to calibrate WBE approaches: each sewerage system is different (Banks
et al., 2018), and case numbers may not be a good indicator of prevalence (Slot et al.,
2020)—especially when testing capacity is limited. The World Health Organisation
considers “quantitative information on viral shedding” an imminent need to reap the
potential benefits of WBE (Global Infectious Hazard Preparedness Team, 2020, p. 3).

Faecal shedding of RNA suggests that the virus could be transmissible via the faecal-
oral route (Wang et al., 2020). While presence of RNA does not imply presence of
infective virus, the likelihood increases with higher RNA loads (Wolfel et al., 2020).
Sewer overflows could cause spillover events, leading to new viral reservoirs (Franklin
and Bevins, 2020). For example, mink are susceptible to SARS-CoV-2 (Oreshkova et al.,
2020) and can be exposed to untreated sewage (Franklin and Bevins, 2020). Further-
more, wastewater workers are at risk of contracting sewage-borne pathogens (Zabinski
et al., 2018), and wastewater is a possible infection mode in densely populated commu-
nities (Kang et al., 2020). Quantifying these risks is essential for making informed policy
decisions.

We developed a family of random-effect models (Gelman et al., 2014a, ch. 5) for
SARS-CoV-2 RNA concentrations in faecal samples and applied them to data from
six clinical studies to study three aspects of faeccal RNA shedding. First, we studied
the shedding profile, i.e. the temporal variability of shedding over the infection course,
which affects the interpretation of WBE results (Wu et al., 2022). We find that the profile
decays quickly with a half-life of 34 hours. Second, the proportion of patients with one or
more positive faecal samples has been extensively studied (Cheung et al., 2020; van Doorn
et al., 2020; Wong et al., 2020). We determined that the limit of quantification of assays
can account for patients without positive samples. Bayesian model comparison revealed
no evidence for a subpopulation of patients who do not shed RNA faecally. Third, we
obtained estimates of the mean faecal RNA concentration: a quantity important for
inferring disease prevalence or incidence from wastewater data (Ahmed et al., 2020). We
show that the models are able to predict summary statistics of held-out studies accurately
and consider the implications of our results for wastewater-based epidemiology.

2. Methods

2.1. Data acquisition

We searched the literature for primary research that reported quantitative information
on SARS-CoV-2 RNA loads in faeces, and we identified eleven studies of interest (Cheung
et al., 2020; Wang et al., 2020; Wolfel et al., 2020; Han et al., 2020; Kim et al., 2020a;
Ng et al., 2020; Zheng et al., 2020; Jeong et al., 2020; Zhang et al., 2020; Pan et al.,
2020; Lui et al., 2020). Semi-quantitative studies reporting only cycle-threshold values
were excluded.

Data from four studies were used to fit the hierarchical models described in section 2.2.
First, Wolfel et al. (2020) reported longitudinal faeccal RNA concentrations for nine
patients in Munich who had been in close contact with a common index case. Second,
Lui et al. (2020) followed the first eleven patients hospitalised due to COVID-19 in
Hong Kong. Third, Han et al. (2020) studied the viral dynamics of a neonate and her
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Table 1. Six studies providing quantitative data on faecal RNA loads were analysed.
Microdata, i.e. sample-level RNA concentrations, provided by the first four studies were
used to fit random effects models. The next two studies did not provide microdata, and
we validated our models by comparing reported summary statistics with model-based
predictions, as discussed in section 2.4. Samples with viral loads below the limit of
quantification (LOQ) are considered negative for SARS-CoV-2. The table also reports
the total number of patients n and number of samples m, including a breakdown by

positivity.
patients samples micro-  longi- LOQ
study n o+ - m 4+ - data  tudinal (log,, mL™")
Wang et al. (2020) 14 6 8 14 6 8  yes no 14
Wélfel et al. (20200 9 8 1 82 68 14  yes yes 2.0
Lui et al. (2020) 1 11 0 43 23 20  yes yes 2.8
Han et al. (2020) 2 2 0 9 8 1 yes yes 3.8
Kim et al. (2020a) 38 8 30 129 13 116 no no ?
Ng et al. (2020) 21 21 O 81 7 ? no no 2.5

mother in Seoul. Fourth, Wang et al. (2020) reported cycle threshold (C;) values of RT-
qPCR assays for faecal samples from a subset of patients admitted to three hospitals in
China, and we transformed C; values to RNA concentrations using conversion constants
provided in the publication. Longitudinal information was not available. Table 1 lists
information on the number of patients and samples for each study.

Two studies provided summary statistics of viral RNA concentrations in faecal sam-
ples, such as the highest concentration observed, together with sufficiently detailed de-
scriptions of the study design to replicate the studies in silico, as described in section 2.4.
In particular, Kim et al. (2020a) quantified RNA concentrations in faecal samples col-
lected from hospitalised patients, and Ng et al. (2020) studied RNA concentrations in
faecal samples to assess transmission risks associated with faecal microbiota transplants.
These data are not used to fit the hierarchical models but instead to assess the out-of-
sample predictive utility of our fitted models.

Five studies were excluded from the analysis despite providing quantitative informa-
tion. First, using an assay originally developed for samples from ferrets (Kim et al.,
2020b), Jeong et al. (2020) reported RNA concentrations of various specimen types, in-
cluding faecal samples. However, the reported concentrations are orders of magnitude
lower than reported in any of the other quantitative studies for any specimen type. In-
deed, most measurements are below the limit of quantification of other studies. Second,
Zhang et al. (2020) reported detailed data in a figure, but it is not possible to extract the
relevant information because of the low resolution of the figure, and the data could not
be obtained by other means. Third, Zheng et al. (2020) conducted a large study, com-
prising 85 patients and 842 faecal samples. Unfortunately, viral loads are only reported
as the median for each patient (private communication). Finally, Pan et al. (2020) and
Cheung et al. (2020) collected faecal RNA concentration data from 17 and 59 confirmed
cases, respectively, but neither study provides information on the number of samples
collected.
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2.2. Models

To study faecal RNA shedding quantitatively, we developed a suite of hierarchical mod-
els for RNA concentrations in faecal samples. In contrast to existing quantitative ap-
proaches (Miura et al., 2021; Benefield et al., 2020), our models can account for a vari-
able number of samples per patient, incorporate data from studies with different levels
of quantification, and capture variability between patients as well as variability between
samples from the same patient. The baseline model assumes that all infected patients
shed viral RNA faecally and that typical RNA concentrations in samples vary over the
course of the infection. We considered three different shedding profiles: an exponential
decay profile, a gamma profile, and the exponential rise-and-decay profile proposed by
Teunis et al. (2015) for norovirus RNA shedding (see section 2.2.1 for details). We call
this the temporal standard model, and it is illustrated in fig. 1.

We considered two modifications to the baseline model. First, we considered a con-
stant model, where the time-variability of shedding was removed. Second, to assess
whether there exists a subpopulation of patients who never shed viral RNA faecally,
we introduced a shedding prevalence parameter p such that all samples of an infected
patient are negative with probability 1 — p (see section 2.2.2 for details). We call this
the subpopulation model (as opposed to the standard model in which all patients shed
RNA faecally). Combining the two modifications (with and without a subpopulation of
non-shedders, and with and without time-variability) gives rise to four models in total.

We begin by describing the simple constant standard model in three steps because
of its relative simplicity. First, the mean faecal RNA concentration \; for each patient
i €{1,...,n} follows a distribution with probability density function f, where n is the
number of patients. Log-normal, Weibull, and gamma distributions are common choices
for distributions that model positive, continuous data (Kappenman, 1985). However,
conclusions based on these distributions can differ substantially due to their tail be-
haviour (Rubin, 1984). We thus employed a generalised gamma distribution (GGD)
with shape @), location M, and scale S. The parameters M and S can be understood
as location and variability on the natural log scale, respectively. The GGD is a flexible
distribution which encompasses the log-normal distribution (@ = 0), Weibull distribu-
tion (Q = 1), and gamma distribution (@ = ) as special cases (Prentice, 1974). This
choice comes at the cost of wider credible intervals, commensurate with our lack of prior
knowledge about the shape of the shedding distribution.

Second, m; samples are collected from each patient 7. The RNA concentration y;;
in sample j from patient ¢ follows a GGD with shape ¢, location u;, and scale o. For
the constant model (without time-varying shedding), the location parameter u for the
patient-level distribution is chosen such that (y;;) = A; for each patient. Because of the
properties of the generalised gamma distribution, we can express the location parameter
in terms of the mean as

2 1 1
wi = log A\ + —?U log g +logI' <q2> —logI’ < —;qa) 5 (1)

where I' denotes the gamma function (see the Appendix for details).
Third, the RNA concentration y;; is quantified using an assay with level of quantifi-
cation (LOQ) 0;; (see Kitajima et al. (2020) for an overview of different assays). If the
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Fig. 1. A flexible hierarchical model can capture a wide range of aspects of real-world data.
The population-level distribution (hatched) captures variation in shedding behaviour between
patients, giving rise to location parameters ; for each patient i (see section 2.2 for details). The
location parameters (squares) describe the amplitude of individual shedding profiles as illus-
trated for three patients. The shedding profile (solid line) modulates typical RNA concentrations
in faecal samples over time, and the patient-level distribution (shown for one patient) describes
the variation between samples from the same patient. All samples are analysed using an RT-
gPCR assay with a given limit of quantification (LOQ) ¢ (dashed line), and concentrations above
the LOQ (circles) can be quantified. Concentrations below the LOQ (cross) cannot be quantified.
Currently available data do not allow us to constrain the early shedding profile, and late-stage
shedding is consistent with an exponential decay profile.
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concentration is below the LOQ, the sample is considered negative for the purpose of
this study, and we denote the output of the assay as xz;; = o. Otherwise, the result of
the assay faithfully captures the RNA concentration in the sample, i.e. x;; = y;;. We
do not explicitly model measurement error or variability between technical replicates
in this study because the relevant data are not available and assays tend to yield re-
producible results. For example, the CDC N1 assay (Lu et al., 2020) has a coefficient
of variation < 3.7% —much smaller than typical variability between samples from the
same patient. The RNA quantification is censored by the LOQ, and the likelihood of
observing a particular assay result x;; is thus

A 5
F(8i5;q, i, o) if 45 2

P Xiq ) .70-79” =
(w5 | s ij) {f(l'ijSQ7Mi7U> otherwise,

where f denotes the probability density function of the generalised gamma distribution
and F' denotes the corresponding cumulative distribution function (Prentice, 1974).

2.2.1. Time-variation

RNA shedding varies over the course of the infection (Cevik et al., 2020), and the constant
model cannot capture these changes. We incorporate temporal variability by introducing
a shedding profile such that the expected RNA concentration \; for each patient i varies
over time. In particular, we let \;(t) = X\;i(t = 0)g(t), where ¢ is the number of days
since symptom onset, g(t) is the shedding profile that modulates the expected RNA
concentration, and A;(¢ = 0) is sampled from the population-level distribution. The
shape and scale parameters ¢ and o of the patient-level distribution are kept constant.

Because all available data were collected from hospitalised patients several days after
the initial onset of symptoms, we can only constrain the later part of the shedding
profile. We used an exponential profile gexp(t) = exp (—at), where « is the decay rate
of the profile, because it provides an adequate fit for late-stage faecal shedding of other
viruses (Teunis et al., 2015). Substituting into eq. (1), the exponential shedding profile
gives rise to a location parameter that varies linearly with the number of days after
symptom onset for each patient ¢ such that u;(t) = pi(t = 0) — ot.

Any reporting error associated with the number of days since symptom onset ¢ can
be compensated for by a corresponding change in p;(¢ = 0). This explains why the
inferred shedding profile is robust to reporting inaccuracies, as discussed in section 3.
The profile shown in fig. 2 (b) is exp (M — at), and it captures the decay of the effective
population-level location parameter M over time. The profile half life is 7 = log(2)/a.

We also considered two further shedding profiles to assess the sensitivity of our infer-
ences to the choice of ¢g(t). First, we used a gamma shedding profile

gy(t) = (t —to)" exp (=B(t — to)) ,
where @ > 0 and 8 > 0 control the shape of the profile and ¢y is the time at which

shedding can first occur, i.e. g(t < t9) = 0. Second, we considered the exponential
rise-and-decay profile proposed by Teunis et al. (2015) for norovirus shedding

gTeuniS(t) = [1 - exp(—a(t - to))] exp(—,B(t - tO))?

where « and 3 control the rise and decay of the profile, respectively.
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Fig. 2. Faecal RNA concentrations decay rapidly over the infection course. Panel (a) shows
a histogram of the number of samples collected on each day post symptom onset. The small
number of samples collected within the first six days after symptom onset and the absence
of samples collected prior to symptom onset make it difficult to constrain shedding during the
early infection course. Panel (b) shows longitudinal faecal RNA concentration data from three
studies together with the level of quantification (LOQ) for each study as dashed lines. Circles
and crosses represent samples above and below the LOQ, respectively. The time-dependent
exponential shedding profile of the temporal standard model is shown in black, and the shaded
region represents the 95% credible interval of the profile (see section 2.2.1 for details). Panel (c)
shows the posterior distribution for the half-life 7, /, of the shedding profile.
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Table 2. Accounting for temporal variability of the shedding profile is essential, and there
is no evidence for a subpopulation of patients who do not shed RNA faecally. Model ev-
idences evaluated on three common datasets prefer temporal models (evidence shown
for an exponential decay profile) over constant ones, and standard models are preferred
over models with a subpopulation of patients who do not shed SARS-CoV-2 RNA faecally
(higher is better). Parameter estimates are consistent with conclusions based on model evi-
dences. They are reported as the posterior mode together with the 95% credible interval in
brackets. All reported credible intervals are highest posterior density intervals. Parameter
estimates for constant models include a fourth dataset without temporal information. The
adjusted Watanabe-Akaike information criterion (WIAC) strongly prefers temporal models
and marginally favours models with a subpopulation of patients who do not shed (lower is
better). Errors for evidences and WAIC are standard errors, and “zero” errors indicate errors
less than the reported number of digits.

tem-  gub- mean conc. half-life 7 shedding adjusted

poral pop. log evidence (log;,mL™") (hours)  prevalence p WAIC

no no —1303.1+£0.2 6.28[5.36,8.30] constant 1 (by defn.) 390.5+ 0.0
no yes —1305.5+0.2 6.28[5.40,8.04] constant 0.95[0.74,1.00] 390.0+0.0
yes no —1269.3£0.2 variable 34128,43] 1 (by defn.) 386.7+0.1
yes yes —1271.6+£0.2 variable 341[28,43] 0.97]0.82,1.00] 386.0+0.1

2.2.2.  Non-shedding subpopulation

To investigate whether there is a subpopulation of patients who do not shed SARS-CoV-
2 RNA faecally, we extended the model by introducing a binary indicator z; € {0,1} for
each patient i. If z; = 1, the shedding behaviour of the patient is unchanged. If z; = 0,
patient 7 does not shed RNA, and z;; = o for all samples j. The indicator variables follow
a Bernoulli distribution with probability p, i.e. the prevalence of shedding among the
population of patients. This extension gives rise to what we refer to as the subpopulation

models.
We know that z; = 1 for any patient with one or more positive samples, and the like-
lihood follows eq. (2). However, for any patient ¢ whose m; samples ;o = {1, ..., Tim, }

are all below the LOQ, the likelihood is

P(.’L'i. ‘ q, Wi, 0, 010) == (1 - p) + IOHF (02]7(17“270)7 (3)
7=1

where the first term accounts for a patient who cannot shed RNA (z; = 0) and the
second accounts for a patient whose samples are all below the LOQ (z; = 1).

2.3. Parameter inference and model comparison

We used the nested sampler polychord (Handley et al., 2015) which draws samples from
the posterior distribution and evaluates the model evidence, i.e. the marginal likelihood
of the data under the model, as listed in table 2. The study by Wang et al. (2020) was
not used to estimate parameters for temporal models because longitudinal data were
not available. Similarly, to facilitate a direct comparison between models, that study
was also omitted from the evaluation of evidences. We used unit-scale half-Cauchy prior
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distributions for the shape parameters ) and ¢ as well as the scale parameters S and
o. A flat prior on the interval 6-23 was used for the population location M. This
corresponds to a flat prior on 2.6-10 on the log;, scale which is sufficiently wide to avoid
boundary effects. A flat prior on the unit interval was used for the shedding prevalence
p. For models with temporal variability, a unit-scale Cauchy prior was used for the
profile parameters o and 8. We used uniform prior on the interval -14-7 for ty such
that the onset of shedding can differ from the onset of symptoms. All inferences were
run in triplicate, and no sensitivity to different pseudo-random number generator seeds
was observed (Gelman-Rubin diagnostic R < 1.05 for all models (Gelman and Rubin,
1992)).

In addition to the results discussed in section 3, we consider four technical implications
of the inference here. First, the gamma and Teunis shedding profiles are both consistent
with the exponential shedding profile for late-stage shedding where data are available to
constrain them. However, the available data cannot constrain early shedding behaviour,
as illustrated by the wide range of shedding profiles consistent with the data shown in
fig. 3. Miura et al. (2021) reported tight posteriors for early shedding behaviour using
the shedding profile proposed by Teunis et al. (2015), but their inferences rely on the
assumption that the time of symptom onset and shedding onset coincide (i.e. ty = 0),
an assumption that is not yet supported by evidence.

Second, the shape @ controls the tails of the population-level distribution: the larger
@, the lighter the tails (see Prentice (1974) for details). The population-level mean
RNA concentration, i.e. the expected RNA concentration in a random faecal sample
from a previously unobserved patient, depends on the tail behaviour because the mean
is sensitive to outliers (Rubin, 1984). As shown in fig. 4 (a), the inferred mean under
the constant standard model is larger for smaller () because of the heavier tails. The
corresponding credible intervals are also wider because constraining the mean requires
more data for heavier-tailed distributions. Employing log-normal, Weibull, or gamma
distributions would have entailed a poorly-motivated implicit choice about the shape of
the distribution. Using generalised gamma distributions instead allows us to explicitly
account for our prior uncertainty about the shape of the tails.

Third, the 95% credible region for the population-level shape @ and scale S is consis-
tent with the log-normal distribution (@ = 0) or Weibull distribution (@ = 1) for both
the constant and temporal models, as shown in fig. 4 (b). However, the special case of
the gamma distribution (@ = S) can be confidently excluded because its tails are too
light. The same conclusions apply to the patient-level distribution.

Fourth, the joint posterior distribution for the population-level shape and scale pa-
rameters are similar under both the constant and temporal models (exponential shedding
profile) without a subpopulation of non-shedders, as shown in fig. 4 (b): modelling the
temporal shedding profile does not have a significant effect on the inferred variability in
shedding behaviour between patients. However, as shown in fig. 4 (c), the patient-level
scale o is significantly larger for the constant than the temporal model. The constant
model can only account for large (time-integrated) sample-to-sample variability with
a broad distribution. In contrast, the temporal model can explain variability between
samples from the same patient using the shedding profile and a narrower distribution
that accounts for residual idiosyncratic noise.
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Fig. 3. Different shedding profiles yield consistent results for late-stage shedding. But early
shedding behaviour (prior to day five after symptom onset) cannot be constrained given the
available data, including peak RNA concentration. Panels (a) and (b) show the the posterior
distributions for the time tpeax at which the inferred gamma and Teunis shedding profiles peak,
respectively. Because the data cannot constrain early shedding, the posterior for tpea has
broad support. Panels (c) and (d) show posterior samples of the gamma and Teunis profiles,
respectively, as individual lines. The exponential profile discussed in section 2.2.1 is overlaid as
a solid line, and the shaded region corresponds to the 95% credible interval.
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Fig. 4. The mean number of RNA copies per mL of faeces is sensitive to the shape of the
shedding distribution. Panel (a) shows the conditional distribution of the mean number of RNA
copies per mL of faeces given the population shape parameter @ for the constant standard
model. The mean tends to be larger for smaller @ due to heavier tails. Panels (b) and (c) show
the joint distributions of the shape and scale parameters for the population-level distribution and
patient-level distribution, respectively. Parametrisations corresponding to the Weibull distribution
(@ = g = 1) and gamma distribution (Q = S and ¢ = o) are shown as black dot-dashed
and dotted lines, respectively. The patient-level scale parameter o is larger for the constant
than the temporal model (both without a non-shedding subpopulation) because the patient-level
distribution needs to account for both temporal variability and idiosyncratic sample-to-sample
variability.
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2.4. Posterior predictive model assessment

We assess the goodness-of-fit of the models to the data using posterior predictive replica-
tion of various summary statistics, the marginal Wanatabe-Akaike information criterion
(WAIC) (Merkle et al., 2019), and the ability of the fitted models to predict summary
statistics of held-out datasets using posterior predictive validation.

Posterior predictive replication is a useful tool for assessing the fit of a model to
data (Gelman et al., 2014a, ch. 6). In short, synthetic replicates of the data generated by
sampling from the posterior predictive distribution should not be easily distinguishable
from the data the model was fit to. For example, 104 of 148 samples were positive in
the composite dataset used to fit the constant standard model. If posterior predictive
replicates of the data have a similar number of positive samples, the model is able to
describe this particular aspect of the data. In contrast, the model would evidently not
be suitable if it confidently predicted that all samples should be positive. We assess
the goodness-of-fit to the data via posterior predictive replication of two key summary
statistics.

The first summary statistics we consider are the number of positive samples m )
and positive patients n( (i.e. patients with at least one positive sample) because these
statistics have been extensively discussed in meta-analyses (Cheung et al., 2020; van
Doorn et al., 2020; Wong et al., 2020). As shown in fig. 5 (a) to (d), replicates from all
models are consistent with the observed number of positive patients n(;) and number of
positive samples m ), corroborating our result that the limit of quantification of assays
is sufficient to account for negative samples. Replicates from the two subpopulation
models exhibit larger variability because assay results x;o for samples from the same
patient ¢ are correlated due to their mutual dependence on the shedding indicator z;.

Second, we evaluate the sample mean (i.e. the mean of all positive samples) across
posterior predictive replicates and compare it with the sample mean of the data. The
models can indeed replicate the statistic well, and the observed sample mean is consistent
with the predicted sample means, as shown in fig. 5 (e).

In addition to evaluation at the level of the dataset we also sought to evaluate the
predictive ability of the four models at the level of individual patients. However, defining
an appropriate evaluation criterion is challenging due to the heterogeneity of the data:
the level of quantification varies by almost two orders of magnitude between studies, and
the number of samples per patient is highly variable. We used the Watanabe-Akaike
information criterion (WAIC) because it approximates leave-one-out cross validation of
the log predictive density (Gelman et al., 2014b), though with two modifications: first,
we employ the marginal WAIC because it is applicable to clustered data, such as samples
from the same patient with shared latent mean \ (Merkle et al., 2019). Second, we make
an adjustment to account for the variable number of samples per patient. In particular,

W= _Qi log P (xje | ) — varglog P (xie | §) n
=1

)
ms;

where P (zje | ) is the posterior predictive distribution and varg denotes the poste-
rior variance with respect to all parameters except the patient mean A which has been
marginalised (Merkle et al., 2019). We implemented marginalisation with respect to A
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Fig. 5. Sampling from the posterior predictive distribution can replicate summary statistics of the
data well. Heat maps in panels (a) to (d) represent the joint distribution of the number of positive
patients n?f) and samples mzef) under posterior predictive replication. The observed numbers
(shown as black crosses) are consistent with the 63% credible region of the replications. Note
that the values differ between the temporal and constant models because inference for the
latter included an additional dataset that did not provide longitudinal information. Panel (e)
show posterior predictive replications of the sample mean (excluding negative samples) for all
models as violin plots. Markers represent the mode of the distribution, and the observed values

are shown as black dashed lines.
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using numerical quadrature. To ensure that contributions from patients are on the same
scale irrespective of the number of samples m;, we divide by m; in eq. (4).

Results for the four models are shown in table 2, and standard errors were obtained
by bootstrapping. Akin to the log marginal likelihood in section 2.3, the adjusted WAIC
strongly prefers temporal models. However, it weakly favours models with a subpopu-
lation of patients who do not shed RNA in their faeces because these models incur a
small penalty =~ log (1 — p) for patients without positive samples—even when the shedding
prevalence p is large (see eq. (3)).

Posterior predictive replication and WAIC can only assess the models’ ability to
explain the data they were fit to. In other words, a model that satisfies such posterior
predictive checks may nevertheless fail to generalise to other datasets (although WAIC
includes a correction to account for in-sample evaluation). To assess the out-of-sample
predictive utility of the models, we consider predictions for two held-out datasets.

Kim et al. (2020a) collected 129 samples from 38 hospitalised patients, and we as-
sumed that at least one sample was collected from each patient. The remaining 91
samples were assumed to be collected from patients with equal probability. This infor-
mation is sufficient to generate model-based predictions in two steps by sampling from
the posterior predictive distribution. First, we sampled the patient-level means A from
the population-level distribution. Second, we sampled the assay results according to
egs. (2) and (3) for the standard and subpopulation models, respectively. While Kim
et al. (2020a) also report the number of positive and negative samples, as shown in ta-
ble 1, we could not replicate these summary statistics because they do not provide the
limit of detection of their assay. Ng et al. (2020) collected 81 samples from 21 patients,
and we used the same allocation of samples to patients to generate predictions as for the
study by Kim et al. (2020a).

3. Results

We fitted each of the four models described in section 2 model to longitudinal data
extracted from three studies (Han et al., 2020; Lui et al., 2020; Wolfel et al., 2020) listed
in table 1. All studies used RT-qPCR assays to quantify SARS-CoV-2 RNA copies in
faecal samples collected from hospitalised patients. The two constant models were also
fitted to an additional dataset collected by Wang et al. (2020) that does not provide
temporal information. As shown in table 2, we compared the models using the Bayesian
model evidence (i.e. the marginal likelihood of the data under each model) (Gelman
et al., 2014b) and adjusted marginal WAIC, allowing us to draw two conclusions.

First, accounting for the time dependence of the shedding profile is essential. The
three shedding profiles we considered are indistinguishable where data are available to
constrain them (see section 2.2.1 for details). However, there are only few samples
obtained prior to day six past symptom onset, as shown in fig. 2 (a), and shedding
behaviour during the early infection course cannot be constrained given the available
data. For simplicity, we use the exponential decay profile unless otherwise specified.
Typical faecal RNA concentrations decay with a maximum a posteriori half-life of 34
hours (2843 hours 95% credible interval) among hospitalised patients, as shown in
fig. 2 (b) and (c).
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Patients may not recall the number of days since symptom onset accurately, or they
may present with atypical symptoms that are not easily identified as the onset of COVID-
19 (Gan et al., 2020). To assess the sensitivity of the inferred half-life to inaccurate
reports, we repeated the inference after adding up to three days of reporting noise to
the number of days since symptom onset. No sensitivity of the half-life inference to
inaccurate reports was observed.

The second result is that there is no evidence for a subpopulation of patients who do
not shed viral RNA faecally; standard models (without a non-shedding subpopulation)
are preferred for both the constant (log odds of the marginal likelihood 3.1 £ 0.3) and
temporal models (log odds of the marginal likelihood 1.8 4+ 0.3). Reported errors are
standard errors. Consistent with the model comparison results, the inferred shedding
prevalence is large and the 95% credible interval includes p = 1 for both subpopulation
models. While the adjusted Watanabe-Akaike information criterion marginally favours
subpopulation models, together, our analysis suggests that the level of quantification
of the assays used in the three studies can explain the number of negative patients and
samples because “the level of viral RNA present in stool can fluctuate around the margin
of laboratory detection” (Ng et al., 2020, p. 642).

To assess the out-of-sample predictive utility of the models, we considered predictions
for two held-out datasets that do not provide microdata, as listed in table 1. The
studies conducted by Kim et al. (2020a) and Ng et al. (2020) provide sufficiently detailed
descriptions of their protocols to simulate the studies and make predictions by sampling
from the posterior predictive distribution (see section 2.4 for details). Since our models
have not been fit to these data, their ability to predict summary statistics of those data
is an indication of how well the models generalise. Temporal models are preferred by the
data, but we do not have any temporal information about the studies conducted by Kim
et al. (2020a) and Ng et al. (2020). Nonetheless, the constant models can make accurate
out-of-sample predictions because all studies consider the same population: hospitalised
patients.

Kim et al. (2020a) collected 129 samples from 38 hospitalised patients, and they
reported the largest observed concentration maxz = 2.7 x 107 gene copies per mL of
faeces. Ng et al. (2020) collected 81 samples from 21 patients, and the largest observed
RNA concentration was maxz = 1.3 x 107 copies per mL. As shown in fig. 6 (a) and (b),
predictions from our models are consistent with the reported values. Predictions of the
maximum are smaller for the study by Ng et al. (2020) than Kim et al. (2020a), which is
expected owing to a smaller number of samples (so the tails of the distribution are less
well sampled). Ng et al. (2020) also reported the median number of positive samples per
patient medianm,(4). Because they report the limit of detection of their assay, we can
make predictions about the median number of positive samples per patient which agree
with the reported value, as shown in panel (c) of fig. 6.

4. Discussion

We have inferred properties of the faecal SARS-CoV-2 RNA shedding distribution by
fitting a suite of Bayesian hierarchical models to clinical data from four studies. The
models account for the limits of quantification of RT-qPCR assays and a variable number
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Fig. 6. The models can make accurate out-of-sample predictions. Predictions of the maximum
concentration observed by Kim et al. (2020a) and Ng et al. (2020) are shown in panels (a)
and (b) as violin plots, respectively. The value reported in the studies is shown as black dashed
lines. Panel (c) shows predictions of the median number of positive samples per patient reported
by Ng et al. (2020). Only results for the constant models are shown because the two studies
did not provide temporal information.
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of samples per patient. They are able to capture salient properties of the data and
generalise well to two held-out datasets. There is no evidence of patients who do not
shed viral RNA faecally.

The inferred temporal shedding profile is robust to inaccurate reports of the number
of days since symptom onset, and it suggests that hospitalised patients are in the tail of
the shedding profile because faecal RNA concentrations decay by an order of magnitude
over the course of four to five days. While extrapolation should be treated with caution,
wastewater-based surveillance of COVID-19 lends additional credibility to the hypothesis
that SARS-CoV-2 RNA concentrations in wastewater are higher than expected based
on faecal shedding inferred from hospitalised patients (Wu et al., 2020). Assuming mean
faecal RNA concentrations A are not larger in mild cases in the community than among
hospitalised patients, a daily per capita wastewater volume of V' = 300L (Tscharke
et al., 2019), and faecal mass of m = 128 g per person per day (Rose et al., 2015), we
would expect wastewater RNA concentrations on the order of mA/V ~ 103mL~! if
every person was infected. In practice, concentrations in excess of 10° mL~! have been
observed (Medema et al., 2020) at times when seroprevalence of SARS-CoV-2 antibodies
was less than ten percent (Slot et al., 2020). Substantial shedding during the early stages
of the infection likely explains these observations. The rapid decay of the shedding profile
also implies that signals from wastewater-based surveillance of SARS-CoV-2 are likely
more indicative of incidence, rather than prevalence. Wastewater-based surveillance is
thus a promising approach for early detection of cases in the community. A better
understanding of the shape of the shedding profile, especially prior to symptom onset,
is essential for interpreting signals from WBE correctly during critical phases of rapid
changes in levels of infection.

While one of the largest quantitative studies revealed no association between disease
severity and faecal RNA concentration (Zheng et al., 2020), results obtained from hos-
pitalised patients are unlikely to apply to the general population, e.g. the former tend
to be older and have more comorbidities. Faecal samples should be collected from a
representative sample of patients over the entire infection course to refine quantitative
estimates of faecal shedding of SARS-CoV-2 RNA. These data should include faecal
volumes to estimate the total RNA load in faeces in addition to concentrations. The
effect of vaccinations and emerging variants on faecal RNA shedding should also be in-
vestigated to make wastewater-based surveillance an effective quantitative monitoring
tool.

Data and code availability

All data and code needed to reproduce the results in this paper are available at https:
//github.com/tillahoffmann/shedding.
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Appendix

We use the parametrisation of the generalised gamma distribution presented by Prentice
(1974), and the random variable z follows a generalised gamma distribution if

logx =+ glog (qzs) )

where s is a gamma random variable with shape ¢~2. The probability density function
in eq. (2) is thus

F(@50,10,0) = @ exp (—s(@)),

where s(x) = ¢ 2exp (g [logx — ,u]) .
o
Similarly, the cumulative distribution function is

7 (g7% s(x))
I'(qg?) ~
where ~y is the lower incomplete gamma function.
The expected value is

F(x;q,p,0) =

-2
20/q r (q + U/q)

I'(g?) 7
and expressing the location parameter p in terms of the mean A yields eq. (1). The
coeflicient of variation is

A = exp(p)q

Y

(g~ +a/q)

and the generalised gamma distribution has a constant coefficient of variation indepen-
dent of the location parameter .

\/F ()T (g2 +20/q)
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