1

1 Running head: COVID-19 and Cognitive Impairment

2

3 Cognitive impairment and functional change in COVID-19 patients

4 undergoing inpatient rehabilitation

- 5 Ruchi Patel MA OTR/L¹, Irene Savrides MA OTR/L¹, Christine Cahalan MS OTR/L¹, Gargi
- 6 Doulatani MA², Michael W. O'Dell MD^{1,2}, Joan Toglia PhD OTR/L^{1,2,4}, & Abhishek Jaywant,
- 7 $PhD^{1,2,3}$
- ¹Department of Rehabilitation Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical
 Center
- ²Department of Rehabilitation Medicine, Weill Cornell Medicine
- ³Department of Psychiatry, Weill Cornell Medicine
- ⁴School of Health and Natural Sciences, Mercy College
- 13
- 14 Manuscript Word Count: 1292 words
- 15
- 16 Address Correspondence and Requests for Reprints to:
- 17 Abhishek Jaywant, PhD
- 18 525 E 68th St, F-1232, New York NY 10065
- 19 Email: <u>abj2006@med.cornell.edu</u>
- 20 Tel: 857-225-5783

21

22 **Statement of Conflicts of Interest:** The authors have no relevant conflicts of interest to declare.

23

- 24 **Source of Funding:** The authors received no specific funding to complete this project. AJ
- 25 receives salary support from a career development award from the National Institutes of Health
- via a subaward from Georgetown University (Grant Number: 1K12HD093427-04).

•		1		
		4	,	
	1	•		
		-		

28

Abstract

29	Cognitive impairment is increasingly recognized as a sequela of COVID-19. It is unknown how
30	cognition changes and relates to functional gain during inpatient rehabilitation. We administered
31	the Montreal Cognitive Assessment (MoCA) at admission to 77 patients undergoing inpatient
32	rehabilitation for COVID-19 in a large U.S. academic medical center. 45 patients were
33	administered the MoCA at discharge. Functional gain was assessed by change in the Quality
34	Indicator for Self-Care (QI-SC). In the full sample, 80.5% of patients exhibited cognitive
35	impairment on admission, which was associated with prior delirium. Among 45 patients with
36	retest data, there were significant improvements in MoCA and QI-SC. QI-SC score gain was
37	higher in patients who made clinically meaningful changes on the MoCA, an association that
38	persisted after accounting for age and delirium history. Cognitive impairment is frequent among
39	COVID-19 patients, but improves over time and is associated with functional gain during
40	inpatient rehabilitation.

41 Key Words: Coronavirus, SARS-CoV-2, Cognition, Activities of Daily Living, Rehabilitation

3

42 Introduction

43	Cognitive impairment is increasingly recognized as a sequela of mild and severe COVID-
44	19 infection(1-4). However, it is still unclear how cognitive impairment after COVID-19 evolves
45	and relates to functional outcomes. Cognitive may improve in COVID-19 patients undergoing
46	rehabilitation(5,6), but existing studies have not evaluated the association between cognitive
47	change and functional gain, particularly in inpatient rehabilitation when early interventions can
48	be implemented. Cognition is associated with functional gain in rehabilitation in other
49	illnesses(7–9). Determining whether such an association exists in the inpatient rehabilitation
50	phase after COVID-19 could provide additional targets for early treatment to optimize outcome.
51	The primary goal of the present study was to evaluate change in cognition and its relation
52	to functional gain among COVID-19 patients undergoing inpatient rehabilitation. A secondary
53	goal was to add to a growing body of literature that describes the frequency, severity, and
54	predictors of cognitive impairment after COVID-19.
55	Methods
56	Participants. 94 patients with COVID-19 admitted to an inpatient rehabilitation unit in a
57	United States medical center from March-August 2020. Patients were medically stable and able
58	to tolerate 3 hours/day of occupational, physical, and speech-language therapy.
59	Seventeen patients were not administered our cognitive measure because (1) they were
60	admitted prior to knowledge of COVID-19-related cognitive deficits and the implementation of
61	our screening protocol; (2) clinicians deemed it could not be reliably administered due to
62	language barriers; or (3) clinicians deemed patients were cognitively intact.

63	Data were extracted from retrospective chart reviews under approval of the Weill Cornell
64	Medicine Institutional Review Board. 19/77 patients underwent a separate neuropsychological
65	evaluation during their admission, the results of which have been published ⁵ ; the results
66	described here are novel.
67	Outcome Measures. We extracted included age, gender (male or female), prior level of
68	function (independent or not), intubation history (yes or no) and length (in days), delirium
69	history (yes or no), and inpatient rehabilitation and acute hospitalization lengths of stay (Table
70	1).
71	The MoCA (10) was administered within 72 hours of admission to inpatient
72	rehabilitation. Scores on the MoCA range from 0-30 and ranges indicate \geq 26=normal, 18-
73	25=mild impairment, 11-17=moderate impairment, and \leq 10=severe impairment. The minimal
74	clinical important difference (MCID) of 3 points was used(11). Three patients received the Blind
75	MoCA, which was converted to 30-point scale per established guidelines. Discharge MoCA was
76	administered to 45/77 patients. 32 patients did not receive a discharge MoCA as they either
77	scored normal on the initial assessment, were unavailable, and/or declined.
78	The Quality Indicator for Self-Care (QI-SC) (12) is a standard functional assessment in
79	the United States. Items scored on a scale of 1 to 6 include eating, grooming, toileting, bathing,
80	upper body dressing, lower body dressing, and donning/doffing footwear. Total score ranges
81	from 7 (total assistance) to 42 (independent). Occupational therapists assigned admission and
82	discharge QI-SC scores to all patients.
83	Statistical Analyses. We used descriptive statistics to describe the frequency of cognitive
84	impairment. We used independent and paired-samples t-tests with effect sizes (Cohen's d), and

85	Spearman rank-order correlations, to evaluate associations between clinical characteristics and
86	admission MoCA, change in MoCA and QI-SC from admission to discharge, and QI-SC change
87	in patients who met or did not meet the MoCA MCID. To adjust for age and to account for the
88	effect of multiple variables, we used multivariable linear regression models.
89	
90	Results
91	Table 1 provides demographic and clinical data. Patients with discharge MoCA scores
92	(n=45) did not differ from those who were not administered the MoCA at discharge $(n=32)$ in
93	age, gender, prior neurologic history, prior delirium, prior intubation, or prior hypoxia (all
94	p's>.05).
95	Cognitive Impairment at Admission to Rehabilitation. 62/77 patients (80.5%)
96	demonstrated cognitive deficits on the MoCA at admission: 39/77 (51%) had mild deficits, 20/77
97	(26%) had moderate deficits, and 3/77 (4%) had severe deficits.
98	Correlates of Cognitive Impairment at Admission to Rehabilitation. Admission MoCA
99	scores were lower for patients who previously had delirium (Mean Difference=3.08, 95% CI:
100	.58-5.58, $t=2.45$, $p=.02$, $d=.58$). Admission MoCA scores were not correlated with age ($r_s=15$,
101	$p=.19$), length of intubation ($r_s =04$, $p=.72$), or acute hospitalization length of stay ($r_s=08$
102	p=.50). In a multivariable linear regression predicting admission MoCA from age, history of
103	delirium, length of intubation, and length of acute care hospitalization, the overall model was
104	significant (R^2 =.13, F=2.53, p=.049). Among predictors, only history of delirium had a
105	significant association with admission MoCA (β =-3.67, <i>t</i> =2.35, <i>p</i> =.02).

6

106	Change in Cognition and Association with Functional Gain. The 45 patients with
107	admission and discharge MoCA scores improved on the MoCA (Mean Difference=4.02, 95% CI:
108	2.92-5.13, <i>t</i> =7.35, <i>p</i> <.001, <i>d</i> =1.10) and QI-SC (Mean Difference=12.16, 95% CI: 10.3-14.01,
109	<i>t</i> =13.19, <i>p</i> <.001, <i>d</i> =1.97) (Figure 1). 32/45 patients (71%) met the MoCA MCID. There was a
110	greater increase in QI-SC scores in patients who met the MoCA MCID than those who did not
111	(Mean Difference=4.41, 95% CI: 0.49-8.34, <i>t</i> =2.27, <i>p</i> =.03, <i>d</i> =0.75; Figure 2). To evaluate the
112	robustness of this association, we conducted a multivariable linear regression with the outcome
113	of QI-SC score change and predictors of MoCA MCID (met or did not meet/declined), age, and
114	history of delirium. While the overall model was not statistically significant (R^2 =.13, F=2.03,
115	p=.125), among individual predictors, improvement by the MoCA MCID continued to have a
116	significant association with QI-SC score change (β =4.74, <i>t</i> =2.31, <i>p</i> =.03) after adjusting for age
117	and history of delirium. Despite overall improvement, at discharge, 35/45 (78%) continued to
118	exhibit cognitive impairment on the MoCA.
119	

120 Discussion

Our main findings are (1) cognitive impairment is common in COVID-19 patients undergoing inpatient rehabilitation and associated with a history of delirium; (2) cognition and function (self-care) improves significantly during inpatient rehabilitation; and (3) clinically meaningful gains in cognition are associated with improved functional gains.

125 COVID-19 patients exhibited significant improvement in cognition with a large effect 126 size. Cognitive improvement over time may reflect natural recovery, improvement in residual 127 effects of prior delirium, and/or rehabilitation intervention effects. Our results indicate that

7

128	cognition evolves after COVID-19 and suggests that it may be beneficial to implement cognitive
129	interventions to facilitate functional recovery(5). Despite recovery, a majority of our sample
130	continued to demonstrate cognitive impairment at discharge from inpatient rehabilitation,
131	highlighting the importance of continued management of cognition post-discharge(6).
132	COVID-19 patients also experienced a significant improvement in their functional self-
133	care skills. Notably, significantly greater functional improvement was seen in patients who
134	exhibited a clinically meaningful improvement in cognition. Although we cannot make causal
135	conclusions, these findings suggest that addressing cognitive impairment after COVID-19 may

136 improve functional outcomes.

137 Consistent with prior research, we replicate findings of a high frequency of cognitive 138 impairment, predominantly mild impairment, in recovering COVID-19 patients. Also consistent 139 with the literature on the negative consequences of delirium after COVID-19(13–15), delirium 140 during acute hospitalization was associated with greater cognitive impairment at admission to 141 rehabilitation. This emphasizes the potential importance of early detection and management of 142 delirium after COVID-19.

Among limitations of this study, discharge cognitive data were not available for 32/77 143 144 patients, which may have biased findings. However, there were no demographic or clinical differences between the 45 patients with and 32 patients without discharge cognitive data. 145 Missing data highlight challenges of administering objective cognitive assessments in an acute 146 147 inpatient setting, particularly during a time in which the cognitive sequelae of COVID-19 were relatively unknown and hospital policies and procedures were rapidly evolving at the initial 148 surge of the pandemic. Prospective longitudinal research is necessary to estimate the true 149 150 prevalence of cognitive dysfunction, its evolution post-hospitalization, and to ascertain

8

- 151 etiological mechanisms. Our sample comprised a relatively sick group of patients from the first
- 152 wave of COVID-19; findings may not apply to milder disease presentations or from subsequent
- 153 waves of illness.

9

155	Acknowledgements:	We thank the staff	of the IRU for	r assisting in	cognitive and funct	tional
-----	-------------------	--------------------	----------------	----------------	---------------------	--------

assessments, and for caring for, our COVID-19 patients.

159	1.	Jaywant A,	Vanderlind V	VM, Alexopo	ulos GS, l	Fridman CB,	Perlis RH,	Gunning FM.

- 160 Frequency and profile of objective cognitive defi citsin hospitalized patients recovering
- 161 from COVID-19. Neuropsychopharmacology. 2021;1–6.
- 162 2. Del Brutto OH, Wu S, Mera RM, Costa AF, Recalde BY, Issa NP. Cognitive decline
- among individuals with history of mild symptomatic SARS-CoV-2 infection: A
- longitudinal prospective study nested to a population cohort. Eur J Neurol.
- 165 2021;(November 2020):1–9.
- 166 3. Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, et
- 167 al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry.
 168 2021;92(5):567–8.
- 169 4. Baker HA, Safavynia SA, Evered LA. The 'third wave': impending cognitive and
- 170 functional decline in COVID-19 survivors. Br J Anaesth [Internet]. 2021;126(1):44–7.
- 171 Available from: https://doi.org/10.1016/j.bja.2020.09.045
- 172 5. Daynes E, Gerlis C, Chaplin E, Gardiner N, Singh SJ. Early experiences of rehabilitation
- 173 for patients post-COVID to improve fatigue, breathlessness exercise capacity and
- 174 cognition. Chron Respir Dis [Internet]. 2021;18:1–4. Available from:
- 175 http://medrxiv.org/content/early/2021/03/28/2021.03.25.21254293.abstract

176	6.	Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19
177		cognitive deficits after respiratory assistance in the subacute phase: A COVID
178		rehabilitation unit experience. PLoS One [Internet]. 2021;16(2 February):1-12. Available
179		from: http://dx.doi.org/10.1371/journal.pone.0246590
180	7.	Jaywant A, Toglia J, Gunning FM, O'Dell MW. Subgroups Defined by the Montreal
181		Cognitive Assessment Differ in Functional Gain During Acute Inpatient Stroke
182		Rehabilitation. Arch Phys Med Rehabil [Internet]. 2020;101(2):220-6. Available from:
183		https://doi.org/10.1016/j.apmr.2019.08.474
184	8.	Dutzi I, Schwenk M, Kirchner M, Bauer JM, Hauer K. Cognitive change in rehabilitation
185		patients with dementia: prevalence and association with rehabilitation success. J
186		Alzheimer's Dis. 2017;60(3):1171–82.
187	9.	Bajorek AJ, Slocum C, Goldstein R, Mix J, Niewczyk P, Ryan CM, et al. Impact of
188		Cognition on Burn Inpatient Rehabilitation Outcomes. PM&R. 2017;9(1):1-7.
189	10.	Nasreddine Z, Phillips N, Bédirian V, Charbonneau S, Whitehead V, Colllin I, et al. The
190		Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive
191		impairment. J Am Geriatr Soc [Internet]. 2005;53(4):695–9. Available from:
192		http://onlinelibrary.wiley.com/doi/10.1111/j.1532-5415.2005.53221.x/full
193	11.	Wu CY, Hung SJ, Lin KC, Chen KH, Chen P, Tsay PK. Responsiveness, Minimal
194		Clinically Important Difference, and Validity of the MoCA in Stroke Rehabilitation.
195		Occup Ther Int. 2019;2019:2517658.
196	12.	Pardasaney PK, Deutsch A, Iriondo-Perez J, Ingber MJ, McMullen T. Measuring Inpatient
197		Rehabilitation Facility Quality of Care: Discharge Self-Care Functional Status Quality

11

			11
198		Measure. Arch Phys Med Rehabil [Internet]. 2018;99(6):1035–41. Available from:	
199		https://doi.org/10.1016/j.apmr.2017.02.023	
200	13.	Helms J, Kremer S, Merdji H, Schenck M, Severac F, Clere-Jehl R, et al. Delirium and	
201		encephalopathy in severe COVID-19: A cohort analysis of ICU patients. Crit Care.	
202		2020;24(491):1–11.	
203	14.	Mendes A, Herrmann FR, Périvier S, Gold G, Graf CE, Zekry D. Delirium in Older	
204		Patients With COVID-19: Prevalence, Risk Factors, and Clinical Relevance. J Gerontol	A
205		Biol Sci Med Sci. 2021;1–5.	
206	15.	Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and	
207		psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study	
208		using electronic health records. The lancet Psychiatry [Internet]. 2021; Available from:	
209		http://www.ncbi.nlm.nih.gov/pubmed/33836148	

210

12

212

Table 1. Demographic and clinical characteristics (N[%] or Mean[SD]).

	N=77	N= 45	N=32
		(Patients with	(Patients without
	(Full Sample)	discharge	a discharge
		MoCA)	MoCA)
Gender			
Male	49 (63.6%)	30 (66.7%)	19 (59.4%)
Female	28 (36.4%)	15 (33.3%)	13 (40.6%)
Age	61.03 (15.67)	61.98 (14.11)	59.69 (17.77)
Independent Prior to Hospitalization	74 (96.1%)	44 (97.8%)	30 (93.8%)
Acute hospitalization length of stay	37.03 (31.8)	39.4 (34.11)	33.69 (28.4)
Inpatient rehabilitation unit length of stay	13.43 (6.47)	14.44 (6.06)	12 (6.84)
Documented delirium	44 (57.1%)	28 (62.2%)	16 (50%)
Intubated	59 (76.6%)	35 (77.8%)	24 (75%)
Intubation length	13.31 (10.53)	13.75 (10.03)	12.67 (11.37)
Documented hypoxia	69 (89.6%)	39 (86.7%)	30 (93.8%)
History of neurological diagnosis	2 (2.6%)	1 (2.2%)	1 (3.1%)
Initial MoCA scores	20.29 (5.47)	17.96 (4.71)	23.47 (5.06)
Discharge MoCA scores		22.02 (4.23)	
Initial QI-SC score	25.75 (6.21)	24.96 (4.94)	26.88 (7.59)
Discharge QI-SC score	36.57 (8.37)	37.11 (6.97)	35.81 (10.09)

Figure 1. Mean scores on the MoCA and QI-SC at admission and discharge in N=45 patients

214 with full data. Error bars represent SEM.

14

Figure 2. Change in functional self-care ability by clinically meaningful cognitive improvement. 218

Error bars represent SEM. 219