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Abstract 

The rapidly increasing biomedical knowledge, derived from biological experiments or gained 
from clinical practice, has become the important treasure in the biomedical research. The 
emerging knowledge graphs (KGs) provide an efficient and effective way to organize and 
retrieval the huge and increasing volume of biomedical knowledge. A biomedical KG (BKG) 
typically stores and represents knowledge by constructing a semantic network describing 
entities and the relationships between them. Previous efforts have been conducted to construct 
and curate BKGs by comprehensively integrating various biomedical data resources. Though 
the resulting BKGs have made a significant progress in this filed in advancing biological and 
medical research, there remain a big gap to a perfect one that is comprehensive and fine-
grained enough. To this end, in the present study, we collected and integrated data from diverse 
well-curated biomedical knowledge bases and BKGs to curate a more comprehensive one, 
named the Cornell Biomedical Knowledge Hub (CBKH). To enhance the usage in accelerating 
biomedical research, we deployed CBKH using the famous graph database, Neo4j. This is a 
continuing effort and we are adding in more and more contents in CBKH to support the various 
complex needs in biomedical data analysis. Please contact us if you have better ideas and 
suggestions. 
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Introduction 

Biomedicine is a discipline with lots of highly specialized knowledge accumulated from biological 
experiments and clinical practice. These knowledges are usually buried in massive biomedical 
literature and textbooks. This makes the effective knowledge organization and efficient 
knowledge retrieval a challenging task. Knowledge graph is a recently emerged concept aiming 
at achieving this goal. A knowledge graph (KG) stores and represents knowledge by 
constructing a semantic network describing entities and the relationships between them. The 
basic elements that comprising a knowledge graph are a set of biomedical entities and a set of 
different types of semantic relationships among the entities. In biomedicine, the typical entities 
could be diseases, drugs, and genes, etc., and the relationships could be treats (drug-treats-
disease), binds (drug-binds-target protein), interactions (drug-drug interaction), etc. Large scale 
biomedical KG (BKG) makes efficient knowledge retrieval and inference possible. 
 
Typically, construction and curation of a BKG is done via integrating publicly available 
biomedical knowledge bases and knowledge extracted from biomedical literature. For example, 
Hetionet [1], released in 2017, is a well-curated BKG that was constructed by integrating 29 
publicly available data resources, such as DrugBank [2], GWAS Catalog [3], DISEASES [4], 
DisGeNET [5], etc. Similar to Hetionet, Drug Repurposing Knowledge Graph (DRKG) [6] was 
built by integrating data from six different existing databases, with a specific focus on drug 
repurposing for COVID-19. It contains 13 types of about 100K entities and 107 types of over 5 
million relationships. PreMedKB [7] includes the information of disease, genes, variants, and 
drugs by integrating existing resources. The Clinical Knowledge Graph (CKG) [8] was 
constructed by combining relevant existing biomedical databases integration and texts extracted 
from scientific literature, containing over 16 million nodes and over 220 million relationships. 
Compared to other BKGs, CKG includes entities representing biological information at a finer 
granularity, such as metabolite, modified protein, molecule function, transcript, genetic variant, 
food, clinical variable, etc. In addition, some BKGs were built with a focus on specific diseases 
or conditions. For example, COVID-KG [9] extracted COVID-19 specific information from 
biomedical literature and constructed a knowledge graph containing diseases, chemicals, and 
genes, along with their relationships. KGHC [10] is a knowledge graph focused on 
hepatocellular carcinoma. It extracted information from literature and contents on the internet, 
as well as structured triples from SemMedDB [11].  
 
Though significant progress has been achieved by these efforts, they are not perfect or 
comprehensive enough to incorporate all biomedical knowledge. For example, Parkinson’s 
disease (PD) is associated genetic mutation like G2019S in LRRK2, but only gene-level 
information is saved in most existing BKGs, such as Hetionet. PD is associated with brain lesion 
detected by MRI, but such information is not incorporated in current BKGs. In addition, entities 
at finer granularity, such as molecules, which have been demonstrated to be important in 
biomedical research, are not included in most existing BKGs like Hetionet.  Therefore, there still 
is the need for curation of a comprehensive BKG. To this end, in the present study, we collected 
and integrated data from multiple well-curated biomedical knowledge bases and BKGs to curate 
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a more comprehensive one, named the Cornell Biomedical Knowledge Hub (CBKH). We 
deployed our CBKH using Neo4j (https://neo4j.com). If you are interested in accessing CBKH, 
please contact us. 

Materials and Methods 

Our ultimate goal was to build a biomedical knowledge graph via comprehensively incorporating 
biomedical knowledge as much as possible. To this end, we collected and integrated 15 publicly 
available data sources to curate a comprehensive one. Details of the used data resources were 
listed in Table 1. 

Raw data processing and information extraction 

Given the data resources, the first step was to pre-process the raw files of them and extract 
knowledge, including entity information and relationship information, from them. Generally, the 
data bases release their raw data files in various format, such as comma-separated values 
(CSV), tab-separated values (TSV), TXT, EXCEL tablet, Hypertext Markup Language (HTML), 
Resource Description Framework (RDF), and Web Ontology Language (OWL). To this end, for 
each data base, we parsed the raw files and extracted structured data, i.e., the descriptive files 
for each type of biomedical entity and the files of each type of relationship. Such procedure 
varies by data bases or even by files within the same data base. 
 

Term normalization 

For normalization of the entity terms, we utilized a greedy strategy. Specifically, we first chose a 
data base to initialize the vocabulary for each type of entity. Next, we used multiple identifiers as 
the linkage pool for entity normalization and incorporate and integrate entities from all data 
bases to enrich the entity vocabulary one by one. 
 
For gene entities, we used HGNC gene repository [12] as the initialization vocabulary of gene 
entities, as it sets a standard nomenclature for human the genes. The linkage pool for 
normalization included HGNC ID, HGNC symbol and NCBI ID. 
 
For drug entities, we initialized our vocabulary using DrugBank [2] as it provides the up-to-date 
list of approved drugs and investigational drugs under clinical trials. The linkage pool for drug 
entity normalization included MeSH term, MeSH term ID, Unified Medical Language System 
(UMLS) Concept Unique Identifier (CUI), and the drug name in UMLS.  
 
For disease entities, we used the Disease Ontology [13] for initializing the vocabulary, as it is a 
structured database of diseases based on etiological classification. The linkage pool for the 
disease entities normalization included MeSH term, MeSH term ID, UMLS CUI and the disease 
name in UMLS. 
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For anatomy entities, we used the Uberon [14] for initializing the vocabulary, as it is a cross-
species anatomical ontology based on traditional anatomical classification. The linkage pool for 
the anatomy entities normalization included MeSH term, MeSH term ID, UMLS CUI and the 
anatomy name in UMLS. 
 
For molecule entities, we used the ChEMBL [15] for initializing the vocabulary, as it is a 
manually curated database of molecules with drug properties. The linkage pool for the molecule 
entities normalization included International Chemical Identifier (InChi). 
 
For symptom entities, we collected the symptom entities from the Hetionet and described them 
by using the MeSH term and MeSH term ID. We used UMLS CUI as the linkage for symptom 
entities normalization. 

CBKH deployment 

To enhance the usability of CBKH in accelerating biomedical research, we deployed it using a 
graph database, Neo4j (https://neo4j.com), which provides the easy-to-use interface for query 
and visiting knowledge in the KG. By using the Cypher statement on the Neo4j platform, CBKH 
can be retrieved efficiently and flexibly. 
 

Results 

CBKH integrates data from 15 publicly available biomedical databases. The current version of 
CBKH (Figure 1 and Table 2) contains a total of 2,231,297 entities of 6 types. Specifically, the 
CBKH includes 22,963 anatomy entities, 18,503 disease entities, 36,436 drug entities, 87,942 
gene entities, 2,065,015 molecule entities and 438 symptom entities. For the relationships in the 
CBKH (Table 3), there are 91 relation types within 8 kinds of entity pairs, including Anatomy-
Gene, Drug-Disease, Drug-Drug, Drug-Gene, Disease-Disease, Disease-Gene, Disease-
Symptom and Gene-Gene. In total, CBKH contains 48,678,651 relations. More specifically, 
there are 3 types of relations between the Anatomy-Gene pair, including such as ‘Express’ and 
‘Absent’; 11 relation types between Drug-Disease pair, such as ‘Treat’ and ‘Effect’; 2 relation 
types between the Drug-Drug pair including ‘Interaction’ and ‘Resemble’; 25 relation types 
between the Drug-Gene pair, such as ‘Target’, ‘Upregulates’, and ‘Downregulates’; 2 relation 
types between the Disease-Disease pair including ‘is_a’ and ‘Resemble’; 16 relation types 
between the Disease-Gene pair, such as ‘Association’; the ‘Presents’ relation type between the 
Disease-Symptom pair; and 31 relation types between the Gene-Gene pair, such as ‘Covaries’ 
and ‘Interacts’. Since some resources are generated by text mining methods, they use the form 
of phrases to express the relations (Text-semantic relation). For example, the relation 'role in 
disease pathogenesis' between the Drug-Disease pair and the relation 'enhances 
expression/production' between the Drug-Gene pair. The CBKH relations were derived by 
integrating candidate resources, so some relationships connecting the two entities may have 
overlap. For example, there are 16,961 'Target_DrugBank' relationships and 11,801 
'Binds_Hetionet' relationships in Drug-Gene. In these two relationships, a total of 4,745 
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relationships overlaps, which means that both 'Target' and 'Binds' relationships exist in these 
corresponding entities.  
 

Future work 

KG quality control 

The procedures of constructing and curating a BKG include sophisticated efforts on raw data file 
extraction and pre-processing, data annotation, as well as terminology normalization, which may 
result in quality issues. In general, there are two categories of quality issues in KGs: the 
incorrectness and incompleteness.  
 
Incorrectness refers to incorrect facts in the KG, e.g., a relation connecting two entities exists 
in the BKG but inconsistent with real-world evidence. To address this, a common strategy is 
manual annotation with sampled small subsets. Such procedure is time- and cost-consuming, if 
one wants to evaluate sufficient triplets to reach the statistic criteria. To address this, for 
example, Gao et al. [16] proposed an iterative evaluation framework for KG accuracy evaluation. 
Specifically, inspired by the properties of the annotation cost function observed in practice, the 
authors developed a cluster sampling strategy with unequal probability theory. Their framework 
resulted in a 60% shrunk annotation cost and can be easily extended to address evolving KG. In 
addition, the use of well-designed biomedical vocabularies such as the Unified Medical 
Language System (UMLS) will improve entity term normalization and hence reduce the risk of 
errors caused by the ambiguous biomedical entities. Moreover, learning based on KG structure 
to refine the KG is also a potential way to solve this issue. Early efforts, such as Zhao et al. [17] 
has been focused on this field.  
 
Incompleteness mainly refers to the missing of biologically or clinically meaningful triplets in 
the KG. To address the incompleteness in biomedical KG, we integrated multiple data 
resources, biomedical data bases, and biomedical KGs to construct and curate a more 
comprehensive one. However, there is no guarantee the included resources are combined 
comprehensive enough to cover all biomedical knowledge. In addition, today's largely available 
biomedical literature and medical data (e.g., EHRs) are great treasure of biomedical knowledge. 
In this context, previous studies have been focused on deriving knowledge from biomedical 
literature [18-21] and EHR data [22, 23], and the derived knowledge could be a good 
complement for the biomedical KGs. Moreover, the computational methods such as the KG 
embedding models (e.g., TransE and TransH) and the GNNs (e.g., R-GCN) have been used in 
KG completion [24], which predict missing relations within a KG according to its structure 
properties. 

Focus on specific diseases on health conditions 

Similar to most existing BKGs, like Hetionet and CKG, our CBKH focus on general biomedical 
knowledge. However, for the sake of precision medicine on some specific human diseases or 
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health conditions, there is the need for very fine-grained knowledge with a specific focus on 
them. In this context, COVID-KG [9] included biomedical knowledge with a specific focus on 
COVID-19; KGHC [10] is a knowledge graph constructed focusing on addressing hepatocellular 
carcinoma. Following this idea, to adapt our KG to addressing problems in specific complex 
diseases and health conditions like Alzheimer’s disease, Parkinson’s disease, and mental 
illness, we will focus on collecting fine-grained data, such as genotype-phenotype associations 
and brain region atrophy-phenotype associations and incorporating them to enrich our BKG, for 
the specific usage of these diseases. 
 

Keeping KG up to date 

 
Thanks to the advances in the high throughput techniques, biomedical data have been 
continuously produced. Meanwhile, a rapid increasing amount of biomedical literature are being 
published. As most existing studies gather knowledge from the experimental data and 
biomedical literature manually, more human involvement is required. In this context, we would 
highlight the usage of the computational methods, such as Natural Language Processing (NLP) 
techniques, which can automatically and efficiently extract knowledge from the raw data files, 
such as biomedical literature and clinical trial documentations. In the future, we may incorporate 
such kind of technique to assist us in KG maintenance.  
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Figure 1. Schema of CBKH 
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Table 1. Data resources used for integration 
 

Source 
Entity Relation 

URL License 
Types Number Types Number 

Bgee[25] 
Anatomy, 

Gene 60072 
Anatomy-Express Present-Gene, 
Anatomy-Express Absent-Gene 11731369 https://bgee.org/ 

https://creativecommons.org/public
domain/zero/1.0/ 

Brenda Tissue 
Ontology[26] 

Tissue 6478 - - 
https://www.brenda-

enzymes.org/index.php 
https://creativecommons.org/licens

es/by/4.0/ 

Cell 
Ontology[27] 

Cell 2,200 - - 
http://obofoundry.org/ontology/

cl.html 
https://creativecommons.org/licens

es/by/4.0/ 

Comparative 
Toxicogenomic

s 
Database[28] 

Disease, 
Gene, 

Chemical, 
Pathway 

73922 

Chemical-Gene, Chemical-
Disease, Chemical-Pathway, 

Gene-Disease, Gene-Pathway, 
Disease-Pathway 

38344568 http://ctdbase.org/ https://creativecommons.org/licens
es/by/4.0/ 

ChEMBL[15] Molecular 1940733 - - https://www.ebi.ac.uk/chembl/ 
https://creativecommons.org/licens

es/by-sa/3.0/ 

ChEBI[29] Molecular 155342 - - 
https://www.ebi.ac.uk/chebi/init

.do 
https://creativecommons.org/licens

es/by/4.0/ 

Drug 
Repurposing 
Knowledge 
Graph[6] 

Anatomy, Atc, 
Biological 
process, 
Cellular 

component, 
Compound, 

Disease, 
Gene, 

Molecular 
function, 
Pathway, 

Pharmacologi
c class, Side 

effect, 
Symptom, 

Tax 

97238 

Gene-Gene, Compound-Gene, 
Disease-Gene, Atc-Compound, 

Compound-Compound, 
Compound-Disease, Gene-Tax, 

Biological process-Gene, 
Disease-Symptom, Anatomy-
Disease, Disease-Disease, 

Anatomy-Gene, Gene-Molecular 
function, Compound-

Pharmacologic class, Cellular 
component-Gene, Gene-

Pathway, Compound-Side effect 

5874261 
https://github.com/gnn4dr/DRK

G 
https://www.apache.org/licenses/LI

CENSE-2.0 

Disease 
Ontology[13] 

Disease 10648 - - https://disease-ontology.org/ 
https://creativecommons.org/public

domain/zero/1.0/ 

DrugBank[2] Drug 15128 Drug-Target, Drug-Enzyme, 
Drug-Carrier, Drug-Transporter 

28014 https://go.drugbank.com/ http://creativecommons.org/license
s/by-nc/4.0/ 
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Hetionet[1] 

Anatomy, 
Biological 
process, 
Cellular 

component, 
Compound, 

Diease, 
Gene, 

Molecular 
function, 
Pathway, 

Pharmacologi
c class, Side 

effect, 
Symptom 

47031 

Anatomy–downregulates–Gene, 
Anatomy–expresses–Gene, 

Anatomy–upregulates–Gene, 
Compound–binds–Gene, 

Compound–causes–Side Effect, 
Compound–downregulates–
Gene, Compound–palliates–

Disease, Compound–resembles–
Compound, Compound–treats–

Disease, Compound–
upregulates–Gene, Disease–
associates–Gene, Disease–

downregulates–Gene, Disease–
localizes–Anatomy, Disease–
presents–Symptom, Disease–
resembles–Disease, Disease–

upregulates–Gene, Gene–
covaries–Gene, Gene–interacts–

Gene, Gene–participates–
Biological Process, Gene–

participates–Cellular Component, 
Gene–participates–Molecular 
Function, Gene–participates–

Pathway, 
Gene→regulates→Gene, 

Pharmacologic Class–includes–
Compound 

 
https://github.com/hetio/hetion

et 
https://creativecommons.org/public

domain/zero/1.0/ 

HUGO Gene 
Nomenclature 
Committee[12] 

Gene 41439 - - https://www.genenames.org/ 
http://creativecommons.org/license

s/by/4.0/ 

KEGG[30] 

Drug, 
Disease, 

Gene, 
Variant, 

Compound, 
Pathway 

33756186 
Drug-Gene, Disease-Gene, 

Gene-Pathway 
43464 https://www.kegg.jp/ 

http://creativecommons.org/license
s/by-nc/2.0/uk/ 

PharmGKB[31
] 

Genes, 
Variant, 

Drug/Chemic
al, Phenotype 

43112 

Disease-Gene, Drug/Chemical -
Gene, Gene-Gene, Gene-
Variant, Disease-Variant, 
Drug/Chemical-Variant 

61616 https://www.pharmgkb.org/ https://creativecommons.org/licens
es/by-sa/4.0/ 

TISSUE[32] Tissue, Gene 26260 Tissue-Express-Gene 6788697 https://tissues.jensenlab.org/ 
https://creativecommons.org/licens

es/by/4.0/ 

Uberon[14] Anatomy 14944 - - https://www.ebi.ac.uk/ols/ontol
ogies/uberon 

http://creativecommons.org/license
s/by/3.0/ 
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Table 2. Statistics of biomedical entities in CBKH 

Entity Type Number Included Identifiers1 

Anatomy 22,963 Uberon ID, BTO ID, MeSH ID, Cell 
Ontology ID 

Disease 18,503 Disease Ontology ID, KEGG ID, 
PharmGKB ID, MeSH ID, OMIM ID 

Drug 36,436 DrugBank ID, KEGG ID, PharmGKB ID, 
MeSH ID 

Gene 87,942 HGNC ID, NCBI ID, PharmGKB ID 
Molecule 2,065,015 CHEMBL ID, CHEBI ID 
Symptom 438 MeSH ID 

1 The identifiers used for entity term normalization. 
 
 
 
Table 3. Statistics of relationships among entities in CBKH 
 

Entity pair Total number of relations 
between the entity pairs Relation types Number of relations of the specific type 

Anatomy-Gene 12,825,270 
Anatomy-Express_Bgee-Gene 4,931,924 
Anatomy-Absent_Bgee-Gene 3,338,908 
Anatomy-Express_TISSUE-Gene 6,783,256 

Drug-Disease 2,711,848 

Drug-Palliates_Hetionet-Disease 390 
Drug-Treats_Hetionet-Disease 755 
Drug-Effect_KEGG-Disease 1,527 
Drug-Association_CTD-Disease 2,682,510 
Drug-Treat_DrugBank-Disease 4,717 
Drug-Text_Semantic-Disease1 50,419 

Drug-Drug 2,684,682 
Drug-Interaction_DrugBank-Drug 2,682,157 
Drug-Resemble_Hetionet-Drug 6,486 

Drug-Gene 1,295,088 

Drug- Target_DrugBank-Gene  16,961 
Drug-Transporter_DrugBank-Gene 3,066 
Drug-Enzyme_DrugBank-Gene 5,243 
Drug-Carrier_DrugBank-Gene 853 
Drug-Downregulates_DrugBank-Gene 46,467 
Drug-Upregulates_DrugBank-Gene 54,204 
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Drug-Associated_KEGG-Gene 9,105 
Drug-Associated_PharmGKB-Gene 5,718 
Drug-Binds_Hetionet-Gene 11,801 
Drug-Downregulates_Hetionet-Gene 21,102 
Drug-Upregulates_Hetionet-Gene 18,756 
Drug-Interaction_CTD-Gene 1,181,456 
Drug-Text_Semantic-Gene2 65,382 

Disease-Disease 11,072 
Disease-is_a_DO-Disease 10,529 
Disease-Resemble_Hetionet-Disease 543 

Disease-Gene 27,541,618 

Disease-Associate_Hetionet-Gene 12,623 
Disease-Downregulates_Hetionet-Gene 7,623 
Disease-Upregulates_Hetionet-Gene 7,731 
Disease-Associate_KEGG-Gene 5,052 
Disease-Associate_PharmGKB-Gene 3,534 
Disease-Association_CTD-Gene 27,487,252 
Disease-Text_Semantic-Gene3 95,587 

Disease-Symptom 3,357 Disease- Present_Hetionet-Symptom 3,357 

Gene-Gene 1,605,716 

Gene-Covaries_Hetionet-Gene 61,690 
Gene-Interacts_Hetionet-Gene 147,164 
Gene-Regulates_Hetionet-Gene 265,672 
Gene-Associate_PharmGKB-Gene 2,836 
Gene-Text_Semantic-Gene4 1,816,789 

1 Drug-Text_Semantic-Disease relation type includes: 'Compound treats the disease_DRUGBANK', 'treatment/therapy (including investigatory)_GNBR', 
'inhibits cell growth (esp. cancers)_GNBR', 'alleviates, reduces_GNBR', 'biomarkers (of disease progression)_GNBR', 'prevents, suppresses_GNBR', 'role in 
disease pathogenesis_GNBR'. 
 
2 Drug-Text_Semantic-Gene relation type includes: 'affects expression/production (neutral)_GNBR', 'agonism, activation_GNBR', 'inhibits_GNBR', 
'metabolism, pharmacokinetics_GNBR', 'antagonism, blocking_GNBR', 'increases expression/production_GNBR', 'binding, ligand (esp. receptors)_GNBR', 
'decreases expression/production_GNBR', 'transport, channels_GNBR', 'enzyme activity_GNBR', 'direct interation_IntAct', 'physical association_IntAct', 
'association_IntAct'. 
 
3 Disease-Text_Semantic-Gene relation type includes: 'improper regulation linked to disease_GNBR', 'causal mutations_GNBR', 'polymorphisms alter 
risk_GNBR', 'role in pathogenesis_GNBR', 'possible therapeutic effect_GNBR', 'biomarkers (diagnostic)_GNBR', 'promotes progression_GNBR', 'drug 
targets_GNBR', 'overexpression in disease_GNBR', 'mutations affecting disease course_GNBR'. 
 
4 Gene-Text_Semantic-Gene relation type includes: 'activates, stimulates_GNBR', 'production by cell population_GNBR', 'regulation_GNBR', 'binding, ligand 
(esp. receptors)_GNBR', 'signaling pathway_GNBR', 'increases expression/production_GNBR', 'same protein or complex_GNBR', 'enhances 
response_GNBR', 'affects expression/production (neutral)_GNBR', 'association_IntAct', 'physical association_IntAct', 'colocalization_IntAct', 
'dephosphorylation reaction_IntAct', 'cleavage reaction_IntAct', 'direct interation_IntAct', 'phosphorylation reaction_IntAct', 'ADP ribosylation reaction_IntAct', 
'ubiquitination reaction_IntAct', 'protein cleavage_IntAct', 'reaction_STRING', 'catalysis_STRING', 'activation_STRING', 'inhibition_STRING', 'other_STRING', 
'binding_STRING', 'post-translational modification_STRING', 'expression_STRING' 
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