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Summary 
The massive and continuously increasing volume of biomedical knowledge derived from 
biological experiments or gained from healthcare practices has become an invaluable treasure 
for biomedicine. The emerging biomedical knowledge graphs (BKGs) provide an efficient and 
effective way to manage the abundant knowledge in biomedical and life science. In the present 
study, we harmonized and integrated data from diverse biomedical resources to curate a 
comprehensive BKG, named the integrative Biomedical Knowledge Hub (iBKH). To facilitate the 
usage of iBKH in biomedical research, we developed a web-based, easy-to-use, publicly 
available graphical portal that allows fast, interactive, and visualized knowledge retrieval in iBKH. 
Furthermore, an efficient and scalable graph learning pipeline was developed for novel 
knowledge discovery in iBKH. As a proof of concept, we performed our iBKH-based method for 
computational in silico drug repurposing for Alzheimer’s disease. The iBKH is publicly available 
at: http://ibkh.ai/. 
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Introduction 

Biomedicine is a discipline with enormous volume of highly specialized biomedical knowledge 

accumulated from biological experiments and healthcare practices. In the past decades, efforts 

have been drawn to collect and manage the abundant biomedical knowledge and have resulted 

in diverse biomedical knowledge sources. For example, the biomedical ontologies (Rubin et al., 

2008; Smith et al., 2005) store hierarchical relationship-based descriptions for biomedical 

entities, and the manually curated biomedical knowledge bases (Callahan et al., 2020; Zhu et al., 

2019) store biomedical relational data. However, each knowledge source typically focuses on a 

sub-domain in biomedicine, and hence cannot provide a comprehensive perspective of life 

science. This hinders the efficient usage of cross-domain biomedical knowledge to provide 

system-level understanding of human diseases.  

 

At this point, the biomedical knowledge graph (BKG) has become a novel paradigm for better 

management of the massive volume, sophisticated biomedical knowledge and has attracted 

significant attentions in recent years(Himmelstein et al., 2017; Nelson et al., 2019; Nicholson 

and Greene, 2020; Rotmensch et al., 2017; Santos et al., 2022; Sügis et al., 2019). Typically, a 

BKG is a graph or network that integrates, harmonizes, and stores biomedical knowledge 

collected from single or multiple expert-derived knowledge sources, where nodes are a set of 

biomedical entities (e.g., diseases, drugs, genes, biological processes, etc.) and edges between 

nodes/entities are relations linking the biomedical entities (e.g., drug-treats-disease, disease-

associates-gene, drug-interacts-drug, etc.).(Himmelstein et al., 2017; Nicholson and Greene, 

2020; Santos et al., 2022; Zhu et al., 2020) 
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In this context, although efforts have been made to construct BKGs by integrating diverse expert 

curated knowledge bases (Himmelstein et al., 2017; Li et al., 2020; Santos et al., 2022; Yu et al., 

2019; Zhu et al., 2020) or by extracting knowledge from literature using natural language 

processing (NLP) techniques (Ernst et al., 2015; Percha and Altman, 2018; Yuan et al., 2020), 

they are not perfect and there remains the space to build a more comprehensive BKG to 

support advanced biomedical research. In addition, though these BKGs are publicly available, 

there remains a need for an open, easy-to-use user interface (UI) to fill the gap between the 

BKG and biomedical researchers and healthcare providers. To this end, this present study 

proposed a comprehensive BKG, termed the integrative Biomedical Knowledge Hub (iBKH), 

which was curated by integrating data from 18 high-quality and well-known knowledge sources, 

including biomedical ontologies, manually curated biomedical knowledge bases, existing BKGs, 

and NLP-extracted biomedical knowledge sources. To further demonstrate the use of iBKH in 

biomedical research, we developed a web-based, easy-to-use, intelligent graphical portal that 

allows fast, interactive knowledge retrieval in iBKH and visualization of the retrieved knowledge. 

 

In addition, we introduced advanced graph learning approaches to the iBKH for computational 

knowledge discovery. Current graph learning techniques (Mohamed et al., 2021; Su et al., 

2020), an emerging branch of machine learning and deep learning that can learn underlying 

knowledge from graph structure data, have advanced the application of BKG in accelerating 

novel biomedical knowledge discovery such as drug repurposing (Su et al., 2022; Zhang et al., 

2021; Zhou et al., 2020; Zhu et al., 2020) and disease risk gene prioritization(Hu et al., 2021; 

Peng et al., 2021). In this context, we introduced the advanced graph learning approaches to 

the iBKH for computational knowledge discovery. Specifically, we designed a knowledge 

discovery module based on the DGL-KE (Deep Graph Library - Knowledge Embedding) 

software (Zheng et al., 2020) for efficient and scalable graph learning in iBKH. As a proof of 

concept, we demonstrated a use case of iBKH, armed with the graph learning algorithms, for in 
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silico hypothesis generation for Alzheimer’s disease (AD) drug repurposing – one of the grand 

challenges in current biomedical research.  

Results 

Figure 1 illustrates overall pipeline of the present study, which includes the following modules 

including: 1) iBKH construction through biomedical knowledge integration, 2) development of 

graphical portal for fast knowledge retrieval based on iBKH, and 3) iBKH-based computational 

knowledge discovery through deep graph learning. Figure 2 illustrates the schema of our BKG, 

i.e., iBKH. The iBKH is publicly available at: http://ibkh.ai/.  

The integrative Biomedical Knowledge Hub (iBKH) 

By collecting, harmonizing, and integrating data from 18 publicly available biomedical 

knowledge sources (see Table 1), we curated a comprehensive biomedical knowledge graph, 

named the integrative Biomedical Knowledge Hub (iBKH). The knowledge sources include 

biomedical ontologies such as the Brenda Tissue Ontology (Chang et al., 2021), the Cell 

Ontology (Diehl et al., 2016) the Disease Ontology (Schriml et al., 2012), and the Uberon 

(Mungall et al., 2012); manually curated biomedical knowledge bases for biomedical entity and 

relation data such as the Bgee (Bastian et al., 2021), the Comparative Toxicogenomics 

Database (CTD) (Davis et al., 2019), the DrugBank,(Wishart et al., 2018) the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), the 

Pharmacogenetics Knowledge Base (PharmGKB) (Hewett et al., 2002), the Reactome 

(Fabregat et al., 2018), the Side effect resource (SIDER)(Kuhn et al., 2016), and the TISSUE 

(Palasca et al., 2018); existing BKGs curated by integrating multiple knowledge bases such as 

the Drug Repurposing Knowledge Graph (DRKG, https://github.com/gnn4dr/DRKG) (Ioannidis et 

al., 2020), the Hetionet (Himmelstein et al., 2017), the Integrated Dietary Supplement 
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Knowledge Base (iDISK) (Rizvi et al., 2020), our curated knowledge graph that covers a variety 

of dietary supplements, including vitamins, herbs, minerals, etc.; and other biomedical sources 

such as HUGO Gene Nomenclature Committee (HGNC) (Braschi et al., 2019), 

ChEMBL(Gaulton et al., 2012), and Chemical Entities of Biological Interest (ChEBI) (de Matos 

et al., 2010). More details of the sources can be found in Table 1.  

 

After data management and necessary data cleaning, we integrated data from the diverse 

sources through biomedical entity term normalization and knowledge integration (more details 

can be found in the Method section). Current version of the resulted iBKH contains a total of 

2,384,501 entities of 11 types, including 23,003 anatomy entities, 19,236 disease entities, 

37,997 drug entities, 88,376 gene entities (including human and other species), 2,065,015 

molecule entities, 1,361 symptom entities, 2,988 pathway entities, 4,251 side-effect entities, 

4,101 dietary supplement ingredient (DSI) entities, 137,568 dietary supplement product (DSP) 

entities, 605 dietary’s therapeutic class (TC) entities (see Figure 2 and Table 2). In addition, 

there are 45 relation types within 18 kinds of entity pairs, including Anatomy-Gene, Drug-

Disease, Drug-Drug, Drug-Gene, Disease-Disease, Disease-Gene, Disease-Symptom, Gene-

Gene, DSI-Disease, DSI-Symptom, DSI-Drug, DSI-Anatomy, DSI-DSP, DSI-TC, Disease-

Pathway, Drug-Pathway, Gene-Pathway and Drug-Side Effect, which means multiple types of 

relations can exist between a pair of biomedical entities (see Table 3). Specifically, 2 types of 

potential relations can exist between a Anatomy-Gene pair, including ‘Expresses’ and ‘Absent’; 

6 relation types between a Drug-Disease pair, such as ‘Treats’ and ‘Effects’; 2 relation types 

between a Drug-Drug pair including ‘Interaction’ and ‘Resembles’; 10 relation types between a 

Drug-Gene pair, such as ‘Targets’, ‘Upregulates’, and ‘Downregulates’; 2 relation types between 

a Disease-Disease pair including ‘Is_A’ and ‘Resembles’; 5 relation types between a Disease-

Gene pair, such as ‘Associates’, ‘Upregulates’, and ‘Downregulates’; the ‘Presents’ relation type 

between a Disease-Symptom pair; and 5 relation types between a Gene-Gene pair, such as 
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‘Covaries’, ‘Interacts’, and ‘Regulates’; the ‘Has_Adverse Reaction’ relation between a DSI-

Symptom pair; the ‘Is_Effective_For’ relation type between a DSI-Disease pair; the ‘Interacts’ 

relation type between a DSI-Drug pair; the ‘Has_Adverse_Effect_On’ relation type between a 

DSI-Anatomy pair; the ‘Has_Ingredient’ relation type between a DSI-DSP pair; the 

‘Has_Therapeutic_Class’ relation type between a DSI-TC pair; the ‘Reaction’ and ‘Associates’ 

relation types between a Gene-Pathway pair; the ‘Associates’ relation between a Disease-

Pathway pair; the ‘Associates’ relation between a Drug-pathway pair; the ‘Causes’ relation type 

between Drug-Side Effect pair.  

 

We deployed our iBKH using Neo4j (https://neo4j.com), a robust graph database platform. We 

also released entity and relation source files of iBKH in CSV (comma-separated values) format, 

available at: https://github.com/wcm-wanglab/iBKH. Of note, the deployed version of iBKH 

excluded data from KEGG, as it forbids data redistribution. 

 

An easy-to-use interactive online portal for fast knowledge retrieval  

Knowledge retrieval is the most common application scenario for a BKG like iBKH in biomedical 

research. In contrast to knowledge query in the traditional databases, knowledge retrieval in the 

iBKH needs to match the logical and structural patterns of entities and relations. This can be 

done by defining graph-based queries.  

 

To fill the gap between the iBKH and biomedical and clinical researchers to facilitate its usage, 

we developed a web-based graphical portal that allows users to design graph-based queries for 

fast knowledge retrieval in a flexible, interactive manner and visualize the retrieved knowledge 

immediately (see Figure 1). Specifically, our portal has two functional modules for knowledge 

retrieval, i.e., biomedical entity query and path query. First, the biomedical entity query allows to 
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retrieval information of the queried entity and its one-hop context in the iBKH, i.e., neighboring 

entities that directly link to the queried entity. Figure 3a illustrates an example of exploring 

biomedical context of the APOE (Apolipoprotein E) gene, which produces APOE protein and is 

the known major risk gene for AD (Liu et al., 2013; Strittmatter and Roses, 1995). By choosing 

KEGG and DrugBank in the Source section, we narrow down the query to explore entities that 

has relations connecting to APOE based on knowledge from the two knowledge sources. 

Specifically, besides AD, APOE is also associated with diseases including Sea-blue 

histiocytosis, Hypertriglyceridemia, Hyperlipoproteinemia type iii, and Lipoprotein 

glomerulopathy, which can be comorbidities of AD. APOE is associated with the AD pathway 

and cholesterol metabolism pathway that play a role in AD. APOE also has relations with drugs 

like Zinc medications (Zinc, Zinc sulfate, Zinc chloride, and Zinc acetate) that target APOE to 

affect progression of AD (Rivers-Auty et al., 2021; Squitti et al., 2020).  

 

In addition, there is also a need for more sophisticated queries to retrieve multi-hop context 

information of the queried entity, which may help discover inconspicuous but meaningful 

knowledge from iBKH. Figure 3b illustrates an example of discovering drugs that connect to AD 

through the path ������� � ����	
�����_��� � ���� � ����	
����_�� � ����,  where 

���	
�����_�� and ���	
����_� denote relations in terms of the “association” between a pair 

of disease and gene and the “association” between a pair of gene and drug, respectively. Such 

a query path can be generated by iteratively defining entities and relations, combined with 

constraints, in our portal (see Figure 3b). Figure 3b shows the retrieved knowledge. For 

simplicity, we only visualized 100 retrieved triplets (by setting Limit of Triplet as 100 in the 

portal). Centered on the AD entity, genes that have been associated with AD were first retrieved. 

Then, drugs that had been associated with these genes were retrieved, which can be 

considered as potential repurposable drugs for AD treatment. For instance, Cyclophosphamide, 

a medication used as chemotherapy and to suppress the immune system, is connected to the 
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AD through the shared neighbor INSR (Insulin Receptor) gene. This is in line with previous 

evidence that Cyclophosphamide may help reduce cognitive decline in AD (Aisen, 2002).  

 

In silico hypothesis generation for Alzheimer’s disease drug repurposing  

Another important application scenario for iBKH is the discovery of unknown knowledge, e.g., 

missing relations among entities, based on the existing, incomplete knowledge graph. In this 

study, we utilized a computational method for knowledge discovery in iBKH based on the 

advanced graph learning approaches (Nicholson and Greene, 2020; Su et al., 2020). As a proof 

of concept, we performed in silico hypothesis generation for AD drug repurposing, i.e., 

predicting drugs that potentially connect to the AD entity (Fang et al., 2022; Fang et al., 2021; 

Zeng et al., 2020; Zhou et al., 2021). We utilized knowledge graph embedding (KGE) algorithms 

to calculate machine-readable embedding vectors for entities and/or relations in iBKH, while 

preserving the graph structure (Mohamed et al., 2021; Su et al., 2020; Wang et al., 2017), using 

Deep Graph Library - Knowledge Embedding (DGL-KE) (Zheng et al., 2020). We used four 

advanced KGE algorithms in DGL-KE including TransE (Bordes et al., 2013), TransR (Lin et al., 

2015), ComplEx (Théo et al., 2016), and DistMult (Yang et al., 2015). Then, a possibility score 

was calculated for each candidate drug entity based on the learned embedding vectors to 

measure the possibility that the drug can link to the AD via any relation(s). Such analysis has 

been used to identify repurposable drug candidates for COVID-19 in our previous study (Zeng 

et al., 2020). More details can be found in the Method section and Figure 1.   

 

To evaluate performance of our method in predicting repurposable drugs for AD, we considered 

the FDA (Food and Drug Administration) approved drugs and drugs being tested in clinical trials 

for AD treatment as the ground truth, which include 10 FDA-approved, 30 in Phase IV trials, 43 

in Phase III trials, 95 in Phase II trials, and 47 in Phase I trials. To avoid information leaking in 
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prediction, all relations between the AD entity and any drug in the grand truth drug list in the 

iBKH were removed (see Method section). Figure 4 illustrates the performance of our method. 

Specifically, predictions were made based on embedding vectors produced by four different 

KGE algorithms, i.e., TransE, TransR, ComplEx, and DistMult, respectively. We also proposed 

an ensemble model based on the four methods (see Methods section). Overall, our methods 

achieved desirable prediction performances, with an area under the receiver operating 

characteristic curve (AUC) score over 0.83 for all methods in predicting the FDA approved AD 

drugs, and an AUC over 0.75 in predicting FDA approved drugs and drugs in Phase IV clinical 

trials (n=40). In other words, the FDA approved drugs and Phase IV clinical trial drugs for AD 

rank higher based on our approach. In addition, the ensemble model shows a higher 

performance (e.g., AUC = 0.9 for FDA approved drugs, AUC = 0.79 for FDA approved plus 

Phase IV clinical trial drugs for AD) compared to other models, indicating that it may benefit 

from different KGE algorithms.    

 

Our model can also suggest potential drug candidates for AD, which have not been approved or 

involved in clinical trials for AD treatment. As a proof of concept, we highlighted the top-10 

ranked potential drugs for AD treatment based on the ensemble model and iBKH (see Table 4).  

 

First, we found three Anti-hypertensive drugs ranking high based on our approach, including 

Labetalol (DrugBank ID: DB00598), Phenoxybenzamine (DrugBank ID: DB00925), and 

Mibefradil (DrugBank ID: DB01388). Specifically, Labetalol is a type of �-blockers. There has 

been evidence suggesting that �-blockers increase brain clearance of these metabolites by 

enhancing cerebrospinal fluid flow. Recent studies have demonstrated that the use of � -

blockers is associated with reduced risk of AD onset (Beaman et al., 2022) and functional 

decline in AD (Rosenberg et al., 2008). Phenoxybenzamine is an �-blocker, which has been 

reported to have neuroprotective activity (Rau et al., 2014). Recent drug repurposing studies 
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have also suggested phenoxybenzamine as a repurposable drug candidate to treat AD (Peng et 

al., 2020; Williams et al., 2019). Mibefradil is a calcium channel blocker (CCB). Though 

Mibefradil was withdrawn from the market in 1998 due to harmful interactions with other drugs, 

our findings may suggest CCB as potential candidate for AD because that calcium dysregulation 

has been reported to play a role in AD (Bojarski et al., 2008) and CCB has shown multiple 

beneficial effects cell culture and animal models of AD (Anekonda and Quinn, 2011; 

Saravanaraman et al., 2014). 

 

Second, we found two Antipsychotic drugs as candidates for AD treatment: Fluphenazine 

(DrugBank ID: DB00623) and Flupentixol (DrugBank ID: DB00875). Fluphenazine has been 

reported as a drug candidate in a recent AD drug repurposing study based on integrated 

network and transcriptome analysis (Zhao et al., 2020b). On the other hand, Flupentixol is a 5-

hydroxytryptamine receptor antagonist, which has been reported as potential treatment for 

cognitive deficiency in AD (Benhamú et al., 2014; Upton et al., 2008). 

 

We also found other candidate drugs for AD, including Loperamide (DrugBank ID: DB00836), 

Cyproheptadine (DrugBank ID: DB00434), Peginterferon alfa-2b (DrugBank ID: DB00022), 

Apomorphine (DrugBank ID: DB00714), and Enoxacin (DrugBank ID: DB00467). In particular, 

Loperamide is used to treat diarrhea. Previous studies reported that Loperamide targets opioid 

receptors (DeHaven-Hudkins et al., 1999; Giagnoni et al., 1983), which has been suggested to 

be potentially linked to AD pathology(Cai and Ratka, 2012). Cyproheptadine belongs to the 

histamine antagonists, which have been demonstrated to reduce cognitive symptoms in AD 

(Zlomuzica et al., 2016). Peginterferon alfa-2b is a recombinant interferon, which is used in the 

treatment of hepatitis B and C, genital warts, and some cancers. Peginterferon alfa-2b has been 

reported to bind to and activate human type 1 interferon receptors. Such a procedure activates 

the JAK/STAT pathway, which has been suggested as a potential target for AD (Jain et al., 
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2021; Nevado-Holgado et al., 2019). Apomorphine is a dopamine receptor agonist for 

Parkinson’s disease (PD). It can protect against oxidative stress, which plays a role in AD 

pathology (Perry et al., 2002). Emerging evidence showed that Apomorphine has a significant 

impact on improving memory function in AD (Himeno et al., 2011; Nakamura et al., 2017). 

Enoxacin belongs to the fluoroquinolones, which is used for treatment of bacterial infections. A 

recent study reported that appropriate use of antibiotics with macrolides and fluoroquinolones 

may decrease the risk of developing AD (Ou et al., 2021). 

Discussions 

Due to the unparalleled development rate of novel techniques in biomedical research and 

healthcare, a massive and continuously increasing volume of biomedical knowledge has been 

produced in the past decades. In addition, the biomedical knowledge captured from different 

sub-domains of biomedicine is typically stored in different types of databases. These include 

biomedical ontologies (Rubin et al., 2008; Smith et al., 2005) that provide hierarchical 

relationship-based descriptions for entities from a specific entity type and manually curated 

knowledge bases that focuses on a specific sub-domain in biomedicine (Callahan et al., 2020; 

Zhu et al., 2019). To better use the rich biomedical knowledge while overcoming the massive 

volume and data heterogeneity, there is the need for harmonizing and integrating the biomedical 

knowledge from data sources across diverse sub-domains in biomedicine. To this end, we 

curated a comprehensive BKG, the iBKH, through collecting, managing, and cleaning raw data 

from diverse sources, creating standardized vocabularies for biomedical entity normalization, as 

well as knowledge integration. To date, our iBKH has collected biomedical knowledge from 18 

sources, including not only the biomedical ontologies and biomedical knowledge bases, based 

on which most existing BKGs have been built, but also existing BKGs that have integrated 

diverse sources. In addition to the general entity types that are commonly studied in 
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biomedicine, such as genes, diseases, drugs, pathways, etc., our iBKH also involves our 

previously curated dietary supplement knowledge base, the iDISK (Rizvi et al., 2020). Research 

studies have demonstrated that the dietary supplements play a role in human diseases, such as 

AD (Luchsinger and Mayeux, 2004; Luchsinger et al., 2007), cancers (Williams and Hord, 2005), 

diabetes (van Dam et al., 2002), etc. We believe that involvement of the dietary supplement 

knowledge will provide complementary knowledge for better human healthcare.  

 

We deployed the iBKH publicly available in both tabular format (CSV files) and Neo4j, which 

allows fast knowledge retrieval through creating Cypher queries. Though Cypher, inspired by 

the SQL, is relatively easy to learn, there remains a gap between the iBKH in Neo4j and 

biomedical researchers and healthcare providers, as knowledge retrieval in a graph needs to 

define the queries by matching the logical and structural patterns of entities and relations, which 

are more complex than the SQL queries. As a result, we developed a web-based graphical 

portal, which allows users to design the desired graph query using a graphical UI. The query is 

translated to Cypher query in the back end for fast knowledge retrieval and the retrieved 

knowledge (typically a sub-graph from the iBKH) is visualized in the portal immediately. In this 

way, the iBKH is more user-friendly, providing users who have no Cypher programming 

experience the large flexibility to implement efficient biomedical knowledge retrieval. 

 

In addition, we implemented the advanced graph learning approaches to the iBKH for novel 

biomedical knowledge discovery. The graph learning approaches is a branch of machine 

learning and artificial intelligence (AI), which devote to building learning algorithms to model 

graph structure for discovering unobserved knowledge. In this study, we utilized the DGL-KE 

(Deep Graph Library - Knowledge Embedding) (Zheng et al., 2020), a Python-based 

implementation for advanced knowledge graph embedding algorithms, for efficient and scalable 

graph learning in iBKH. As a proof of concept, we demonstrated a use case of iBKH, armed with 
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the graph learning algorithms, for in silico hypothesis generation for AD drug repurposing. We 

not only observed good performance of our method, using the FDA-approved drugs and clinical 

trial drugs for AD as ground truth, but also identified repurposable drugs for AD treatment. By 

manual literature review, we found evidence supporting potential of the identified candidate 

drugs to treat AD. More importantly, our iBKH-based knowledge discovery pipeline is flexible 

and feasible, and can be applied to more diseases of interest beyond AD, by predicting potential 

relations between the disease of interest and drugs in iBKH. Our pipeline can also adapt to 

other biomedical application scenarios, such as prioritizing risk genes of disease (gene-disease 

relation prediction), predicting candidate target protein for drugs (drug-gene relation prediction), 

identifying potential drug-drug interactions (drug-drug relation prediction), etc. 

Limitations of the study 

Our iBKH has a few limitations. First, the procedures of constructing and curating iBKH rely on 

sophisticated efforts of raw data file extraction and pre-processing, data annotation, as well as 

terminology normalization, which may lead to incorrectness, referring to facts in the iBKH that 

is inconsistent with real-world evidence. To address this, we utilized the well-designed 

biomedical vocabularies such as the Unified Medical Language System (UMLS) to enhance 

entity term normalization, which can help reduce the risk of errors caused by the ambiguous 

biomedical entities. We also performed manual review to reduce incorrectness. More 

specifically, the integrated file for each entity type or relation type underwent multiple rounds of 

manual review based on random sampling with replacement. Even so, due to the massive 

volume of iBKH, there remains the need for a more efficient way to address incorrect facts in 

iBKH. Graph learning algorithms for knowledge graph refinement is a potential solution in this 

context. For instance, our early effort in graph learning-based knowledge graph refinement 

could be extended to address this issue (Zhao et al., 2020b).  
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Another issue is knowledge incompleteness. We built the iBKH by collecting and integrating 

data from diverse sources. It includes knowledge in a board range of sub-domains of human 

health. However, incompleteness is still inevitable. On one hand, abundant knowledge sources 

have been online available and there are good sources that are not involved in iBKH yet. On the 

other hand, there remains massive biomedical knowledge that has not yet been discovered or is 

deep buried in the noisy biomedical and health data and literature. In this context, some studies 

have been focused on deriving knowledge from biomedical literature (Xu et al., 2013; Zhang et 

al., 2018; Zhao et al., 2021) or human healthcare data such as the EHR (electronic health 

records) (Chen et al., 2019; Rotmensch et al., 2017). The derived knowledge could be a good 

complement for our iBKH. In addition, the use of graph learning algorithm to discover hidden 

knowledge based on the existing iBKH graph structure is another solution and needs more 

attention in our future work. 

 

Like most existing BKGs, e.g., Hetionet and CKG, our iBKH focuses on the general biomedical 

knowledge. For the sake of precision medicine on some specific human diseases or health 

conditions, there is the need for more fine-grained knowledge with a specific focus on them. For 

instance, COVID-KG (Wang et al., 2020) included biomedical knowledge with a specific focus 

on COVID-19; KGHC (Li et al., 2020) is a knowledge graph constructed focusing on addressing 

hepatocellular carcinoma. Following this idea, we will adapt our iBKH to address problems in 

specific diseases and health conditions like AD, Parkinson’s disease, and mental illness. For 

example, we plan to collect the fine-grained data, such as genotype-phenotype associations 

and brain region atrophy-phenotype associations and incorporate them to enrich iBKH, for the 

specific usage of these diseases. 

 

Last, there is the need of further validation for the discovered novel knowledge from iBKH. To 

this end, our future work will also focus on knowledge validation by leveraging advanced data 
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science techniques. On one hand, we plan to build a knowledge validation system based on 

biomedical text mining (Zhao et al., 2021). For instance, leveraging our previous biomedical 

literature retrieval/matching algorithms (Zhao et al., 2020a; Zhao et al., 2019), we will be able to 

identify evidence from massive biomedical literature resource, supporting the identified novel 

triplets (i.e., knowledge) in iBKH. We plan to add this new functionality to iBKH portal. On the 

other hand, for drug repurposing hypothesis generation, we will validate treatment efficiency of 

the identified repurposable drug candidates for target disease, such as AD, using our 

computational clinical trial emulation approach (Zang et al., 2022) based on real-world clinical 

data.   
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Figures 

 

Figure 1. An illustration of study pipeline. a. Steps for curating iBKH. We first collected data 
from diverse biomedical data sources. Next, necessary data pre-processing, such as data 
cleaning and data filtering were performed. After that, knowledge from diverse sources were 
integrated to build an integrative knowledge graph, i.e., iBKH, which was deployed using Neo4j 
graph database. b. A web-based, easy-to-use graphical portal was developed for fast 
knowledge retrieval. c. A graph learning module was introduced to iBKH for novel knowledge 
discovery. Specifically, knowledge graph embedding was conducted to learn compressed vector 
representations for entities and relations in iBKH, which were further used for link prediction. As 
a proof of concept, we performed in silicon drug repurposing for Alzheimer’s disease.  
 
Abbreviations: AD = Alzheimer’s disease; CSS = Cascading Style Sheets; HTML5 = HyperText 
Markup Language Version 5; iBKH = integrative Biomedical Knowledge Hub; KGE = knowledge 
graph embedding. 
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Figure 2. Schema of iBKH. Each circle denotes an entity type, and each link denotes a meta 
relation between a pair of entities. Of note, a meta relation can represent multiple types of 
relations between a specific pair of entities. For example, five potential relations including 
‘Associates’, ‘Downregulates’, ‘Upregulates’, ‘Inferred_Relation’, ‘Text_Semantic_Relation’ can 
exist between a pair of disease and gene entities.   
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Figure 3. Examples of knowledge retrieval. a. An example of entity query – retrieving 
neighborhood context of APOE (Apolipoprotein E) gene in iBKH. b. An example of path query, 
retrieving drugs that connect to Alzheimer’s disease through the path 
������� � ����	
�����_��� � ���� � ����	
����_�� � ����, where ���	
�����_�� and 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.12.21253461doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.21253461


���	
����_� denote relation types in terms of the association between a pair of disease and 
gene as well as the association between a gene and a drug.  
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Figure 4. Model performance of in silicon Alzheimer’s disease drug repurposing. We used 
the FDA approved and clinical trial drugs for Alzheimer’s disease as ground truth.  
 

Abbreviations: AUC = area under the receiver operating characteristic curve; FDA = Food and 
Drug Administration. 
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Table 1. Data sources integrated for constructing iBKH 

Source Description 
Entity Relation 

URL License 
Types Number Types Number 

Bgee  (Bastian et 
al., 2021) 

A database for retrieval 
and comparison of gene 
expression patterns 
across multiple animal 
species. 

Anatomy, Gene 60,072 
Anatomy-Express Present-
Gene, Anatomy-Express 
Absent-Gene 

11,731,369 https://bgee.org/   
https://creativecommons.or
g/publicdomain/zero/1.0/  

Brenda Tissue 
Ontology (Chang et 
al., 2021) 

A tissue-specific ontology. Tissue (Anatomy) 6,478 - - https://www.brenda-
enzymes.org/index.php   

https://creativecommons.or
g/licenses/by/4.0/  

Cell Ontology 
(Diehl et al., 2016) 

A structured controlled 
vocabulary for cell types 
in animals. 

Cells (Anatomy) 2,200 - - http://obofoundry.org/ontology/
cl.html   

https://creativecommons.or
g/licenses/by/4.0/  

Comparative 
Toxicogenomics 
Database (CTD) 
(Davis et al., 2019) 

A knowledge base that 
relates toxicological 
information for chemicals, 
genes, phenotypes, and 
diseases, as well as 
literature-based and 
manually curated 
interactions 

Disease, Gene, Drug, 
Pathway 

73,922 

Chemical-Gene, Chemical-
Disease, Chemical-Pathway, 
Gene-Disease, Gene-
Pathway, Disease-Pathway 

38,344,568 http://ctdbase.org/    Confirmed via email. 

ChEMBL(Gaulton 
et al., 2012) 

A manually curated 
database of bioactive 
molecules with drug-like 
properties. 

Molecular 1,940,733 - - https://www.ebi.ac.uk/chembl/  
https://creativecommons.or
g/licenses/by-sa/3.0/  

Chemical Entities 
of Biological 
Interest (ChEBI) 
(de Matos et al., 
2010) 

A freely available 
dictionary of molecular 
entities focused on ‘small’ 
chemical compounds 

Molecular 155,342 - - 
https://www.ebi.ac.uk/chebi/init
.do  

https://creativecommons.or
g/licenses/by/4.0/  

Drug Repurposing 
Knowledge Graph 
(DRKG) (Ioannidis 
et al., 2020) 

A biological knowledge 
graph. 

Anatomy, Pathway, 
Compound (Drug), 
Disease, Gene, Molecular 
function, Pathway, 
Pharmacologic class, 
Side effect, Symptom 

97,238 

Gene-Gene, Compound-Gene, 
Disease-Gene, Atc-
Compound, Compound-
Compound, Compound-
Disease, Gene-Tax, Biological 
process-Gene, Disease-
Symptom, Anatomy-Disease, 
Disease-Disease, Anatomy-
Gene, Gene-Molecular 
function, Compound-
Pharmacologic class, Cellular 
component-Gene, Gene-
Pathway, Compound-Side 
effect 

5,874,261 
https://github.com/gnn4dr/DRK
G  

https://www.apache.org/lic
enses/LICENSE-2.0  
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Disease Ontology 
(Schriml et al., 
2012) 

Standardized ontology for 
human disease. 

Disease 10,648 - - https://disease-ontology.org/  
https://creativecommons.or
g/publicdomain/zero/1.0/  

DrugBank (Wishart 
et al., 2018) 

A web-enabled database 
containing 
comprehensive molecular 
information about drugs, 
their mechanisms, their 
interactions, and their 
targets. 

Drug 15,128 
Drug-Target, Drug-Enzyme, 
Drug-Carrier, Drug-Transporter 

28,014 https://go.drugbank.com/  
http://creativecommons.org
/licenses/by-nc/4.0/  

Hetionet 
(Himmelstein et al., 
2017) 

A biomedical knowledge 
graph for drug 
repurposing. 

Anatomy, Biological 
process, Cellular 
component, Compound 
(Drug), Disease, Gene, 
Molecular function, 
Pathway, Pharmacologic 
class, Side effect, 
Symptom 

47,031 

Anatomy–downregulates–
Gene, Anatomy–expresses–
Gene, Anatomy–upregulates–
Gene, Compound–binds–
Gene, Compound–causes–
Side Effect, Compound–
downregulates–Gene, 
Compound–palliates–Disease, 
Compound–resembles–
Compound, Compound–
treats–Disease, Compound–
upregulates–Gene, Disease–
associates–Gene, Disease–
downregulates–Gene, 
Disease–localizes–Anatomy, 
Disease–presents–Symptom, 
Disease–resembles–Disease, 
Disease–upregulates–Gene, 
Gene–covaries–Gene, Gene–
interacts–Gene, Gene–
participates–Biological 
Process, Gene–participates–
Cellular Component, Gene–
participates–Molecular 
Function, Gene–participates–
Pathway, Gene–regulates–
Gene, Pharmacologic Class–
includes–Compound 

2,250,197 https://github.com/hetio/hetion
et  

https://creativecommons.or
g/publicdomain/zero/1.0/  

HUGO Gene 
Nomenclature 
Committee (HGNC) 
(Braschi et al., 
2019) 

The resource for 
approved human gene 
nomenclature 

Gene 41,439 - - https://www.genenames.org/  No restriction. 

Integrated Dietary 
Supplement 
Knowledge Base 
(iDISK) (Rizvi et al., 
2020) 

Our curated knowledge 
graph that covers a 
variety of dietary 
supplements, including 
vitamins, herbs, minerals, 

Dietary Supplement 
Ingredient, Dietary 
Supplement Product, 
Disease, Drug, Anatomy, 
Symptom, Therapeutic 

144,536 
DSI-Anatomy, DSI-Symptom, 
DSI-Disease, DSI-Drug, DSI-
DSP, DSI-TC 

705,075 
https://conservancy.umn.edu/h
andle/11299/204783  

Our copyright. 
https://creativecommons.or
g/licenses/by-sa/3.0/us/  
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etc. Class 

Kyoto 
Encyclopedia of 
Genes and 
Genomes (KEGG) 
(Kanehisa and 
Goto, 2000) 

A biomedical knowledge 
base for systematic 
analysis of gene 
functions, linking genomic 
information with higher 
order functional 
information. 

Drug, Disease, Gene, 
Pathway 42,181 

Drug-Gene, Disease-Gene, 
Gene-Pathway, Drug-Disease, 
Drug-Pathway, Disease-
Pathway 

65,505 https://www.kegg.jp/  

KEGG forbids data 
redistribution. The 
deployed version of iBKH 
excluded KEGG data.  

Pharmacogenetics 
Knowledge Base 
(PharmGKB) 
(Hewett et al., 
2002) 

A biomedical knowledge 
base containing genomic, 
phenotype and clinical 
information collected from 
ongoing pharmacogenetic 
studies. 

Genes, Variant, Drug, 
Phenotype 43,112 

Disease-Gene, Drug/Chemical 
-Gene, Gene-Gene, Gene-
Variant, Disease-Variant, 
Drug/Chemical-Variant 

61,616 https://www.pharmgkb.org/  
https://creativecommons.or
g/licenses/by-sa/4.0/  

Reactome 
(Fabregat et al., 
2018) 

A knowledge base of 
molecular details of signal 
transduction, transport, 
DNA replication, 
metabolism, and other 
cellular processes.  

Genes, Pathways (H. 
sapiens) 

13,589 Gene-Pathway 13,732 https://reactome.org/  
https://creativecommons.or
g/licenses/by/4.0/  

Side effect 
resource (SIDER) 
(Kuhn et al., 2016) 

A data resource of public 
information on drug side 
effects. 

Drugs, Side effects 5,681 Drug-Side effect 163,206 http://sideeffects.embl.de/  
https://creativecommons.or
g/licenses/by-nc-sa/4.0/  

TISSUE (Palasca 
et al., 2018) 

A public resource that 
integrates evidence on 
tissue expression from 
manually curated 
literature, proteomics and 
transcriptomics screens, 
and automatic text 
mining. 

Genes, Tissues 26,260 Tissue-Express-Gene 6,788,697 https://tissues.jensenlab.org/   
https://creativecommons.or
g/licenses/by/4.0/  

Uberon (Mungall et 
al., 2012) 

A cross-species anatomy 
ontology. Anatomy 14,944 - - 

https://www.ebi.ac.uk/ols/ontol
ogies/uberon  

http://creativecommons.org
/licenses/by/3.0/  
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Table 2. Statistics of biomedical entities in iBKH 

Entity Type Number Included Identifiers1 

Anatomy 23,003 Uberon ID, BTO ID, MeSH ID, Cell Ontology ID 

Disease 19,236 
Disease Ontology ID, KEGG ID, PharmGKB ID, MeSH 
ID, OMIM ID 

Drug 37,997 DrugBank ID, KEGG ID, PharmGKB ID, MeSH ID 

Gene 88,376 HGNC ID, NCBI ID, PharmGKB ID 

Molecule 2,065,015 CHEMBL ID, CHEBI ID 

Symptom 1,361 MeSH ID 

Pathway 2,988 Reactome ID, KEGG ID, Gene Ontology ID 

Side-effect 4,251 UMLS CUI 

Dietary Supplement Ingredient 4,101 iDISK ID 

Dietary Supplement Product 137,568 iDISK ID 

(Dietary) Therapeutic Class  605 iDISK ID, UMLS CUI 
1 The identifiers used for entity term normalization. 
Abbreviations: BTO = BRENDA Tissue Ontology; ChEBI = Chemical Entities of Biological Interest; HGNC = HUGO Gene Nomenclature Committee; ID = identifier; KEGG = Kyoto 
encyclopedia of genes and genomes; iDISK = integrated dietary supplement knowledge base; MeSH = Medical Subject Headings; NCBI = National Center for Biotechnology Information; 
OMIM = Online Mendelian Inheritance in Man; UMLS CUI= Unified Medical Language System - Concept Unique Identifiers. 
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Table 3. Statistics of relations among entities in iBKH 

Entity pair Relation type Number of relations of 
the specific type Total Number 

Anatomy-gene relation 
Anatomy-Expresses-Gene 10,388,168 

12,171,021 
Anatomy-Absent-Gene 2,837,741 

Anatomy-DSI relation DSI-Has_Adverse_Effect_On-Anatomy 3,121 4,334 

Drug-disease relation 

Drug-Palliates-Disease 390 

2,717,947 

Drug-Treats-Disease 5,492 

Drug-Effects-Disease 5,136 

Drug-Associates -Disease 96,458 

Drug-Inferred_Relation-Disease 2,589,522 

Drug-Text_Semantic_Relation-Disease 50,653 

Drug-Drug 
Drug-Interacts-Drug 2,682,157 

2,684,682 
Drug-Resembles -Drug 6,486 

Drug-Gene 

Drug-Targets-Gene 16,518 

1,303,747 

Drug-Transporter-Gene 3,066 

Drug-Enzyme-Gene 5,241 

Drug-Carrier-Gene 853 

Drug-Downregulates-Gene 66,994 

Drug-Upregulates-Gene 72,361 

Drug-Associates-Gene 19,434 

Drug-Binds-Gene 11,571 

Drug-Interacts-Gene 1,181,492 

Drug-Text_Semantic_Relation -Gene 68,429 

Drug-Pathway Drug-Associates-Pathway 3,231 3,231 

Drug-Side effect Drug-Causes-side-effect 163,206 163,206 

Drug-molecule  Molecule-Is_A-Drug  8,757 8,757 

Drug-DSI DSI-Interacts-Drug 3,057 3,057 

Disease-Disease 

Disease-Is_A-Disease 10,529 

11,072 
Disease-Resembles-Disease 543 

Disease-Gene 

Disease-Associates-Gene 47,965 

27,538,774 

Disease-Downregulates-Gene 7,623 

Disease-Upregulates -Gene 7,731 

Disease-Inferred_Relation-Gene 27,454,631 

Disease-Text_Semantic_Relation -Gene 94,759 

Disease-Symptom Disease-Presents-Symptom 3,357 3,357 

Disease-Pathway Disease-Associates-Pathway 1,941 1,941 
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Disease-DSI relation DSI-Is_Effective_For-Disease 5,134 5,134 

Gene-Gene 

Gene-Covaries-Gene 61,690 

735,156 

Gene-Interacts-Gene 147,164 

Gene-Regulates-Gene 265,672 

Gene-Associates-Gene 2,602 

Gene-Text_Semantic_Relation -Gene 301,752 

Gene-Pathway 
Gene-Reaction-Pathway 118,480 

152,243 
Gene-Associates-Pathway 47,742 

Symptom-DSI DSI-Has_Adverse_Reaction-Symptom 2,093 2,093 

DSI-DSP DSP-Has_ingredient-DSI 689,297 689,297 

DSI-TC DSI-Has_therapeutic_class-TC 5,430 5,430 

Abbreviations: DSI = Dietary Supplement Ingredient; DSP = Dietary Supplement Product; TC = Therapeutic 

Class 
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Table 4. List of the top ten drugs repurposable for Alzheimer’s disease treatment 

 

Rank DrugBank ID Drug Name Category Description Notes 

1 DB00836 Loperamide Diarrhea medication Loperamide is used to treat diarrhea. It is 
often used for this purpose in 
inflammatory bowel disease.  

Loperamide targets opioid receptors (DeHaven-
Hudkins et al., 1999; Giagnoni et al., 1983), which 
has been suggested to be potentially linked to AD 
pathology(Cai and Ratka, 2012). 

2 DB00598 Labetalol Anti-hypertensive drug, �-blocker Labetalol is one of the medications called 
�-blockers, which is used to treat 
cardiovascular diseases like 
hypertension. 

There has been evidence suggesting that �-
blockers increase brain clearance of these 
metabolites by enhancing CSF flow. Recent 
studies have demonstrated that the use of �-
blockers is associated with reduced risk of AD 
onset (Beaman et al., 2022) and functional decline 
in AD (Rosenberg et al., 2008). 

3 DB00925 Phenoxybenzamine Anti-hypertensive drug, �-blocker  Phenoxybenzamine is an �-blocker for 
treating hypertension, specifically that 
caused by pheochromocytoma. 

Phenoxybenzamine has been reported to have 
neuroprotective activity(Rau et al., 2014). Recent 
drug repurposing studies have also suggested 
phenoxybenzamine as repurposable drug 
candidate to treat AD (Peng et al., 2020; Williams 
et al., 2019).. 

4 DB01388 Mibefradil Calcium channel blocker (CCB) Mibefradil is CCB, which was used for 
the treatment of hypertension and 
chronic angina pectoris. Mibefradil was 
withdrawn from the market in 1998 due 
to potentially harmful interactions with 
other drugs.  

Previous studies have demonstrated that calcium 
dysregulation plays an important role in AD 
(Bojarski et al., 2008). Though the usefulness of 
CCBs in AD remains controversial, it has shown 
multiple beneficial effects cell culture and animal 
models of AD (Anekonda and Quinn, 2011; 
Saravanaraman et al., 2014). 

5 DB00434 Cyproheptadine Antihistamine     Cyproheptadine is used in the treatment 
of allergic symptoms. 

Cyproheptadine is a histamine antagonist, which 
has been demonstrated to reduce cognitive 
symptoms in AD (Zlomuzica et al., 2016). 

6 DB00022 Peginterferon alfa-2b Recombinant interferon Peginterferon alfa-2b is used in the 
treatment of hepatitis B and C, genital 
warts, and some cancers 

Peginterferon alfa-2b binds to and activates human 
type 1 interferon receptors, activating the 
JAK/STAT pathway, which has been suggested as 
a potential target for AD (Jain et al., 2021; Nevado-
Holgado et al., 2019).. 

7 DB00714 Apomorphine Dopaminergic agonist Apomorphineis a type of dopaminergic 
agonist medication used for Parkinson’s 
disease (PD) 

Apomorphine is a dopamine receptor agonist for 
Parkinson disease and also protects against 
oxidative stress, which plays a role in AD (Perry et 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

preprint (w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this
this version posted S

eptem
ber 28, 2022. 

; 
https://doi.org/10.1101/2021.03.12.21253461

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2021.03.12.21253461


al., 2002). Emerging evidence showed that 
Apomorphine has a significant impact on improving 
memory function in AD (Himeno et al., 2011; 
Nakamura et al., 2017). 

8 DB00623 Fluphenazine Antipsychotic  Fluphenazine is a phenothiazine 
antipsychotic medication used for 
treatment of psychotic disorders. 

Fluphenazine is reported as a drug candidate in a 
recent AD drug repurposing study based on 
integrated network and transcriptome analysis 
(Peng et al., 2020). 

9 DB00875 Flupentixol Antipsychotic drug Flupentixol is a thioxanthene neuroleptic 
used to treat psychotic disorders such as 
schizophrenia and depression. 

Flupentixol is a 5-hydroxytryptamine receptor 
antagonist which has been reported as potential 
treatment for cognitive deficiency in AD (Benhamú 
et al., 2014; Upton et al., 2008). 

10 DB00467 Enoxacin Fluoroquinolones Enoxacin is a fluoroquinolone used for 
treatment of bacterial infections. 

A recent study reported that appropriate use of 
antibiotics with macrolides and fluoroquinolones 
may decrease the risk of developing AD (Ou et al., 
2021). 
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STAR*METHODS 

 

Resource Availability 

Lead contact 

Further information should be directed to and will be fulfilled by the lead contact, Dr. Fei Wang, 

( few2001@med.cornell.edu) 

Materials Availability 

• The harmonized entity and relation source files for iBKH in CSV (comma-separated 

values) format are publicly available online at https://github.com/wcm-

wanglab/iBKH/tree/main/iBKH. 

• The iBKH online portal is publicly available at http://ibkh.ai/. 

The deployed version of iBKH excluded data from KEGG, as it forbids data redistribution. 

Data and Code Availability 

• This paper integrates publicly available biomedical knowledge bases. These accession 

URLs for the knowledge bases are listed in the key resources table. 

• The computer codes for iBKH construction and iBKH-based knowledge discovery are 

publicly available online at https://github.com/wcm-wanglab/iBKH/tree/main/Codes.  

• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 
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METHOD DETAILS 

Overview  

Our ultimate goal was to build a biomedical knowledge graph via comprehensively incorporating 

biomedical knowledge as much as possible. To date, we have collected and integrated 18 

publicly available data sources, harmonized and consolidated them into a comprehensive data 

compendium. Details of the used data sources were listed in Table 1. 

Raw data processing  

Given the data sources, the first step was to pre-process the raw files of them and extract 

knowledge, including entity information and relation information. Generally, the databases 

release their raw data files in various formats, such as comma-separated values (CSV), tab-

separated values (TSV), TXT, EXCEL tablet, Hypertext Markup Language (HTML), Resource 

Description Framework (RDF), and Web Ontology Language (OWL). To address this, for each 

database, we parsed the raw files and extracted structured data, i.e., the descriptive files for 

each type of biomedical entity and the files of each type of relation. Such procedure varies by 

databases or even by files within the same database. 

Term harmonization 

To integrate data from diverse sources, there is a need for harmonizing the entity terms. To 

achieve this, we utilized a greedy strategy. Specifically, for a specific entity type, we first chose 

a database to initialize the entity vocabulary. Next, we built a linkage pool, containing multiple 

identifiers of the given entity type, to map and integrate entities from all databases to enrich the 

entity vocabulary one by one. 
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For gene entity type, we used the HUGO Gene Nomenclature Committee (HGNC) gene 

repository (Braschi et al., 2019) as the initial vocabulary of gene entities, as it defines a standard 

nomenclature for human the genes. The linkage pool for normalization included HGNC IDs, 

HGNC symbols, and National Center for Biotechnology Information (NCBI) IDs. 

 

For drug entity type, we initialized our vocabulary using DrugBank (Wishart et al., 2018) as it 

provides the up-to-date list of approved drugs and investigational drugs under clinical trials. The 

linkage pool for drug entity normalization included DrubBank IDs, Medical Subject Heading 

(MeSH) terms, MeSH term IDs, Unified Medical Language System (UMLS)(Bodenreider, 2004) 

Concept Unique Identifiers (CUIs), and the drug names in UMLS.  

 

For molecule entity type, we used the ChEMBL(Gaulton et al., 2012), a manually curated 

database of molecules with drug properties, for initializing the vocabulary. The linkage pool for 

the molecule entities normalization included ChEMBL IDs and International Chemical Identifier 

(InChi). 

 

For Side-Effect entity type, we collected the side-effect entities from the SIDER(Kuhn et al., 

2016) and described them by using the UMLS CUIs. 

 

For disease entity type, we used the Disease Ontology (Schriml et al., 2012) for initializing the 

vocabulary, as it is a structured database of diseases based on etiological classification. The 

linkage pool we used for the disease entity normalization included Disease Ontology IDs, MeSH 

terms, MeSH term IDs, UMLS CUIs, and the disease names in UMLS. 

 

For symptom entity type, we collected the symptom entities from the Hetionet (Himmelstein et 

al., 2017) and integrated Dietary Supplements Knowledge (iDISK) (Rizvi et al., 2020), and 
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described them by using the MeSH term and MeSH term ID. We used UMLS CUI as the linkage 

for symptom entities normalization. 

 

For Pathway entity type, we used the Reactome (Fabregat et al., 2018), a manually curated 

and peer-reviewed pathway database, for initializing the vocabulary. The linkage pool for the 

pathway entities normalization contained the Reactome IDs, Gene Ontology IDs, and KEGG IDs. 

 

For anatomy entity type, we used the Uberon (Mungall et al., 2012) for initializing the 

vocabulary, as it is a cross-species anatomical ontology based on traditional anatomical 

classification. The linkage pool for the anatomy entities harmonization included Uberon IDs, 

MeSH terms, MeSH term IDs, UMLS CUIs, and the anatomy names in UMLS. 

 

For Dietary Supplement Ingredient (DSI), Dietary Supplement Product (DSP), and 

Therapeutic Class (TC) entities, data were collected from our previous curated iDISK 

(integrated Dietary Supplements Knowledge) (Rizvi et al., 2020). We used iDISK concept IDs 

and UMLS CUIs (for TCs) to describe them. 

 

Knowledge integration  

After the above normalization procedures, we obtained a CSV file for each entity type, storing all 

normalized entity terms of the specific entity type followed by their synonyms and detailed 

descriptions. We were then able to integrate knowledge extracted from different knowledge 

bases to build iBKH. Specifically, in a BKG, a basic knowledge unit is a triplet, typically defined 

as <head entity, relation, tail entity>, which indicates that there exists a relation from the head 

entity to the tail entity in iBKH. Of note, for each pair of head entity and tail entity, there can be 

multiple types of relations. For instance, we stored “targets”, “Transporter”, “Enzyme”, “Carrier”, 
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“downregulates”, “upregulates”, “associates”, “binds”, “interacts”, and “text_semantic” relations 

between drugs and genes. We also stored the data source information, indicating from which 

data source(s) we acquired the specific triplet.  

 

iBKH deployment based on graph database 

We deployed our curated BKG, i.e., the iBKH, using Neo4j (https://neo4j.com), a well-designed 

graph database platform that allows structured queries in a grap. Specifically, Neo4j can take 

the CSV files of entities and relations we generated above as input and automatically created a 

KG instance. In this way, the iBKH can be updated efficiently and flexibly.  

 

Graphical portal for fast knowledge retrieval 

We developed a web-based graphical portal, which allows the users to design graph query 

paths visually and flexibly and translates them into Cypher queries (query language provided by 

Neo4j) automatically in the back end. Specifically, we built the back end (i.e., the server side) 

using Django (https://www.djangoproject.com/), a high-level Python-based web framework. 

The iBKH, stored in Neo4j, was linked to the back end. The front end (i.e., the web application 

side) was built based on HyperText Markup Language Version 5 (HTML5), and Cascading Style 

Sheets (CSS). JavaScript-based software, the neovis (https://github.com/neo4j-

contrib/neovis.js/) and D3.js (https://d3js.org/), were used for graph visualization and data 

exploration and visualization, respectively.  
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iBKH-based knowledge discovery 

We developed a machine learning pipeline for knowledge discovery in the iBKH, which contains 

two steps as follows.  

 

Step 1, knowledge graph embedding (KGE) learning. The goal of KGE is to learn 

embeddings, i.e., meaningful and machine-readable vector-based representations for entities 

and/or relations in iBKH, while preserve the graph structure (Goyal and Ferrara, 2018; Su et al., 

2020; Wang et al., 2017). In biomedicine, the learned embeddings (i.e., vector representations) 

of biomedical entities and relations can be used in accelerating diverse down-stream research 

tasks, such as drug implication discovery (Nicholson and Greene, 2020; Zhang et al., 2021; 

Zheng et al., 2021; Zhu et al., 2020), multi-omics data analysis (Nicholson and Greene, 2020; 

Santos et al., 2022), clinical data (e.g., electronic healthcare record) analysis (Choi et al., 2017; 

Nelson et al., 2019), and knowledge extraction from biomedical literature (Wang et al., 2020). In 

this work, we used the Deep Graph Library - Knowledge Embedding (DGL-KE) 

(https://github.com/awslabs/dgl-ke)(Zheng et al., 2020), a Python-based implementation for 

the advanced KGE algorithms, such as TransE (Bordes et al., 2013), TransR (Lin et al., 2015), 

ComplEx (Théo et al., 2016), and DistMult (Yang et al., 2015). Using the advanced multi-

processing and multi-GPU (graphics processor unit) techniques, the DGL-KE accelerates the 

learning procedures in large-scale graphs like iBKH.  

 

Step 2, link prediction. The task can be formulated as predicting the probability that an 

unobserved triplet � �, �, � � exists in the iBKH, where � and � are the head and tail entities, and 

� is the potential relation, respectively. Specifically, we defined a possibility score of a candidate 

triplet � �, �, � �  as ��	� �, �, � �
 � �����	�	�, �, �

 . The sigmoid function is defined as 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.12.21253461doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.21253461


�����	�
 � 1/	1 � exp 	��

. �	·
 is the scoring function of the KGE algorithm we used to 

calculate the embedding vectors.  

• TransE, �	�, �, �
 �  ��� � � �  �� , where �, �,   are the embedding vectors of �, �, �, 

respectively. 

• TransR, �	�, �, �
 � ��!�� � � �  !� ��
� , where !�  is a projection matrix for each 

relation � that project entities � and � to semantic space of the relation. 

• ComplEx, �	�, �, �
 � � "#	�
, "#	�
, "#	 
 � �� $�	�
, $�	�
, $�	 
 � ��

"#	�
, $�	�
, $�	 
 � �� $�	�
, $�	�
, "#	 
 �, where "#	%
 and $�	%
 are the real and 

imaginary parts of the complex valued vector %, respectively.  

• DistMult, �	�, �, �
 � ��&� � , where &�  is relation matrix, which is restricted to a 

diagonal matrix. 

Summarized details of the KGE algorithms can be found elsewhere 

(https://dglke.dgl.ai/doc/kg.html).  

 

In silico hypothesis generation for Alzheimer’s disease drug repurposing. As a proof of 

concept, we performed in silico hypothesis generation for Alzheimer’s disease (AD) drug 

repurposing, which is to predict potential drug entities that can be linked to the AD entity with a 

‘treats’ relation in the iBKH. To this end, we first downloaded all Food and Drug Administration 

(FDA) approved drugs and drugs in clinical trials (Phases I-IV) for AD from the DrugBank 

(https://go.drugbank.com/), constructing the grand truth drug list. Specifically, we obtained a 

total of 10 FDA-approved drugs, 30 drugs in Phase IV trials, 43 drugs in Phase III trials, 95 

drugs in Phase II trials, and 47 drugs in Phase I trials for AD treatment. Next, to avoid 

information leaking in prediction, all relations between the AD entity and any drug in the grand 

truth drug list in the iBKH were removed. Then, entity and relation embedding vectors were 

calculated using the KGE algorithms. After that, we calculated possibility scores for potential all 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.12.21253461doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.21253461


� #� , �, #�� �  triplets, where #�  indicates any drug entity, #��  indicates the AD entity, and � 

indicates a relation between them. The drugs were ranked based on the possibility scores. In 

this study, we calculated the possibility scores based on four KGE algorithms, i.e., TransE 

(Bordes et al., 2013), TransR (Lin et al., 2015), ComplEx (Théo et al., 2016), and DistMult (Yang 

et al., 2015). To enhance prediction, we also proposed an ensemble model. Specifically, the 

rank of drug #�  in the ensemble model was defined as ���	
����	� #� , �, #�� �
 � ∑ 	(�� ��

 "�)*�	� #� , �, #�� �

 where  indicates the -th KGE algorithm and (�� indicates total number 

of drugs in iBKH.  

 

To evaluate prediction performance, we compared the top + ranked drugs with the ground truth 

drugs. By sliding the value of +, we were able to produce the receiver operating characteristic 

curve (ROC) and the area under ROC (AUC) score.  

 

Finally, we re-trained the KGE models without removing known relations between AD and drug 

entities and used the embeddings to predict novel repurposable drug candidates for AD 

treatment.  For the predicted drugs that potentially link to AD, we performed manual literature 

review to identify supporting evidence of the prediction. 
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