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Abstract 
 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated 

heritability of around 50%. DNA methylation patterns can serve as biomarkers of (past) 

exposures and disease progression, as well as providing a potential mechanism that mediates 

genetic or environmental risk. Here, we present a blood-based epigenome-wide association 

study (EWAS) meta-analysis in 10,462 samples (7,344 ALS patients and 3,118 controls), 

representing the largest case-control study of DNA methylation for any disease to date. We 

identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which 

are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and 

immunity. We show that DNA-methylation-based proxies for HDL-cholesterol, BMI, white blood 

cell (WBC) proportions and alcohol intake were independently associated with ALS. Integration 

of these results with our latest GWAS showed that cholesterol biosynthesis was causally related 

to ALS. Finally, we found that DNA methylation levels at several DMPs and blood cell proportion 

estimates derived from DNA methylation data, are associated with survival rate in patients, and 

could represent indicators of underlying disease processes. 
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Introduction  
 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized 

by progressive degeneration of motor neurons in the brain and spinal cord1. The disease affects 

about 1 in 350 people, with death typically occurring within 2 to 5 years after onset. The 

heritability of ALS is estimated to be around 50%2, showing that a considerable portion of the 

risk could be conferred by environmental and lifestyle risk factors. However, the identification of 

these factors has proven difficult due to several challenges. Lifestyle factors are typically studied 

using self reports, or interviews with the risk of recall and selection bias (e.g. because of 

selection against patients with cognitive impairment)3,4. Finally, biomarkers are typically 

measured after onset of disease making inferences about causality virtually impossible. The 

combined effect of these challenges has resulted in a large body of literature with conflicting 

results and only a few established factors related to ALS risk or patient survival3,5.  

 

Epigenetic patterns, which regulate gene expression via modifications to DNA, histone proteins, 

and chromatin, can serve as biomarkers of disease progression and (past) exposures such as 

smoking and alcohol intake. Moreover, epigenetics patterns can provide a mechanism that 

mediates genetic and/or environmental risk6. The development of standardized assays for 

quantifying DNA methylation, the best characterized and most stable epigenetic modification, 

has enabled the systematic analysis of associations between methylomic variation and a wide 

range of human diseases, including cancer, schizophrenia and various neurodegenerative 

diseases6–9. In addition to a potential mechanistic role in ALS, the quantification of DNA 

methylation in whole blood DNA can serve as a robust quantifiable biomarker for candidate risk 

factors including smoking, alcohol intake, BMI, biological age, and various metabolic and 

inflammatory proteins10–16. Moreover, DNA methylation signatures have proven useful as 

diagnostic and prognostic biomarkers in various settings including common cancers and all-

cause mortality17,18.   

 

Few studies have investigated the role of DNA methylation in ALS. Most studies have either 

focused on specific genomic regions such as the C9orf72 locus19,20, or were limited in terms of 

sample size or coverage21–24. The largest epigenome-wide association study (EWAS) to date 

included nearly 1,500 samples, but identified only a single significant differentially methylated 

position (DMP)25.  
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We present a blood-based DNA methylation study of ALS incorporating over 10,000 samples, 

representing the largest case-control study of DNA methylation for any disease to date. First, we 

implemented a stringent pipeline to meta-analyze EWAS results across multiple strata and 

identify DMPs associated with ALS. Second, we show how DNA methylation data can be 

leveraged to serve as a proxy for risk factors and exposures relevant to ALS. Third, we integrate 

our DNA methylation data with findings from a new genome-wide association study (GWAS) of 

ALS26, identifying potential causal roles for pathways highlighted by our DNA methylation study. 

Finally, we used overlapping whole-genome-sequencing (WGS) data to assess the influence of 

genetic variants and leveraged extensive clinical data for survival analyses.  
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Results 
 

EWAS meta-analysis of ALS identifies 45 differentially methylated loci 

We quantified genome-wide levels of DNA methylation in whole blood from 10,462 individuals 

across four strata using the Illumina 450k array (6,275 samples) and the Illumina EPIC array 

(4,187 samples). A total of 6,763 ALS patients and 2,943 control subjects passed our stringent 

quality control, which was followed by normalization of signal intensities in each stratum (Table 
1, supplementary file 1 and supplementary tables 1-5). Samples excluded from our analyses 

did not show different demographic or clinical characteristics compared to the subset selected 

for analyses (supplementary table 5). We performed an EWAS in each of the four strata using 

two methods to adjust for known and unknown confounding. First we used a linear model 

adjusting for known confounders and a calibrated number of principal components (PCs) to 

adjust for unknown confounding factors (Methods; supplementary figure 1), followed by 

correction for residual bias and inflation in test-statistics using bacon27 (hereafter referred to as 

the LB model). Second, we used MOA (mixed linear model-based omic association) as 

implemented in the OSCA software, in which the random effect of total genome-wide DNA 

methylation captures the correlation structure between probes and directly controls for the 

genomic inflation28. Of note, the MOA algorithm did not converge for the AUS2 stratum, 

resulting in a total sample size of 9,459 for the MOA results. Test-statistics across strata were 

combined using an inverse variance-weighted fixed effects meta-analysis29. Inflation of the test-

statistics was well controlled in both the LB (λ = 1.046; Figure 1c) and the MOA results 

respectively (λ = 0.984; Figure 1d), and we observed little heterogeneity between strata 

(Methods; supplementary figure 2). Various technical sensitivity analyses indicated that the 

results were robust to changes in analysis strategy, including using M-values instead of β-

values, using functional normalization30 instead of dasen31, and excluding specific strata or 

experimental batches (supplementary figure 3-4). Finally, application of a method that we 

recently described32 led to the removal of likely cross-hybridizing probes, including four probes 

that showed high homology to the C9 repeat locus (supplementary figure 5). In total, 724,712 

sites passed quality control, of which 332,066 were specific to the EPIC array. 

The LB meta-analysis resulted in 44 significant DMPs (P < 9 × 10-8; Figure 1a, Table 2, 
supplementary table 6) and the MOA meta-analysis resulted in 11 significant DMPs (P < 9 × 

10-8; Figure 1b, supplementary table 7)33. The significant MOA sites comprised a subset of the 
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significant LB sites, with the exception of cg01589155 which is annotated to the C9orf72 locus; 

this site was significant in MOA (P = 1.51 × 10-8) and just below the significance threshold in the 

LB results (P = 2.59 × 10-7) (supplementary figure 6). Effect sizes were generally small and we 

observed both hypermethylated (51%) and hypomethylated (49%) DMPs associated with ALS 

(supplementary figure 7). Based on nearest gene mapping, these DMPs were annotated to 42 

unique genes. Additionally, we annotated each site with cis expression associations in blood 

(eQTMs) calculated in an external dataset (BBMRI34). This revealed that DNA methylation at 18 

sites was significantly associated with the expression levels of at least one nearby gene, which 

included the nearest gene in 14 out of 18 sites (Table 2, supplemental table 8).  
 

 
Table 1 - Demographic and clinical characteristics of study population: 
Shown are numbers (and percentages) of samples that passed quality control. 

 Project MinE  External  

 

MinE 450k MinE EPIC AUS_batch1 ** AUS_batch2 ** 

(N=4,474) (N=3,897) (N=1,088) (N=247) 

Diagnosis   

Control 1,436 (32 %) 915 (23 %) 493 (45 %) 99 (40 %) 

Case 3,038 (68 %) 2,982 (77 %) 595 (55 %) 148 (60 %) 

Sex at birth  

Female 1,863 (42 %) 1,700 (44 %) 487 (45 %) 124 (50 %) 

Male 2,611 (58 %) 2,197 (56 %) 601 (55 %) 123 (50 %) 

Age (years)   

Mean (SD) 63 (± 11) 61 (± 13) 70 (± 12)  

Missing 438 (9.8%) 949 (24.4%) 77 (7.1%)  

Site of onset *    

Bulbar 861 (28 %) 739 (25 %) 173 (29 %) 36 (24 %) 
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Generalized 98 (3 %) 112 (4 %) 0 (0 %) 0 (0 %) 

Spinal 2,023 (67 %) 2,060 (69 %) 0 (0 %) 0 (0 %) 

Thoracic 10 (0 %) 5 (0 %) 0 (0 %) 0 (0 %) 

Missing 46 (1.5 %) 66 (2.2 %) 422 (70.9 %) 112 (75.7 %) 

Survival status *     

Alive 437 (14 %) 1,112 (37 %) 516 (87 %) 43 (29 %) 

Dead 2,564 (84 %) 1,845 (62 %) 79 (13 %) 87 (59 %) 

Missing 37 (1.2 %) 25 (0.8 %) 0 (0 %) 18 (12.2 %) 

Survival (months) *†      

Median (Q1-Q3) 31.4 (31.4-48.9) 31.3 (21.1-47.1) 31.5 (23.6-44.4) 38.3 (25.4-66.5) 

Missing 17 (0.7%) 9 (0.5%) 2 (2.5%) 1 (1.1%) 

C9orf72 status *     

Expanded (≥30) 200 (7%) 155 (5 %)     

Normal 2,809 (92 %) 2,780 (93 %)     

Missing 29 (1.0 %) 47 (1.6 %)     

** data only included in case/control analyses 

* case only  
† dead-only 
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Figure 1 - EWAS meta-analysis: Epigenome-wide association study on 6,763 patients and 2,943 
controls. (a,b) Manhattan plot comparing (a) LB (linear model + bacon) and (b) OSCA MOA association 

P-values (−log 10(P), y-axis) and genomic location (x-axis). The dashed line indicates the genome-wide 

significance threshold (9 × 10−8). Sites were annotated with the nearest protein-coding gene in ensembl.  

(c,d) QQ-plot showing observed (c) LB and (d) OSCA MOA P-values (−log 10(P), y-axis) against the 

expected distribution under the null (x-axis). 
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Table 2 - Top ten significant sites:  
Details of the ten most significant sites identified with the LB algorithm. Position = Chromosome:bp 

(GRCh37), Nearest gene = nearest gene based on Ensembl GRCh37 (75), eQTM = the most significant 

eQTM for the respective probe, eQTM FDR = p-value corresponding to the most significant eQTM, FDR-
corrected for the number of tests for the respective probe, PMS = Indicates that the probe is part of the 

respective PMS (poly-methylation score), Trait = Overlap with significantly enriched traits from the MRC-

IEU and NGDC EWAS databases (showing a maximum of five traits). Abbreviations: HGF = Hepatocyte 

growth factor, N.CDase = Neutral ceramidase, FGF.21 = Fibroblast growth factor 21. 

 

Probe Position Nearest gene eQTM 
(direction) 

eQTM 
FDR 

b se P-value PMS Traits 

cg17901584 1: 55353706  DHCR24 DHCR24 (-) 2.9 x 10-62 0.0090 0.00110 3.6 x 10-17 BMI, 
HDLchol, 

HGF 

Hepatic fat, BMI, 
Metabolic trait, 

(serum) Triglycerides 

cg06528816 2: 47242277  TTC7A TTC7A (-) 0.13 0.0035 0.00049 8.5 x 10-13   Allergic sensitization, 
Total serum IgE 

cg06500161 21: 43656587  ABCG1 ABCG1 (-) 1.6 x 10-25 -0.0052 0.00073 1.2 x 10-12 BMI, 
HDLchol, 
N.CDase, 
FGF.21 

Hepatic fat, BMI, 
Metabolic trait, 

(serum) Triglycerides 

cg14945937 19: 30162771  PLEKHF1 PLEKHF1 (-) 0.02 -0.0041 0.00058 1.9 x 10-12     

cg08940169 16: 88540241  ZFPM1 PIEZO1† (-) 0.08 0.0037 0.00054 7.8 x 10-12   Allergic sensitization, 
Total serum IgE, 

Childhood asthma, 
Schizophrenia 

cg07571745 1: 32715428  FAM167B CCDC28B† (-) 0.26 -0.0033 0.00048 8.9 x 10-12     

cg14195992 8: 48265917  SPIDR SPIDR (-) 0.0059 -0.0053 0.00080 4.8 x 10-11   Birth weight   

cg08851837 16: 57558820  CCDC102A GPR56† (+) 0.84 0.0045 0.00069 5.8 x 10-11     

cg09257526 1: 154379696  IL6R ATP8B2† (-) 0.0031 -0.0023 0.00035 5.9 x 10-11   Alcohol consumption 
per day 

cg15782984 6: 35993792  SLC26A8 SLC26A8 (-) 0.007 -0.0046 0.00070 9.5 x 10-11     

✝The association between DNA methylation and the nearest gene was not significant (FDR > 0.05) 
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Sensitivity analyses indicate that ALS-associated differential methylation is not 
driven by genetic variation in cis or trans, riluzole use or C9orf72 status 

We performed sensitivity analyses to evaluate whether our results were driven by known 

biological factors associated with ALS or by genetic variation. First, we examined the effects of 

the C9orf72 (C9) repeat expansion by performing an EWAS meta-analysis excluding 371 

carriers of this mutation. Overall the results were highly correlated (supplementary figure 8), 
except for a subset of sites that were strongly driven by C9orf72 carrier status. These included 

two genome-wide significant DMPs (cg01589155 and cg23074747) located within the C9 repeat 

and in a CpG island just upstream of the C9 repeat respectively. Second, to delineate whether 

DMPs were influenced by riluzole use, we performed an EWAS on riluzole use in ALS patients 

(N users = 1,803, N non-users = 451), finding no evidence of shared signals between the ALS 

EWAS and the riluzole EWAS (supplementary figure 9). Finally, we investigated whether 

results were driven by genetic variation. For each significant site we iteratively adjusted for all 

genetic variants in cis (<250 Kb) as detected in our overlapping whole-genome-sequencing 

data26 (WGS, N = 7,939) and blood trans-mQTLs as reported in the GoDMC consortium35. We 

found no evidence that the significant sites were driven by either genetic variants in cis or in 

trans (supplementary figure 10). 

Enrichment analyses of genes annotated to ALS-associated differential DNA 
methylation implicate metabolic, inflammatory and cholesterol pathways 

Gene set analysis. To characterize the EWAS results we performed gene set enrichment 

analyses based on both nearest genes and eQTMs annotated to each site36,37. We considered 

both the default threshold used in the methylGSA package (P < 0.001) and the stringent 

genome-wide significance threshold (9 x 10-8) to select DMPs for enrichment analyses. 

We identified two main categories of enriched pathways.  

First, in both the LB and MOA results we identified cholesterol/steroid biosynthesis-related 

pathways. These included the KEGG pathway steroid biosynthesis and the GO pathways 

cholesterol biosynthetic process, sterol biosynthetic process, organic hydroxy compound 

biosynthetic process and secondary alcohol biosynthetic process which were enriched among 

the MOA results (Table 3). In addition, we found that these and related pathways were enriched 

among annotated eQTMs in both the LB and MOA results (supplementary table 9). The 

enrichments were mainly driven by four DMPs: cg17901584 (DHCR24), cg05119988 (MSMO1), 
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cg06500161 (ABCG1) and cg06690548 (SLC7A11). Of these, cg17901584, cg05119988 and 

cg06500161 were strongly associated with the expression of the nearest gene in blood 

(DHCR24, MSMO1 and ABCG1 respectively; Table 2, supplementary table 8). 

Second, the immune-related KEGG pathways Cytokine-cytokine receptor interaction and natural 

killer cell mediated cytotoxicity were enriched in the LB results (at P < 0.001), but not in the 

MOA results (Table 3).  
 
Table 3 - Gene set enrichments: Details of the gene sets that were significantly enriched among the 

MOA and LB results based on nearest genes annotated to each site. Method = EWAS method and p-

value cutoff applied to the respective EWAS test-statistics resulting in the input probes for the shown 

enrichment analyses, N overlap = Number of significant genes that overlap with genes in the respective 

pathway, N genes = Total number of genes in the pathway, FDR = FDR-controlled (False discovery rate) 

P-values. 

 

Method Database Pathway  N overlap N genes FDR 

LB (p < 0.001) KEGG Cytokine-cytokine receptor interaction 36 262 0.0012 

 KEGG Natural killer cell mediated cytotoxicity 22 108 0.036 

MOA (p < 0.001) - - - - - 

LB (p < 9 x 10-8) - - - - - 

MOA (p < 9 x 10-8) KEGG  Steroid biosynthesis  2  18  0.015  

 GO BP  cholesterol biosynthetic process  3  71  0.021 

 GO BP  sterol biosynthetic process  3  77  0.021  

 
GO BP  

organic hydroxy compound biosynthetic 

process 
4  251  0.021 

 GO BP  secondary alcohol biosynthetic process  3  71  0.021 

 

EWASdb enrichments. To further characterize the results we assessed whether the significant 

sites overlapped with trait-associated sites reported in publicly available EWAS databases38,39. 

For the LB results we found a significant overlap (FDR < 0.05) with 23 traits in the MRC-IEU 

database (Figure 2a; Table 4) and 20 traits in the NGDC database (supplementary figure 11, 

supplementary table 10-11), with a total of 23 out of 44 probes overlapping with one or more 

enriched traits. For the MOA results we found a significant overlap (FDR < 0.05) with 20 traits in 

the MRC-IEU database (supplementary figure 12, supplementary table 10-11) and 14 traits 
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in the NGDC database (supplementary figure 13, supplementary table 10-11), with a total of 

8 out of 11 probes overlapping with one or more of the enriched traits. 

Among the most significant enrichments in the MRC-IEU database (all results shown in 

supplementary table 10-11) were BMI, Total Serum IgE (only enriched among the LB results), 

(Serum) Triglycerides, Waist circumference and HDL-cholesterol, of which all showed effect 

directions opposite to those found for ALS, except for HDL (Table 4). Using the Louvain 

clustering algorithm40, we found that the overlapping traits clustered into two (MOA) to three 

(LB) clusters respectively. These included two connected cholesterol (including HDL-c and 

triglycerides) and metabolism-related (including BMI and alcohol consumption) clusters which 

were identified in the results from both EWAS methods. Additionally, in the LB results we 

identified an inflammation-related trait cluster that included traits such as total serum IgE and 

atopy. We found that this inflammation-related cluster was independent of the other clusters, as 

indicated by iterative analyses presented in figure 2b, showing that only the immune-related 

traits remained significant after excluding BMI-related probes (supplementary figures 11-13). 

 
Table 4 - EWAS database enrichments: Ten most significant trait enrichments within the MRC-IEU 

EWAS database. FDR = FDR-corrected P-values (False discovery rate). Effect directions = indicate 

whether the ALS EWAS and trait EWAS effect sizes share the same direction of effect (e.g. an opposite 

direction of effect for Body mass index indicates that DNA methylation changes at overlapping sites 

associated with a lower BMI are also associated with a higher ALS risk); EWAS method = indicates 

whether significant sites identified with respective method were enriched for the given trait.  
 

Trait  FDR  Effect directions EWAS method  

Body mass index  1.36 x 10-9 opposite  LB & MOA 

Total serum IgE  1.93 x 10-7  opposite  LB 

Triglycerides  4.02 x 10-7  opposite  LB & MOA 

Serum triglycerides*  1.32 x 10-5  opposite  LB & MOA 

Waist circumference  1.85 x 10-4  opposite  LB & MOA 

High-density lipoprotein cholesterol  0.0013 equal  LB & MOA 

Hypertriglyceridemic waist  0.0024 equal  LB & MOA 

Serum high-density lipoprotein cholesterol* 0.0066 equal  LB & MOA 

Fasting glucose  0.0097  opposite  LB & MOA 

Atrial fibrillation  0.011  opposite  LB & MOA 

 *note that we adhered to the trait descriptions as provided in the database: serum, plasma and whole-blood measurements are 
included as distinct traits (“Triglycerides” and “High-density lipoprotein cholesterol” refer to whole-blood measurements). 
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Figure 2 - EWAS database enrichments: Significant overlap between traits included in the MRC-IEU 

EWAS database and ALS-associated sites identified using the LB model (a) Network showing the traits 
that significantly overlap with the ALS-associated sites. Nodes indicate the overlap between ALS-

associated sites and sites associated with indicated traits, with larger nodes indicating more overlap, and 

lighter shades of blue indicating stronger associations. Edges indicate probe overlap between the traits, 

with thicker lines indicating more overlapping probes. Colored surfaces indicate the clusters (cholesterol, 

metabolic and inflammatory) identified using the Louvain clustering algorithm.  

(b) Identification of independent clusters of traits. The first iteration shows the traits that significantly 

overlap with the ALS-associated probes at FDR < 0.05. In subsequent iterations the probes belonging to 

the most significant trait were excluded and enrichments tests were performed using the remaining traits. 
This algorithm was repeated, retaining traits that were nominally significant (P < 0.05, indicated in bold), 

until at most one trait remained significant. At the third iteration no traits remained significant, showing 

that both BMI and related traits (including triglycerides and HDL-c) and IgE and related traits (Atopy) 

show independent overlap with the ALS-associated sites. 

Abbreviations: IgE = total serum IgE, TG = triglycerides, sTG= serum triglycerides, WC = waist 

circumference, sHDL-c = serum HDL-c, HW = Hypertriglyceridemic waist, FG = fasting glucose, AF = 

a

O

O

O

O
O
O

1
2
3
5
6
7

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

BMIc(n=1)

CKD(n=1)

PL(n=1)

FG(n=1)

WC(n=3)

sHDLïc(n=2)

2hINS(n=1)

HOMAïIR(n=1)

AC(n=5)

TG(n=3)

sTG(n=3)

T2D(n=1)

pAN(n=1)

HDLïc(n=2)

HW(n=2)

fINS(n=1)

CRP(n=2)

AF(n=1)

GGT(n=1)BMI(n=7)

2

4

6

8

10

ïlog10(p)

overlap
O

O

O

sIgE(n=1)

ATP(n=1)

IgE(n=6)

b

iteration3

iteration2

iteration1

BM
I
IgE TGsT

GWC
HD
Lï
c
HW

sH
DL
ïc FG AFCR

P
BM
Ic PLGG

T
fIN
S AC
2h
INSAT

P
sIg
E

HO
MA
ïIRpA

N
T2
D
CK
D

BM
I
IgE TGsT

GWC
HD
Lï
c
HW

sH
DL
ïc FG AFCR

P
BM
Ic PLGG

T
fIN
S AC
2h
INSAT

P
sIg
E

HO
MA
ïIRpA

N
T2
D
CK
D

BM
I
IgE TGsT

GWC
HD
Lï
c
HW

sH
DL
ïc FG AFCR

P
BM
Ic PLGG

T
fIN
S AC
2h
INSAT

P
sIg
E

HO
MA
ïIRpA

N
T2
D
CK
D

0

3

6

9

0

3

6

9

0

3

6

9

<
lo
g 1

0�
p	

clusters
cholesterol

metabolic
inflammatory

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.12.21253115doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.21253115
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

atrial fibrillation, BMIc = BMI change, PL = postprandial lipemia, GGT = Gamma-glutamyl transferase, 

fINS=fasting insulin, AC = alcohol consumption per day, 2hINS = 2-hour insulin, ATP = atopy, sIgE = High 

serum IgE, pAN = Plasma adiponectin, T2D = Type II diabetes, CKD = Chronic kidney disease, HOMA-IR 

= Homeostatic Model Assessment of Insulin Resistance. 
 

 
Figure 3 - Poly-methylation score analyses on disease risk and patient survival:  
Poly-methylation scores (PMS) were determined as proxies for various traits, exposures, proteins and 

white blood cell proportions, calculated as weighted sums based on probes and weights derived from 

published papers respectively. 

(a) Explained variance of PMSs calculated in samples for which both DNA methylation data and 

biomarker/clinical data were available (N=800/2000). Reduced R2 represents the variance explained by 
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the null model while the incremental R2 represents the additional variance explained by the PMS over the 

null model. Lastly, the explained variance of the univariate model of the respective PMS is displayed (see 

Methods). The asterisk indicates that the PMS was used in the association tests. 

(b,c) The upper panel shows association P-values (−log10(P), y-axis) for each PMS (x-axis), (b) white 
blood cell proportions and (c) various traits and exposures, colored by whether a higher score is 

associated with increased (black) or decreased (grey) disease risk. The lower panel shows the Cox 

proportional hazard P-values (−log10(P), y-axis) for each PMS (x-axis), colored by whether a higher score 

is associated with decreased (black) or increased (grey) survival respectively. The dashed line indicates 

the significance threshold (1.3 x 10-3).  

(d) Original P-values (−log10(P), x-axis) compared to P-values after including all PMSs in the logistic 

regression model (−log10(P), y-axis) for the significant traits/exposures.  

(e, f) Associations P-values (−log10(P), y-axis) upon incrementally adding principal components (PCs) to 
the logistic regression model.  

Poly-methylation scores for BMI, HDL-c, alcohol intake and white blood cell 
proportions are associated with ALS 

To gain further insight into potential intermediate phenotypes associated with ALS, we utilized 

published poly-methylation scores (PMS) as proxies for various traits and exposures, including 

BMI, HDL-c, LDL-c, total cholesterol, alcohol consumption, smoking, white blood cell 

proportions (CD4T, CD8T, monocytes, granulocytes, NK-cells), biological age and a collection 

of immunological and neurological proteins11–14,16,41–43. 

First, we performed a validation analysis for each of the PMSs for which we had relevant 

clinical/exposure data available (see Methods, supplementary table 4). We selected PMSs 

with an explained variance of ≥ 5%, as indicated by an incremental R2 between the null model 

(including known covariates and control probe PCs) and the model including the respective 

PMS (figure 3a). Two out of the thirteen validated PMS did not meet the implemented threshold 

of ≥ 5% (LDL-c and total cholesterol). 

We found that PMSs for HDL cholesterol, monocyte cell proportion and granulocyte cell 

proportion were positively associated with ALS (P < 1.3 × 10-3; Figure 3 b-c, supplementary 
table 12), and the PMSs for alcohol intake, BMI and the other white blood cell proportions 

(CD4T, CD8T, NK, B-cells) were negatively associated with ALS, a result that reflects the nature 

of proportion data given the positive associations of other cell types (P < 1.3 × 10-3; Figure 3 b-
c, supplementary table 12). Although we did find a significant association for epigenetic age 

acceleration (Zhang et al. clock13, adjusted for chronological age), there was significant 
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heterogeneity between strata (Cochran’s Q test P < 0.1/39), supplementary table 12), which 

led us to exclude age acceleration for further consideration. Additionally, we considered the 

multi-tissue Horvath clock44 and the Hannum et al. clock45, but found no significant associations 

for either (supplementary figure 14).  

In addition to the PC-adjusted models, we also evaluated less stringent models, showing that 

various immunological and neurological proteins such as CRP, IL6, TGF-ɑ and CCL11 as well 

as smoking were significantly associated with ALS when PCs were excluded (Figure 3e-f, 
supplementary figure 15).  

Conditional analyses showed that the significant PMSs were independently associated with 

ALS, although the HDL-c and BMI associations were attenuated after mutual adjustment 

(Figure 3d, supplementary figure 16). Adjustment for significant EWAS sites showed that 

signal is shared between several CpG sites and significant PMSs (supplementary figure 17), 

most notably, the alcohol intake association became insignificant upon adjustment for 

cg06690548 (SLC7A11) and cg18120259 (C6orf223), and the HDL-c association became 

insignificant upon adjustment for cg17901584 (DHCR24) and cg06500161 (ABCG1). We 

assessed whether the associations were primarily driven by carriers of the C9orf72 repeat 

expansion, but found no evidence that this was the case (supplementary figure 18). Finally, 

we evaluated whether the PMS associations were primarily driven by specific strata or 

experimental batches by performing leave-one-out analyses. We found no evidence that one 

stratum or experimental batch mainly contributed to the observed signals, and as expected, the 

largest decrease in significance was seen when leaving out the larger experimental batches and 

strata (supplementary figure 19-22). 

Survival analyses indicate that white blood cell proportions and DNA methylation 
at five ALS-associated DMPs are associated with disease progression 

We performed multivariate Cox PH analyses on the 45 ALS-associated DMPs identified using 

the MOA and LB models. Test-statistics were combined using inverse variance-weighted fixed 

effects meta-analysis and checked for heterogeneity (Cochran’s Q test P < 0.1/45). A total of 

five probes showed a significant association with survival after correcting for known confounders 

and PCs (0.05/45=P < 1.11 × 10-3) and cross-validation between three sensitivity analyses. 

Effect sizes were moderate and showed both shorter and longer survival time between DNA 

methylation and overall survival (supplementary table 13).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.12.21253115doi: medRxiv preprint 

https://www.zotero.org/google-docs/?DSvzfv
https://www.zotero.org/google-docs/?8wTwxV
https://doi.org/10.1101/2021.03.12.21253115
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

All reported sites were not significantly affected by the addition of time-varying effects in the Cox 

PH model or by applying a restricted cubic spline with varying complexity to model the baseline 

log cumulative hazard (supplementary figure 23). Moreover, after adjusting for C9orf72 carrier 

status in the multivariate Cox PH model, the significant sites (besides the C9orf72 mapped 

probe) remained significantly associated with survival (supplementary figure 23). Four sites 

showed a significant eQTM effect with FKBP5, ATP8B2, SPIDR, and DHCR24 (Table 5).   

 
 
Table 5 - Significant sites associated with survival: Details of the sites significantly associated with 
survival. Position = Chromosome:bp (GRCh37), Nearest gene = nearest gene based on Ensembl 

GRCh37 (75), eQTM = the most significant eQTM for the respective probe, eQTM FDR = p-value 

corresponding to the most significant eQTM, FDR-corrected for the number of tests for the respective 

probe, PMS = Probe is part of the respective PMS (poly-methylation score), HR = Hazard Ratio, Trait = 

Overlap with significantly enriched traits from the MRC-IEU and NGDC EWAS databases (showing a 

maximum of five traits). Abbreviations: HGF = Hepatocyte growth factor. 

 

Probe Position Nearest 
gene 

eQTM 
(direction) 

eQTM 
FDR 

HR P-value PMS Traits 

cg14195992 8:48265917 SPIDR SPIDR (-) 0.0059 0.074 4.7 x 10-7     

cg03546163 6:35654363  FKBP5 FKBP5 (-) 0.016 0.19 2.7 x 10-5 HDLchol  

Body mass index, 
Waist 

circumference, 
Alcohol 

consumption per 
day, Chronic 

kidney disease 

cg09257526 1:154379696 IL6R ATP8B2† (-) 0.0031 0.0048 1.3 x 10-5  
Alcohol 

consumption per 
day 

cg17901584 1:55353706  DHCR24 DHCR24 (-) 2.9 x 10-

62 4.62 1.0 x 10-5 
BMI, 

HDLchol,
HGF 

Hepatic fat, BMI, 
Metabolic trait, 

(serum) 
Triglycerides 

cg01589155 9:27573532 C9orf72   46.99 2.0 x 10-4     

†The association between DNA methylation and the nearest gene was not significant (FDR > 0.05) 
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We also assessed whether the PMSs were associated with survival, finding that a higher 

proportion of granulocytes was significantly associated with decreased survival and a higher 

proportion of natural-killer cells was associated with increased survival (P < 1.3 × 10-3; lower 

panels Figure 3b-c, supplementary table 14). These results were robust in different models: a 

Cox PH model stratified on experimental batch and with time-varying effects and a restricted 

cubic spline to model the baseline log cumulative hazard (supplementary figure 24-25). 

Finally, the associations were not affected upon adjustment for C9orf72 status (supplementary 
figure 26).  
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Discussion 
 
Our study represents the largest case-control EWAS of any disease performed to date. Our 

unique dataset includes genome-wide DNA methylation data on over 10,000 individuals, with 

extensive clinical data and whole genome sequencing data available for the majority of 

samples. Following thorough quality control and extensive sensitivity analyses, we identified a 

total of 45 DMPs at which DNA methylation was significantly and robustly associated with ALS, 

with the majority representing novel findings not previously reported. Both gene set and trait 

enrichment analyses revealed enrichments for metabolic, cholesterol and inflammatory 

pathways. These findings were corroborated using a hypothesis-driven approach that leveraged 

published DNA methylation-based proxies for risk factors and exposures relevant to ALS. These 

analyses found that PMSs for BMI, HDL-cholesterol were independently associated with ALS. 

Moreover, we found a strong association between white blood cell PMSs and ALS, and show 

that an increased proportion of granulocytes is associated with worse patient survival. Finally, 

we show that several of the DMPs associated with ALS were also associated with survival, and 

could therefore be of interest as and could represent indicators of underlying disease 

processes. 

 
By utilizing enrichment analyses, poly-methylation scores and survival analyses we highlight 

various pathways and potential disease-modifiers in ALS. 

First, genes annotated to DMPs were enriched for pathways related to cholesterol biosynthesis. 

The main drivers of these enrichments include cg17901584 (DHCR24), cg06500161 (ABCG1), 

cg05119988 (MSMO1), and cg06690548 (SLC7A11). Of these, we found that DNA methylation 

levels at the first three sites were significantly associated with gene expression in blood. These 

genes are all involved in cholesterol biosynthesis and lipid transport, and DNA methylation at 

these sites has been robustly linked to HDL- and total cholesterol, triglyceride levels and BMI-

related traits such as diabetes and hepatic fat levels46–52. Moreover, both cg17901584 

(DHCR24) and cg06500161 (ABCG1) are part of the HDL-c PMS, and explain a considerable 

part of the significant association we found between elevated HDL-cholesterol levels and ALS.  

 

Interestingly, cg06690548 (annotated to SLC7A11) has also been previously associated with 

alcohol intake and related factors such as GGT and phosphatidylethanol levels11,53–55, and the 

association between the alcohol PMS and ALS was primarily driven by this site. Although we did 

not find a significant DNA methylation-gene expression relationship (eQTM) for this site, 
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previous work suggests that increased DNA methylation at cg06690548 is associated with 

downregulation of SLC7A11 in the brain. Interestingly, SLC7A11 encodes xCT, a cystine-

glutamate antiporter that imports cystine while exporting glutamate56, the former being an 

essential precursor of glutathione, the major antioxidant in the brain. It is possible therefore, that 

the association found in SLC7A11 -- and by extension the alcohol PMS -- is related to glutamate 

excitotoxicity and/or oxidative stress, rather than reflecting alcohol use.  

 

Second, both the EWAS trait enrichments and PMS analyses indicate that lower BMI levels are 

associated with ALS. Importantly, the BMI association remained significant after adjustment for 

other PMSs, including those of HDL-c and alcohol intake, although these PMSs are not perfect 

proxies of the respective covariates. Lower BMI has been consistently reported in ALS, and may 

be explained by several factors including hypermetabolism57, increased levels of physical 

activity prior to disease onset58 or muscle loss and eating difficulties after onset of disease. It is 

also interesting to note that our findings support the hypothesis that ALS is associated with a 

favorable cardiovascular profile59,60. Supporting findings include lowered BMI and higher HDL-c 

levels in ALS patients as indicated by the PMS analyses, and opposite effects at overlapping 

sites between ALS and traits such as BMI, triglycerides, waist circumference, fasting glucose, 

and type II diabetes as indicated by the trait enrichment analyses. However, since our study 

cannot reliably distinguish whether phenomena occur prior to or after onset of disease, we need 

to be cautious to conclude that a favourable cardiovascular profile is a risk factor for developing 

ALS. The Mendelian randomization (MR) analyses in our accompanying GWAS study26 do not 

support a causal role for cardiovascular traits including BMI, triglycerides, blood pressure, 

smoking, physical activity, BMI, coronary artery disease, or stroke, but do support a causal role 

for cholesterol. This shows that the causal role for cholesterol in ALS might be independent from 

a potential cardiovascular mechanism, for example through the interplay between lipid levels 

and autophagy61 as illustrated by a recent study showing that high cholesterol levels lead to 

increased protein aggregation through autophagy impairment in mouse models of Alzheimer’s 

disease62. Whether the other independently related traits (BMI and alcohol intake) are causally 

associated with ALS, or are indicators for ALS pathophysiology, needs further study. These 

relations can be complex, for example we recently showed that BMI, smoking, alcohol intake 

and physical activity can have a genotype and time dependent relationship with ALS63.  
 

Third, our results point towards a role of the immune system in ALS. The EWAS results were 

enriched for immune-related traits including IgE and allergic sensitization, and importantly, these 
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results were independent of predicted white blood cell proportions. Sites driving these 

enrichments included, among others, cg06528816 (TTC7A) and a cluster of three probes in the 

ZFPM1 gene, both implicated in immune-related traits such as IgE64, asthma65,66 and allergic 

sensitization67. Our PMS analyses corroborate the role of immunity in ALS as we found that 

white blood cell proportions were altered in ALS, with a higher ratio of granulocytes and a lower 

ratio of lymphocytes in ALS patients (CD4T-cells, CD8T-cells, and NK-cells). Interestingly, a 

recent study showed that white blood cell alterations are shared between neurodegenerative 

diseases (Alzheimer’s, Parkinson’s disease and ALS)68. These findings indicate that WBC 

alterations are not specific to ALS and are therefore more likely to be a consequence of 

disease, and thus their value is more likely related to disease activity rather than etiological. 

Indeed, in our study we found that increased granulocyte proportions are associated with worse 

prognosis, whereas NK-cell proportions are associated with better prognosis, indicating that 

WBC proportions have prognostic value. The role of immunity is further supported by our 

observation that various inflammatory protein PMSs such as CRP, IL6, TGF-ɑ and CCL11 were 

elevated in ALS patients, although these differences became insignificant upon adjustment for 

principal components. Our findings are in line with previous studies that identified higher ratios 

of neutrophils and/or granulocytes to lymphocytes in ALS patients69,70, elevated levels of 

inflammatory proteins71, and an association between higher neutrophil proportions and worse 

prognosis72. Although immune alterations could be part of a systemic aspect of ALS, there is 

evidence that suggests that the peripheral immune system contributes to neuroinflammation, 

the latter being an established phenomenon in ALS as well as other neurodegenerative 

diseases73,74. Especially interesting in this regard is that recent evidence shows that mast cells 

infiltrate skeletal muscles at the neuromuscular junction and degranulate to help recruit 

neutrophils75,76, which prevent reinnervation capacity and may thus be a potential mechanism 

causing worse prognosis. In line with this, we identified an enrichment for IgE (and related traits 

such as allergy and atopy), which activate mast cells, and found that increased proportions of 

granulocytes were associated with ALS and patient survival. Thus, these findings could be of 

interest for new treatments, especially given that mast cell activity can be influenced77. 

 
Finally, 8 out of the identified 45 sites were reported in a recent study on shared DNA 

methylation alterations across Parkinson’s disease, Alzheimer’s disease and ALS68. Of these 

ALS-associated DMPs we identified associations between DNA methylation and survival within 

5 of the 45 DMPs annotated to FKBP5, ATP8B2, SPIDR, and DHCR24. Interestingly, the 

majority (4 out of 5) of sites that we found to be associated with disease progression were 
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among the overlapping sites. It could therefore be speculated that these sites represent shared 

pathways involved in neurodegeneration and could therefore have clinical utility.   

 

Several recent findings are relevant to our current study.  

First, the largest ALS EWAS up to this date25 has reported that white blood cell proportions were 

associated with ALS. We replicate these findings, and additionally show that WBC proportions 

are associated with prognosis.  

Second, the DNA methylation changes that we identified in the CpG island just upstream of the 

C9orf72 G4C2 repeat and within the repeat itself have been previously reported in carriers of the 

C9orf72 repeat expansion78–80. In line with this, we found that these associations were driven by 

the C9orf72 carriers in our data.  

Third, we do not replicate the recently reported association between epigenetic age acceleration 

and survival81. Importantly, in our analyses we adjusted for sampling age, as it has been shown 

to be crucial when studying epigenetic age acceleration82, especially given that age of onset 

affects disease progression in ALS83. As we show in supplementary figure 27 both survival 

and age of onset were significantly associated with age acceleration when sampling age was 

not accounted for, but became insignificant upon adjustment. Additionally, in our case/control 

analysis we observed substantial heterogeneity among strata (Cochran’s Q test P = 5.8 x 10-4), 

hence our results do not support a unambiguous role for age acceleration. 
 
One limitation of this study is that the cross-sectional nature of our study hinders inferences 

about causality. Mendelian randomization analyses, presented in our accompanying GWAS, 

can aid in identifying causal relations in observational data, as evidenced by the finding that 

cholesterol levels are causally related to ALS. The GWAS MR analyses (SMR84) did not find 

significant evidence for a causal role of the sites identified in this study. Although this may 

reflect a lack of power, it could indicate that the results reflect the consequences of disease 

processes rather than causal mechanisms. In that case, the value of the identified DNA 

methylation changes would lie primarily in revealing underlying disease processes in ALS. 

Furthermore, our survival analyses show that the results could be of interest as potential starting 

points for new disease-modifying treatments. Future studies could further investigate causality 

in longitudinal samples, which although scarce and often small, are expected to become more 

readily available with the increasing number of larger-sized prospective cohorts.  
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We further note that we collected DNA from whole blood rather than from brain tissue, given 

that our aim was to identify peripheral biomarkers reflecting underlying disease processes and 

traits/exposures related to disease. In contrast to brain tissue, blood DNA methylation is easily 

accessible and allows for sampling close to disease onset. Combined with the ever growing 

body of literature on, and biomarkers of, various traits and exposures, it makes blood DNA 

methylation ideal for biomarker purposes85. However, given the tissue-specificity of DNA 

methylation, further studies are needed to assess ALS-associated DNA methylation changes in 

the brain.   

 

Finally, we note that although the stringent adjustment for confounding we applied by using PCs 

and random effects models (i.e. OSCA28) is key in combating test statistic inflation in EWAS, it 

may have obscured biological signals of interest. For example, we show that the recent OSCA 

MOA algorithm results in a substantially lower (but overlapping) number of identified DMPs 

compared to the often used method of including principal components followed by adjustment 

for inflation/bias in test-statistics (termed the LB algorithm in this study). Interestingly, our results 

indicate that the additional DMPs identified using the LB algorithm are enriched for inflammatory 

pathways and traits, which corroborates previous findings that suggest that uncaptured variation 

can be explained by cell type heterogeneity and related immune processes86,87. Similarly, we 

show that various immunological proteins such as CRP, IL6, TGF-ɑ and CCL11 became 

insignificant upon PC adjustment. More generally, this relates to the discussion on whether to 

treat variables such as cell type proportions as nuisance variables in an EWAS, or view them as 

variables that provide valuable information in themselves88,89. In this study we therefore struck a 

balance by opting for a two-way approach, combining a stringently corrected EWAS with a more 

targeted approach where we studied “confounders'' such as WBC proportions, smoking and 

BMI as outcomes of interest, assessing them with both stringent (i.e. including PCs) as well as 

more lenient models.  

 
To conclude, we present the largest case-control DNA methylation study to date, employing a 

comprehensive approach integrating methylomic, genomic and clinical data. We identify 45 

differentially methylated sites, and by utilizing enrichment analyses, poly-methylation scores and 

survival analyses we highlight a potential disease-modifying role for caloric intake, cholesterol 

metabolism and inflammation. In our accompanying GWAS paper, we show that cholesterol 
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levels are causally related to ALS. Regardless of the exact etiologic role of the other identified 

pathways, these constitute potential targets for intervention in ALS patients. 
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Methods 
 
Cohorts 
We obtained DNA methylation and phenotypic/lifestyle data from 10,462 individuals (cases N = 

7,344, controls N = 3,118) in fourteen different cohorts. Patients were diagnosed with definite, 

probable, and probable lab-supported ALS according to the revised El Escorial Criteria90.  

Population-based controls were matched for age, sex, and geographical region in a 1:2 ratio and 

not screened for (subclinical) signs of ALS. Detailed descriptions of each cohort are provided in 

the Supplementary Note. Experimental batches were processed in the same lab and sequenced 

in the same series, resulting in 44 independent batches after quality control. Strata for analyses 

were defined as samples within the Project MinE sequencing consortium separated by array 

technology (MinE 450k and MinE epic) and Australian data separated by signal intensities (AUS 

1 and AUS 2).  

 
DNA methylation profiling 

For the Project Mine samples, venous blood was drawn from patients and controls from which 

genomic DNA was isolated using standard methods. We set the DNA concentrations at 100ng/l 

as measured by a fluorometer with the PicoGreen© dsDNA quantitation assay. DNA integrity 

was assessed using gel electrophoresis. Genomic DNA (~1 µg) was bisulfite-treated at a central 

site using Zymo Bisulfite Conversion Kits (Zymo Research, Orange, CA). DNA methylation was 

analyzed using the Infinium Methylation450k array (N=4,903) or Infinium EPIC array (N=4,300), 

according to the standard Infinium HD array methylation protocol (Illumina, San Diego, CA, 

USA).   

The AUS ALS datasets were profiled as described in ref25.  

QC & Normalization 
 

Sample QC. Quality control and normalization was performed separately for the four strata 

(MinE 450k, MinE EPIC, AUS1 and AUS2). The following metrics were used to exclude 

samples, the exact thresholds used for each stratum are listed in supplementary table 1, and 

the number of samples failed on each metric are listed in supplementary table 2. QC figures 

for each stratum are provided in supplementary file 1. 
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1. Median methylated and unmethylated intensities.  

2. Median red/green intensity ratios calculated in type I probes.  

3. Discordance between reported sex and predicted sex based on the getSex function in 

the minfi R package91.  

4. The OP (non-polymorphic controls) and Hyb (hybridization controls) metrics as 

implemented in the MethylAid R package92.  

5. Bisulfite conversion rate based on the bscon metric as implemented in the wateRmelon 

R package31.  

6. Fraction of probes with high detection P-values and/or measured by a low number of 

beads.  

7. Samples that failed on the inbreeding metric in the corresponding whole-genome-

sequencing (WGS) data. Quality control of the Project MinE WGS data was performed 

as described earlier93.  

8. Genotype concordance. Briefly, we used the omicsPrint R package to select 413 probes 

that reliably measured underlying SNPs and were present in the WGS-derived SNP 

data94. We performed identity-by-state (IBS) between the DNAm-inferred SNPs and the 

WGS-derived SNP data using the allelesharing function.  
9. After removing samples that failed on any of the steps listed above, we performed PCA 

on the control probes present on the array. Samples that had values larger than 3.5 

standard deviations of the mean on the first two principal components (PCs) were 

excluded. 

 
Normalization. After quality control, signal intensities for all strata except AUS1 were normalized 

using the dasen function as implemented in the wateRmelon package31. Since the signal 

intensities in the AUS1 stratum showed dye bias (supplementary file 1: QC figure 50), this 

stratum was normalized using the nanes function, which is similar to the dasen function, except 

that it corrects for dye bias prior to normalizing the signal intensities.  

 
Probe Filtering. After normalization, we set all the measurements with detection P-value > 1 × 

10-16 or measured by <3 beads to missing95. Within each stratum we then removed probes with 

>5% missing data. 
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Post-normalization filtering. After sample QC, normalization and probe filtering, we further 

excluded samples based on the following criteria (supplementary table 3):  
1. Discordance between chronological (reported) age and predicted age13. In each stratum 

we regressed DNA methylation age on chronological age, and excluded samples whose 

residuals from this regression were more than 4.5 standard deviations from the mean.  

2. We performed principal component analyses on the normalized β-values. Samples that 

had values larger than 4 standard deviations from the mean on the first two PCs were 

excluded.  

3. Samples with non-MND diagnosis or missing phenotype info were excluded.  

4. For each related pair of individuals (identical or first-degree) we excluded one individual 

to obtain a set of unrelated individuals. 

 
EWAS 
 
We used two approaches to test for an association between disease status and variable DNA 

methylation while controlling for known and unknown confounding factors.  

 

Principal components + bacon (LB model). We performed linear regression at each site, 

adjusting for sex, experimental batch, predicted age, predicted white blood cell (WBC) fractions, 

30 control probe PCs and a variable number of PCs derived from all measured sites. PCs were 

calculated by regressing the β-values on the covariates listed above, followed by performing 

principal component analysis on the residuals from this regression. We optimized the number of 

PCs included in each stratum by evaluating the sample-size normalized inflation factors (λ1000)96:  

 

𝜆!""" 	= 	1	 +	(𝜆#$% 	− 	1) 	∗ 	 (
1

𝑛&'%(%
	+ 	

1
𝑛&#)*+#,%

)	/	(
1

𝑛&'%(%,!"""
	+ 	

1
𝑛&#)*+#,%,!"""

) 

 

after employing the following linear regression at each site:  

𝐷𝑁𝐴𝑚. 	= 	𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	 + 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+ 	𝑃𝐶1 − 30&*+,/0+#$(% +

	𝑃𝐶1 −𝑚  

 

where m is in {0,5,10,15,20,25,30}. 
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The number of PCs were chosen so that for each stratum λ1000 ≤ 1.15. We then corrected for 

remaining inflation and/or bias in test-statistics of each stratum using bacon (implemented in the 

bacon R package)27. Hereafter we refer to this model (linear model followed by bacon) as the 

LB model. 

 

Mixed linear model. We used a mixed-linear model approach as implemented in the MOA 

algorithm included in the OSCA software (v0.45)28. Briefly, this algorithm tests for an association 

between the methylation status of a CpG-site (β-value) and a trait (case/control status) while 

fitting all the other probes as random effects. This method is based on the assumption that 

including distal probes as random effects accounts for correlations induced by (unobserved) 

confounding factors. In addition to the random effects, we included sex, predicted age and 

experimental batch as fixed effects.  

 

Meta-analysis. Test-statistics across strata were combined using an inverse variance-weighted 

fixed-effects meta-analysis as implemented in the metagen function in the meta package29. We 

assessed heterogeneity using Cochran’s Q test, and considered sites significantly 

heterogeneous if Cochran’s Q test P-value (corrected for the number of significant sites) was < 

0.1. Sites where P < 9 × 10-8 were considered genome-wide significant, as recommended for 

the EPIC array based on an empirical estimate of the independent number of tests33.  

 

EWAS sensitivity analyses 
 
We performed various sensitivity analyses to assess whether the EWAS results were robust to 

varying analysis strategies or driven by measured biological factors.  

 

Technical Sensitivity Analyses. The following technical sensitivity analyses were performed:  

1. We performed an EWAS on M-values (defined as 𝑙𝑜𝑔1(
2

!/2
)) instead of β-values.  

2. We performed an EWAS including only the Project MinE samples (N=8371; excluding 

the external Australian samples).  

3. We performed an EWAS where we normalized the signal intensities using functional 

normalization30 instead of dasen and nanes31.  

4. We performed an EWAS where we left out experimental batches that included only ALS 

patients and no controls. 
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Biological Sensitivity Analyses. The following biological sensitivity analyses were performed:  

1. To assess whether results were influenced by riluzole use, we performed an EWAS on 

riluzole usage (yes/no) in 2,254 ALS patients for which data was available. These 

included 1,803 patients that used riluzole and 451 patients that did not use riluzole at 

time of blood draw respectively.  

2. To assess whether results were driven by patients carrying the C9orf72 (C9) repeat 
expansion (the most common genetic cause of ALS), we performed an EWAS where we 

excluded individuals carrying the C9 repeat expansion. We restricted the analysis to 

individuals for which C9 status was available, and who did not carry the C9 repeat 

expansion (N = 7,839, removed 371 C9 carriers; based on a ≥30 repeat cutoff as 

determined by ExpansionHunter97). We compared this C9-negative EWAS to an EWAS 

including C9-carriers where we randomly downsampled the number of samples to match 

the sample size of the C9-negative EWAS.  
3. To assess whether the results were driven by genetic variation, we employed the 

available whole genome sequencing (WGS) data (available for 7,939 samples). We 

considered two sets of genetic variants: (1) all variants (SNVs) in cis of the CpG-site 

(<250Kb) and (2) variants reported as trans-mQTLs in blood for the respective CpG in 

the GoDMC consortium atlas of genetic effects (for 11 DMPs at least one trans-mQTL 

was reported)35. For each SNP (j) annotated to CpG-site (i), we ran the following 

regression:  

 

𝐷𝑁𝐴𝑚. 	= 𝐶𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑠𝑡𝑎𝑡𝑢𝑠	 + 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+ 	𝑃𝐶1 −

30&*+,/0+#$(% −𝑚 +	+	𝑃𝐶1 −𝑚	 + 	𝑆𝑁𝑃3  

 

Where m = 30 for the MinE 450k stratum and m = 15 for the MinE EPIC stratum. 

 

Probe filtering 
 
Probes were filtered based on the following criteria:  

1. A ≥14bp 3’-subsequence inexact match to the C9 repeat expansion32 

2. A ≥30bp 3’-subsequence inexact off-target match to the reference genome.  

3. Low mapping quality based as determined by Zhou et al.98.  
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4. Given that we have genetic data available for most samples, we tested whether 

significant probes were driven by nearby (<250Kb) genetic variants, instead of removing 

probes containing SNPs a priori. Non-significant probes (used as background for 

enrichment analyses) were filtered based on containing a SNP with MAF > 0.01 

(European population) within 5bp of the 3’-end of the probe98. 

 
Gene mapping & eQTMs 
 
We mapped CpG-sites to the nearest protein-coding gene within 250kb based on Ensembl 

(GRCh37).  

We tested whether the DNA methylation levels of the significant CpG-sites were associated with 

the expression of nearby genes in blood using an external dataset (BBMRI; 

https://www.ebi.ac.uk/ega/studies/EGAS00001001077) for which gene expression (RNAseq) 

and DNA methylation data (450k array) are available for 3,251 samples34. For each CpG-site, 

we tested for an association between DNA methylation and gene expression levels of nearby 

genes (<250kb), correcting for age, sex, strata, white blood cell composition and 20 PCs (10 

PCs derived from gene expression data, and 10 PCs derived from the DNA methylation data). 

We corrected the test-statistics for bias and inflation (estimated based on the association 

between DNA methylation and expression levels of all genes, using the R package bacon27).  

 

Enrichment analyses 
 
Gene Set Analysis. GO and KEGG enrichment analyses were performed using the 

methylgometh function in the methylGSA R package37,99. This method takes into account that 

the number of CpGs assigned to each gene differs by accounting for the probability of a gene 

being selected using Wallenius’ noncentral hypergeometric distribution. We restricted the 

analysis to GO/KEGG categories that included at least 10 and at most 500 genes. All tested 

probes were used as background, and the P-values were adjusted for the number of categories 

tested using the Benjamin-Hochberg method. We considered both the default threshold used in 

the methylGSA package (P < 0.001) and the stringent genome-wide significance threshold (9 x 

10-8) to select DMPs for enrichment analyses. Enrichment analyses were performed using both 

nearest gene annotations as well as eQTM annotations. In the eQTM enrichment analyses we 

restricted the analysis to sites that had a significant eQTM-association after accounting for 
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multiple testing using a two-step approach as described previously100. This resulted in 79,441 

eQTM-annotated sites that were considered for the enrichment analysis. 

 

EWASdb enrichments. We tested whether the identified sites significantly overlapped with CpG-

sites associated with other traits using publicly available EWAS databases (EWASdb39 and the 

MRC-IEU EWAS Catalog38). For each trait present in the EWAS databases, we overlapped the 

trait-associated CpG-sites with the ALS-associated CpG-sites. Fisher’s exact test was used to 

test for a significant enrichment (FDR < 0.05) relative to a background consisting of all probes 

included in the database. The resulting P-values were adjusted for the number of traits tested 

using the Benjamin-Hochberg method. We limited the analysis to traits that were associated 

with more than 5 and less than 5,000 CpGs and that were studied in blood-related tissues. 

Since the great majority of the EWASs in these databases are based on the 450k array, we 

limited the analyses to 450k array probes. 

The Louvain algorithm as implemented in the igraph R package was used to identify clusters 

among the significantly enriched traits40,101. We further identified independent clusters of traits 

by removing the probes linked to the most significant trait, followed by retesting for enrichment 

among the remaining probes. We repeated this algorithm, retaining traits that were nominally 

significant (P < 0.05), until at most one trait remained significant.  

 
Poly-methylation scores 
 

Derivation of poly-methylation scores. We considered the following poly-methylation scores: 

smoking14,42, alcohol intake11,14, BMI12,14, HDL-c14, LDL-c14, total cholesterol14, CRP15, white 

blood cell proportions102 (CD8T-cells, CD4T-cells, NK-cells, Monocytes, Granulocytes, and B-

cells), DNA methylation age13,44,45, and a collection of 27 immunological and neurological 

plasma proteins16,103.  

The WBC proportions were estimated using the robust partial correlations (RBC) method as 

implemented in the EpiDISH R package. The Zhang et al. age predictions were calculated using 

the scripts provided by the authors (https://github.com/qzhang314/DNAm-based-age-predictor). 

The Horvath age predictions were calculated using the supplementary code44. The EpiSmokEr 

smoking PMS were calculated using the EpiSmokEr R package 

(https://github.com/sailalithabollepalli/EpiSmokEr). The Liu et al. alcohol PMS were calculated 

using the dnamalci R package (https://github.com/yousefi138/dnamalci)41.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.12.21253115doi: medRxiv preprint 

https://www.zotero.org/google-docs/?mNhtQd
https://www.zotero.org/google-docs/?nQQ9ka
https://www.zotero.org/google-docs/?vR1bzt
https://www.zotero.org/google-docs/?CDdAVL
https://www.zotero.org/google-docs/?aHkBTH
https://www.zotero.org/google-docs/?2S09NA
https://www.zotero.org/google-docs/?wZrv4v
https://www.zotero.org/google-docs/?KzB1wy
https://www.zotero.org/google-docs/?S3y8CA
https://www.zotero.org/google-docs/?C7jUL9
https://www.zotero.org/google-docs/?0y7iRK
https://www.zotero.org/google-docs/?LksYz5
https://www.zotero.org/google-docs/?SEoOUR
https://www.zotero.org/google-docs/?v956XI
https://github.com/qzhang314/DNAm-based-age-predictor
https://www.zotero.org/google-docs/?GHmH65
https://github.com/sailalithabollepalli/EpiSmokEr
https://www.zotero.org/google-docs/?ZavKNw
https://doi.org/10.1101/2021.03.12.21253115
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

For all other PMSs, we downloaded the respective coefficients and calculated the PMS by 

multiplying each coefficient by the respective DNA methylation levels and summing these 

values: 

𝑃𝑀𝑆	 = 	H𝛽.	 × 𝐶𝑝𝐺.

5

.	

 

 
Validation of poly-methylation scores. Intermediate phenotypes were validated in a Dutch cohort 

of approximately 2000 individuals (2:1 case/control ratio) of which measured biomarker data 

was collected for 800 individuals (supplementary table 4). Collected biomarker data <1 week 

and phenotypic data < 52 weeks after the collection of blood for DNA methylation profiling were 

excluded from all analyses. Furthermore, CRP values >100 mg/L were considered an indicator 

of significant infection104 and were therefore not included for validation of the poly-methylation 

scores (PMS).  

Linear regression models were used to identify the proportion of phenotypic variance explained 

by the corresponding PMS.  Diagnosis, predicted age,sex, batch, cellcounts and 30 control 

probe PCs were considered as covariates in the null model, whereby the phenotypic measure 

was the dependent variable, if available: 

 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	 = 	𝑃𝑀𝑆	 + 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+ 	𝑃𝐶1 − 30&*+,/0+#$(% 

 

Incremental R² estimates were calculated between the null model and the models with the PMS 

of interest. The incremental R² estimates were used to determine whether the PMS increased 

the predictive ability above and beyond that provided by an existing model. Therefore, our 

analysis was limited to PMS with an incremental R² of at least 0.05 when intermediate 

phenotype/biomarker data was available. 

Intermediate phenotypes/biomarker data were available for age (years), cigarettes (self-reported 

number of cigarettes in a year), alcohol (self-reported units of alcohol a week), Granulocytes 

(absolute counts), Monocytes (absolute counts), BMI (kg/m2), CRP (mg/L) , total cholesterol 

(mmol/l) , LDL-cholesterol(mmol/l), HDL-cholesterol (mmol/l). 

Association testing. For each stratum, we tested for an association between the PMS and 

case/control status using logistic regression, the following regression models were used for 

HDL-c, BMI, alcohol intake, smoking, CRP and the immunological/neurological proteins:  
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𝐶𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑠𝑡𝑎𝑡𝑢𝑠	 = 	𝑃𝑀𝑆	 + 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+ 	𝑃𝐶1 −

30&*+,/0+#$(% + 	𝑃𝐶1 −𝑚  

 

Where m = 30 for the MinE 450k stratum, m = 15 for the MinE EPIC stratum, m = 25 for the 

AUS2 stratum and m = 30 for the AUS2 stratum.  

 

for DNA methylation age we additionally adjusted for age at blood draw, thus representing age 

acceleration82: 

 

𝐶𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑠𝑡𝑎𝑡𝑢𝑠	 = 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝐴𝑔𝑒	𝑎𝑡	𝑏𝑙𝑜𝑜𝑑	𝑑𝑟𝑎𝑤	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+  

																							𝑃𝐶1 − 30&*+,/0+#$(% + 	𝑃𝐶1 −𝑚  

 

Where m = 30 for the MinE 450k stratum, m = 15 for the MinE EPIC stratum, m = 25 for the 

AUS1 stratum and m = 30 for the AUS2 stratum.  

 

For the white blood cell proportions we did not adjust for array-wide principal components, given 

that the top principal components essentially represent white blood cell proportions87: 

 

𝐶𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑠𝑡𝑎𝑡𝑢𝑠	 = 	𝑊𝐵𝐶	 + 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐴𝑔𝑒	 + 	𝑆𝑒𝑥	 + 	𝐵𝑎𝑡𝑐ℎ	 +	𝑊𝐵𝐶(%* 	+ 	𝑃𝐶1 −

30&*+,/0+#$(%  

 

Strata test-statistics were combined using an inverse-variance-weighted, fixed-effects meta-

analysis using the metagen function in the meta R package29. We corrected for the number of 

PMSs tested using the Bonferroni correction (0.05/39 = P < 1.3 × 10-3). 

 
Survival. We used a multivariate Cox proportional hazards regression model to test for an 

association between survival and PMSs, adjusting for predicted age, sex, batch, estimated 

white blood cell proportions, 30 control probe PCs and a variable number of principal 

components, as described in the ‘Principal components + bacon’ section.  
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Survival analyses 
 
Association testing. To investigate whether PMSs and the 45 significant sites were associated 

with survival, we applied multivariate Cox proportional hazards (PH) regression models utilizing 

the coxph function of the survival R package. Individuals with known overall survival, defined as 

the time from the date of a patient's onset to the date of death or last known follow-up were 

included (450k: N = 2,892, EPIC: N = 2,363). Overall survival in months was defined as 

outcome of interest in the multivariate Cox PH model.  

For the individual sites, we used multivariate models and corrected for bias and inflation similar 

as described in the ‘Principal components + bacon’ section. Significant sites from the MOA and 

LB model were selected for survival analysis. 

For the PMSs, we used multivariate models as described in the ‘Poly-methylation Scores’ 

section.  

The proportional hazards (PH) assumption of the Cox model was checked using Schoenfeld 

and martingale residuals. Test-statistics were combined using inverse variance-weighted fixed 

effects meta-analysis. Sites were considered significantly heterogeneous when Cochran’s Q P-

values < 0.1 (corrected for the number of tests performed). 

 
Sensitivity analyses. Sensitivity analyses were performed to assess robustness of the Cox PH 

output after recognition of a violation in the proportional hazards assumptions. We applied two 

sensitivity analyses proposed to detect and model such time-varying effects 105,106.  

 

First, the multivariate cox model, as described above, was stratified by batch allowing the 

underlying hazard function to vary across the experimental batch levels. Moreover, the variable 

predicted age was added as a log transformed time-varying covariate. 

Second, flexible survival regression using the Royston-Parmar (RP) spline model was 

performed utilizing the flexsurvspline function from the R package flexsurv. This model utilizes 

restricted cubic splines permitting the estimation of a continuous function instead of a step 

function which takes into account time varying issues encountered when using the Cox PH.  

Model complexity was assessed by the addition of up to five knots compared to one single knot. 

Lastly, we evaluated the predictive effect of C9orf72 carrier status on survival by adjusting for 

C9 in the multivariate model described above.  
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Data availability 
All summary statistics are available as supplementary data. Raw data will become available 

after peer review. 
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