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ABSTRACT 47 

A major goal of genomic medicine is to quantify the disease risk of genetic variants. 48 

Here, we report the penetrance of 37,772 clinically relevant variants (including those 49 

reported in ClinVar1 and of loss-of-function consequence) for 197 diseases in an 50 

analysis of exome sequence data for 72,434 individuals over five ancestries and six 51 

decades of ages from two large-scale population-based biobanks (BioMe Biobank and 52 

UK Biobank). With a high-quality set of 5,359 clinically impactful variants, we evaluate 53 

disease prevalence in carriers and non-carriers to interrogate major determinants and 54 

implications of penetrance. First, we associate biomarker levels with penetrance of 55 

variants in known disease-predisposition genes and illustrate their clear biological link to 56 

disease. We then systematically uncover large numbers of ClinVar pathogenic variants 57 

that confer low risk of disease, even among those reviewed by experts, while 58 

delineating stark differences in variant penetrance by molecular consequence. 59 

Furthermore, we ascertain numerous variants present in non-European ancestries and 60 

reveal how increasing carrier age modifies penetrance estimates. Lastly, we examine 61 

substantial heterogeneity of penetrance among variants in known disease-62 

predisposition genes for conditions such as familial hypercholesterolemia and breast 63 

cancer. These data indicate that existing categorical systems for variant classification 64 

do not adequately capture disease risk and warrant consideration of a more quantitative 65 

system based on population-based penetrance to evaluate clinical impact.  66 

 67 

 68 
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 The advent of high-throughput sequencing has led to an exponential increase in 70 

genetic tests for health-related purposes2,3. The American College of Medical Genetics 71 

& Genomics (ACMG) recommends clinical action if a pathogenic genetic variant is 72 

found in one of 59 genes (hereafter ACMG59)4. This “genetics-first” approach is feasible 73 

if variant pathogenicity is ascertained with high confidence and veracity. A large 74 

database of human variation and phenotypes, ClinVar1, classifies variant pathogenicity 75 

in a scheme that informs clinical interpretation of genetic test results (e.g., “pathogenic”, 76 

“uncertain significance”, “benign”)5. However, most ClinVar variants are of uncertain 77 

clinical significance, and misclassification of 12% of pathogenic and 90% of conflicting 78 

variants has inflated their pathogenicity6. Variants implicated in diseases from breast 79 

cancer to cardiomyopathy have been scrutinized for overestimated claims of 80 

pathogenicity7 and many variants classified as pathogenic were recently downgraded to 81 

lower ClinVar classes8. Any unreliability of pathogenicity, already a categorical rather 82 

than quantitative metric of disease risk, further diminishes its clinical value. There is 83 

therefore a critical need to provide accurate information for a variant’s effect on disease 84 

to guide patient care. 85 

 Penetrance, the probability of a disease phenotype given a particular genotype9, 86 

is unknown for the vast majority of variants in ClinVar and genetic databases. Well-87 

known exceptions include ~60% of carriers of certain BRCA1 and BRCA2 variants 88 

develop breast cancer by 70 years of age10 and 73% of individuals heterozygous for 89 

LDLR variants present with hypercholesterolemia11. Findings of highly penetrant 90 

variants immediately guide treatment, such as statins, and screening, such as 91 
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mammograms12,13. Penetrance thus gives meaningful and actionable information for 92 

variants by quantifying a carrier’s disease risk. 93 

 Until recently, penetrance has been primarily derived from family-based or 94 

clinical cohort studies14–17. These typically focus on a small number of genes and 95 

inherently maximize penetrance estimates by recruiting patients with disease or family 96 

history of disease, and are therefore susceptible to ascertainment bias18. Small sample 97 

size and genetic or environmental modifiers further limit their ability to reliably appraise 98 

penetrance19. In contrast, the recent introduction of the UK Biobank (UKB) and other 99 

population-based biobanks has created a trove of genetic and phenotypic data for large 100 

numbers of unrelated individuals20,21. Exome sequences coupled to electronic health 101 

records (EHRs) provide an unprecedented opportunity for using a population-based 102 

method to measure penetrance on a large scale with less ascertainment bias than 103 

traditional studies22. In addition, multi-ethnic biobanks such as Mount Sinai’s BioMe 104 

Biobank (BioMe)23 enable the analysis of penetrance across diverse ancestries. Recent 105 

studies have begun to use a population-based approach to explore penetrance of genes 106 

in breast cancer24 and familial hypercholesterolemia (FaH)25, yet the population-based 107 

penetrance of most variants, genes, and diseases remains uncharacterized. 108 

 Here, we perform a comprehensive analysis of variant penetrance observed in 109 

two large-scale EHR-linked population-based biobanks (BioMe and UKB). We 110 

measured the penetrance of 37,772 variants, including a high-quality set of 5,359 111 

clinically impactful variants, for 197 diseases of dominant inheritance using exome 112 

sequences from 72,434 individuals. Penetrance was analyzed in all individuals and 113 

separately in five ancestries across six decades of ages. We investigated determinants 114 
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of penetrance, including ClinVar pathogenicity, variant molecular consequence, and 115 

carrier ancestry and age. The clinical manifestation of variants was scrutinized by 116 

examining metabolite levels, biological measurements, and physician notes for carriers, 117 

and clinically significant variants and genes were highlighted. This highly scalable, 118 

population-based approach of generating penetrance estimates for thousands of 119 

clinically relevant variants expands our knowledge of the genetic influences on disease 120 

and has the potential to advance genomic medicine.  121 

 122 
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RESULTS 138 

Analysis of penetrance of clinical variants 139 

 A graphical abstract is provided (Supplementary Figure 1). Whole-exome 140 

sequencing, quality control, and filtering were performed on 80,773 samples from two 141 

population-based EHR-linked biobanks (Methods) to generate a final dataset with 142 

72,434 individuals (Table 1). Demographics, self-reported ancestry, biological 143 

measurements, and International Classification of Disease 10 (ICD-10) diagnosis codes 144 

were available for individuals in the final dataset. We defined case-control status for 145 

over 400 non-recessive diseases in ClinVar sourced from the Systematized 146 

Nomenclature of Medicine Clinical Terms (SNOMED CT)26 using ICD-10 codes27, of 147 

which 197 had at least one case in the final dataset (Supplementary Table 1). We 148 

analyzed 37,772 variants that were either reported in ClinVar for at least one of the 149 

aforementioned diseases or were of predicted loss-of-function (LoF) consequence 150 

(Supplementary Table 2). A stringent set of 5,359 clinically impactful (impactful) 151 

variants—defined by pathogenic/likely pathogenic classification in ClinVar or LoF 152 

annotation (splice acceptor/donor, stop gained/lost, frameshift, start lost) with Variant 153 

Effect Predictor28 in a gene mediating disease via LoF mechanism, and in a gene with 154 

non-recessive inheritance—was used for downstream analyses unless otherwise stated 155 

(Supplementary Figure 2). We identified carriers with at least one allele (hereafter 156 

referred to as carriers) for each variant and computed the proportion of carriers affected 157 

with disease to determine penetrance. Variant penetrance was estimated in all carriers 158 

and separately in carriers of five diverse ancestries and six age ranges. The proportion 159 
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of non-carriers affected with disease was also quantified for each variant to ascertain 160 

disease prevalence among the population in the absence of a scorable variant.  161 

 162 

Validation of phenotyping and penetrance approach  163 

We performed a series of analyses to validate our population-based approach of 164 

phenotyping and computing penetrance. First, we selected nine diseases from a variety 165 

of systems—age-related macular degeneration (AMD), arrhythmogenic right ventricular 166 

cardiomyopathy (ARVC), FaH, familial breast cancer (FBC), type 2 diabetes (T2D), 167 

etc.—and identified cases using both ICD-10 diagnosis codes and previously published 168 

clinical algorithms29–37. We then evaluated and compared the penetrance of 208 ClinVar 169 

pathogenic variants corresponding to the diseases in BioMe using both phenotype 170 

approaches (Supplementary Table 3). Similar penetrance values were observed for all 171 

diseases. Three diseases (Brugada syndrome, hepatocellular carcinoma, and 172 

pulmonary arterial hypertension) had equivalent mean variant penetrance with both 173 

approaches; mean variant penetrance of the other six diseases varied by 8% or less. A 174 

tabulated list of these results is provided (Supplementary Table 4).  175 

Second, we further assessed the accuracy of our phenotyping approach by 176 

manually reviewing physician notes in the problem list (PL) for cases and controls of six 177 

representative diseases: Alzheimer’s disease (AD), AMD, FaH, FBC, stroke, and T2D. 178 

We randomly sampled 50 ICD-10-based cases and controls for each disease and 179 

examined their PL for symptoms or findings indicative of a diagnosis while blinded to 180 

ICD-10 disease status (Supplementary Table 5). We observed high concordance in 181 

case-control classification between ICD-10- and PL-based phenotyping, ranging from 182 
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100% (for AD) to 93% (AMD, FaH). Case concordance ranged from 88% (AMD, FaH)–183 

100% (AD, FBC, T2D), while control concordance ranged from 94% (T2D)–100% (AD, 184 

stroke).  185 

 186 

Biomarker levels linked to variant penetrance 187 

We investigated metabolite and clinical measurements of carriers of impactful 188 

variants with different penetrance in genes with clear biological links to three diseases: 189 

FaH12, maturity-onset diabetes of the young (MODY)38, and obesity39,40 (Figure 1). 190 

Carriers of penetrant variants for FaH in LDLR had greater low-density lipoprotein 191 

cholesterol (LDL-C) and total cholesterol levels than carriers of incompletely and 192 

nonpenetrant variants (Figure 1a). Using linear regression, we observed robust 193 

association between variant penetrance and LDL-C (effect size [β]=0.53 mg/dL per 1% 194 

increase in penetrance, standard error [SE]=0.12; P=0.004) and total cholesterol levels 195 

(β=0.98 mg/dL, SE=0.18; P=0.002) adjusting for clinical covariates and statin use. 196 

Analogously, carriers of penetrant variants for MODY in hepatocyte nuclear factor-1α 197 

(HNF1A) had elevated glucose and hemoglobin A1c (HbA1c) levels compared to 198 

carriers of incompletely penetrant variants (Figure 1b). Variant penetrance was 199 

significantly associated with glucose (β=0.76 mg/dL, SE=0.19; P=0.008) and HbA1c 200 

levels (β=0.083% [2.4 mg/dL], SE=0.020 [0.57 mg/dL]; P=0.01) adjusted for clinical 201 

covariates and diabetes medication use. Lastly, carriers of penetrant variants for obesity 202 

in uncoupling protein 3 (UCP3) had higher body mass index (BMI) than carriers of 203 

incompletely and nonpenetrant variants (Figure 1c). Variant penetrance was strongly 204 

associated with BMI (β=0.24 kg/m2, SE=0.044; P=6x10-4) and weight (β=1.3 lbs [0.59 205 
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kg], SE=0.26 [0.12 kg]; P=8x10-4) adjusting for clinical covariates. Together, these 206 

analyses using published phenotype algorithms, physician notes, and biological 207 

measurements support the validity of our population-based penetrance method and 208 

illustrate the clinical presentation of impactful variants. 209 

 210 

Distribution of observed variant penetrance and disease risk 211 

We examined the distribution of disease risk conferred by 5,359 impactful 212 

variants and 157 corresponding diseases. Risk difference (RD) is the difference 213 

between the prevalence of disease in carriers and non-carriers, and represents the 214 

excess risk of disease attributed to the variant of interest. A summary of mean variant 215 

RD for all 157 diseases is provided (Supplementary Table 6). We observed 565 (11%) 216 

variants with RD exceeding 0.05 for 55 (35%) diseases (Figure 2). In contrast, we 217 

detected a very large number of weakly penetrant and nonpenetrant variants that confer 218 

little to no disease risk (4,794 [89%] variants with RD£0.05), which can be attributed in 219 

part to ClinVar pathogenic variants from traditional studies that maximize penetrance 220 

estimates and have biased ascertainment18. Recent studies have demonstrated 221 

overestimation of the disease rates of these variants6–8, indicating a need for 222 

population-based approaches to more unbiasedly gauge penetrance. 223 

Next, we investigated the prevalence of disease in carriers (i.e., penetrance) and 224 

non-carriers of impactful variants according to ClinVar pathogenicity (pathogenic, 225 

uncertain, conflicting, benign) (Figure 3a), ClinVar review status (expert reviewed, 226 

multiple submitters, single submitter, no assertion criteria) (Figure 3b), and molecular 227 

consequence (Figure 3c). We hypothesized that variants reported as pathogenic in 228 
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ClinVar, reviewed by experts, or with LoF consequence have greater a priori evidence 229 

of disease risk and are expected to have higher penetrance than variants reported as 230 

benign, without criteria assertion, or of synonymous consequence. In agreement with 231 

these expectations, we observed that mean variant penetrance was highest among 232 

pathogenic (6.9% vs. 0.86% next highest mean for uncertain class; P=5x10-270), expert 233 

reviewed (18% vs. 6.4% next highest mean for multiple submitters; P=9x10-17), and 234 

frameshift variants (10% vs. 4.1% for missense; P=2x10-13). The mean penetrance of 235 

ClinVar variants with conflicting (0.75%), uncertain (0.86%), and benign clinical 236 

significance (0.085%) was similar, warranting caution when interpreting variants that do 237 

not fully meet the ACMG’s strict pathogenic criteria41. We also note that the mean 238 

penetrance of ClinVar pathogenic variants was only 6.9% and only 18% for those with 239 

the highest review status (expert reviewed), indicating that these broad classifications 240 

do not adequately capture all variants with large effect on disease as measured by 241 

penetrance. 242 

We conducted several sensitivity analyses to account for differing sample sizes 243 

of penetrance estimates. Penetrance distributions according to ClinVar pathogenicity, 244 

review status, and molecular consequence remained similar when stratified by 245 

increasing thresholds of sample sizes (Supplementary Figure 3). Singletons (very rare 246 

variants appearing only once) comprised a large portion of the impactful variants 247 

(3,507/5,359 [65%]) and statistically are completely penetrant or nonpenetrant. To test 248 

the validity of singleton penetrance, we evaluated the proportion of penetrant singletons 249 

by ClinVar pathogenicity, review status, and molecular consequence (Supplementary 250 

Figure 4). If singleton penetrance were accurate, the proportion of penetrant singletons 251 
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among pathogenic, expert reviewed, or LoF singletons would be expected to exceed 252 

that of benign, non-expert reviewed, or non-LoF singletons, respectively. We observed 253 

that the proportion of penetrant singletons was in fact greatest among pathogenic (13% 254 

vs. 2.6% in next highest class of conflicting; P=2x10-19), expert reviewed (41% vs. 12% 255 

in next highest group of multiple submitters; P=4x10-11), and frameshift singletons (16% 256 

vs. 7.8% for missense; P=1x10-3). We therefore retained penetrance estimates of 257 

smaller sample sizes in our analyses. 258 

 259 

Ancestral and temporal dimensionality of penetrance data 260 

 Most penetrance studies to date have focused on one ancestry, typically 261 

European42,43, with few notable exceptions11,23,44. Yet it is well-known that allele 262 

frequency (AF) and disease risk of variants can vary substantially in different 263 

populations45,46. Thus, we computed penetrance among multiple self-reported 264 

ancestries, including European, African, Hispanic, and Asian ancestries. To 265 

demonstrate this diversity, we identified numerous ancestry-specific impactful variants. 266 

Out of 2,209 impactful variants in BioMe, we observed 75 (3.4%), 43 (1.9%), 17 267 

(0.77%), and 71 (3.2%) variants exclusively present in African, Hispanic, Asian, and 268 

European ancestry, respectively. Out of 3,408 impactful variants in UKB, we observed 8 269 

(0.23%), 11 (0.32%), and 235 (6.9%) variants specific to African, Asian, and European 270 

ancestry, respectively. Furthermore, we identified ancestry-specific variants that were 271 

highly penetrant, such as an Asian ancestry-specific pathogenic frameshift variant in 272 

HBB (NC_000011.10:c.5226994_5226995insC) associated with a greatly increased risk 273 

of thalassemia (RD=0.99; P=9x10-6) and a European ancestry-specific pathogenic 274 
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frameshift variant in PALB2 (NC_000016.9:c.23647358_23647359del) associated with 275 

a significantly elevated risk of breast cancer (RD=0.92; P=0.007). 276 

 We also delineated variant penetrance based on different age thresholds of 277 

carriers ranging from at least 20 years (≥20) to at least 70 years (≥70). Age of disease 278 

onset is pertinent for estimating penetrance: congenital or early onset diseases will have 279 

manifested in older carriers of penetrant variants, whereas later onset diseases may not 280 

have presented yet in younger carriers. To address temporality, we characterized the 281 

observed change in variant penetrance with increasing carrier age for 157 diseases 282 

corresponding to the impactful variants, stratified by age of disease onset (Figure 4; 283 

Supplementary Figure 5). We first annotated and grouped the diseases by age of 284 

onset: Earlier (congenital, childhood, or adolescent), Later (adulthood), or Any 285 

(Supplementary Table 7). For each disease group, we then calculated the change in 286 

variant penetrance (ΔPenetrance) between the lowest carrier age threshold and 287 

increasing age thresholds (e.g., variant penetrance for ≥20 versus ≥30, ≥20 versus ≥40, 288 

etc.). As expected, the mean ΔPenetrance increased in the Later disease group with 289 

higher carrier age thresholds in BioMe (Figure 4a). The largest mean ΔPenetrance was 290 

+1.8% in the Later disease group when comparing ≥20 and ≥70, while mean 291 

ΔPenetrance remained ~0% in the Earlier and Any disease groups. In UKB, no 292 

significant differences in mean ΔPenetrance were observed in the Later disease group 293 

(Figure 4b) likely due to its older age range of carriers (40-69 years) whereby Later 294 

diseases would have manifested. Thus, penetrance estimates of diseases with early or 295 

any age of onset remained stable over time, while penetrance estimates of diseases 296 

with later age of onset predictably increased with higher carrier ages.  297 
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 298 

Clinical utility of variant penetrance data 299 

 A genotype-first approach in genomic medicine must identify penetrant variation 300 

in clinically significant genes to inform screening, management, and treatment. The 301 

ACMG recommends reporting secondary findings of pathogenic variants in the 302 

ACMG59, but acknowledges that insufficient data on penetrance requires ongoing study 303 

and revision49. BRCA1 and BRCA2 are both in the ACMG59, and a recent study 304 

estimated the population-based penetrance of pathogenic variants in these genes for 305 

FBC using data from the UKB50. However, penetrance was estimated at the gene level, 306 

and non-ClinVar variants were omitted as were variants in other genes that have been 307 

shown to confer significant risk of breast cancer, such as PALB2, CHEK2, ATM, PTEN, 308 

and others24. Thus, we investigated the penetrance of impactful variants in 10 known or 309 

suspected breast cancer-predisposition genes (BRCA1, BRCA2, PALB2, CHEK2, ATM, 310 

PTEN, CDH1, BARD1, BRIP1, and RAD51D) to illustrate the clinical value of a 311 

population-based approach of determining penetrance at the variant level (Figure 5a). 312 

The highest disease risk on average was conferred by impactful variants in BRCA1 313 

(mean variant penetrance=38%, mean RD=0.32; P=2x10-6), BRCA2 (mean variant 314 

penetrance=38%, mean RD=0.32; P=1x10-10), and PALB2 (mean variant 315 

penetrance=26%, mean RD=0.20; P=0.009). 316 

These data clarify the disease risk of previously reported variants in ClinVar and 317 

novel variants not yet reported in ClinVar or the literature. We highlighted examples of 318 

variants that are significantly associated with risk of seven diseases, including FBC, to 319 

demonstrate this dual utility (Supplementary Table 8). Many impactful variants in 320 
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BRCA2 were strongly associated with FBC, such as a known pathogenic frameshift 321 

variant (NC_000013.11:c.32340301del; penetrance=47%, RD=0.39; P=9x10-6) and a 322 

previously unreported frameshift variant (NC_000013.11:c.32340630_32340631del; 323 

penetrance=100%, RD=0.96; P=4x10-13). Evidence of high penetrance strengthens a 324 

candidate variant’s case for clinical significance, while assertions of pathogenicity are 325 

refined by quantitative disease risk estimates.  326 

Notably, we observed substantial heterogeneity in the penetrance of variants 327 

even within the same disease-predisposition gene. Impactful variants in LDLR, for 328 

instance, exhibited a wide range of penetrance for FaH (Figure 5b). Similarly, there was 329 

a large distribution of penetrance associated with impactful variants in BRCA1 (variant 330 

penetrance standard deviation [SD]=45%, RD SD=0.44), BRCA2 (variant penetrance 331 

SD=46%, RD SD=0.46), and PALB2 (variant penetrance SD=42%, RD SD=0.42) for 332 

FBC (Figure 6a). Instead of coarsely categorizing variants as simply pathogenic versus 333 

non-pathogenic and collapsing all variants in a gene, these data reveal granularity and 334 

nuance in the penetrance of individual variants.  335 

336 
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DISCUSSION 337 

 A major goal of genomic medicine is to tailor clinical care of patients to their 338 

unique genetic composition, especially penetrant variants. Scalability and accuracy are 339 

crucial for determining penetrance and employing its information in a clinical setting. 340 

Conventional penetrance estimates from family-based or clinical cohort studies typically 341 

focus on one variant or gene at a time14–17 (limited scalability), and have small sample 342 

size, ascertainment bias, inconsistent carrier screening, and genetic/environmental 343 

confounders18,19 (limited accuracy). A proliferation of population biobanks, such as UKB 344 

and BioMe, has made available thousands of genetic and phenotypic records20,21,23. 345 

This raises the possibility of using a population-based method to measure penetrance 346 

whereby large numbers of unrelated carriers are assessed22. Here, we performed a 347 

comprehensive assessment of variant penetrance using 72,434 exomes from two large-348 

scale population-based biobanks, with the dataset freely accessible and provided in 349 

Supplementary Tables 9 and 10.  350 

 Reliable penetrance estimates depend on reliable phenotyping of carriers. We 351 

performed robust validation analyses to support our phenotyping and penetrance 352 

strategy. First, we computed penetrance for nine diseases using both diagnosis codes 353 

and previously published clinical algorithms, finding high concordance in all diseases 354 

tested. Second, we manually curated physician notes for six diseases to verify ICD-10-355 

based diagnoses. Third, we extracted laboratory and clinical test results (e.g., levels of 356 

lipids, glucose, HbA1c, and BMI) for carriers and observed that penetrance was strongly 357 

associated with relevant quantitative traits, adjusted for medications and clinical 358 

covariates. Hence, by validating our phenotyping and penetrance method, and 359 
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evaluating penetrance for thousands of variants in a high-throughput manner, we 360 

ensure both accuracy and scalability. As penetrance studies grow, similar validation 361 

analyses should be implemented to certify fidelity of penetrance estimates. 362 

 While several efforts have begun to probe the upward bias of penetrance 363 

estimates in traditional studies, there has not yet been a systematic investigation of the 364 

pervasiveness of overestimated penetrance. In the present study, we examined the 365 

distribution of disease risk associated with a high-quality set of 5,359 impactful variants 366 

and 157 diseases. Persistently lower disease risk was observed for many diseases, with 367 

a few exceptions of highly penetrant variants such as in BRCA1 and BRCA2. This can 368 

be interpreted in light of a few important considerations: 1) small sample size and 369 

stochasticity for rarer variants may contribute to variable penetrance estimates; 370 

however, a number of analyses supported the accuracy of our penetrance 371 

measurements with respect to sample size, including for singletons (Supplementary 372 

Figure 3, Supplementary Figure 4); 2) ascertainment of cases in conventional studies 373 

has been shown to inflate the disease risk of variants18,19 and recent population-based 374 

studies with lower penetrance estimates for FaH and developmental disorders bolster 375 

this explanation11,22; 3) reported pathogenicity does not equate with penetrance, as we 376 

found by interrogating whether existing qualitative classification systems in ClinVar 377 

capture the quantitative disease risk of variants. ClinVar pathogenic variants were more 378 

penetrant than variants of other ClinVar classes yet still weakly penetrant overall, in line 379 

with previous studies6–8 and consistent with ClinVar’s definition of pathogenic that 380 

includes “low penetrance” variants (https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/). 381 

We then examined a major driver of variation in penetrance among ClinVar pathogenic 382 
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variants: when stratified by ClinVar review status (evidence for clinical significance of a 383 

variant), pathogenic variants that were not expert reviewed had lower penetrance.  384 

In light of these findings, it is incumbent to discuss whether variants reported as 385 

pathogenic but empirically shown to have low penetrance should be classified 386 

differently, or whether categorical systems of disease risk (pathogenic versus non-387 

pathogenic) should be complemented with a quantitative system based on penetrance7. 388 

Recent commentary by Khera and Hegele proposed a new paradigm for classifying FaH 389 

based on two parameters: carrier status for a pathogenic LDLR variant and severity of 390 

hypercholesterolemia51. This advanced schema for disease classification, and others 391 

like it, would greatly benefit from knowledge of penetrance for pathogenic LDLR variants 392 

to better stratify disease risk and personalize medical care.  393 

We also emphasize the importance of including diverse ancestries and age 394 

ranges when characterizing variant penetrance. Populations differ by AF and disease 395 

factors45,46, yet most genetic studies have focused on Europeans52,53. Here, we capture 396 

ancestry-specific penetrance in detail, identifying over a hundred variants in non-397 

European ancestries. While past studies have reported age-dependent penetrance in 398 

age-related diseases such as FBC17,54, amyotrophic lateral sclerosis55,56, and obesity57, 399 

these typically estimate gene-based penetrance whereby all variation in a gene is 400 

aggregated. In contrast, we evaluate age-dependent penetrance at the variant level. As 401 

expected, early onset diseases showed stable penetrance over time while later onset 402 

diseases had increasing penetrance with older carriers. For example, the observed 403 

penetrance of an expert reviewed ClinVar pathogenic frameshift variant in BRCA2 404 
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(NC_000013.11:c.32340301del) increased from 38% in European ancestry carriers ≥40 405 

years of age to 56% in those ≥60 years of age. 406 

There were several study limitations. First, ICD-10 diagnosis codes from the EHR 407 

were used to define case-control status26,27 (Supplementary Table 1). While commonly 408 

used in EHR-linked biobank studies61,62, there may be some misclassification63–66. 409 

Though several validation analyses reinforced the soundness of our phenotyping, these 410 

were completed for a subset of the diseases. Second, we cannot exclude the possibility 411 

of potential bias in our datasets. BioMe is predominantly composed of individuals 412 

recruited from the Mount Sinai Health System and may have a higher burden of 413 

diseases and therefore penetrance estimates. In contrast, the preponderance of healthy 414 

volunteers in UKB may lead to conservative estimates of penetrance. Third, though our 415 

sample size exceeded 72,000 exomes and enabled us to ascertain rare variants, many 416 

penetrance estimates for rare variants (e.g., singletons) are based on low numbers of 417 

carriers and may produce variable estimates. We included raw counts of carriers and 418 

non-carriers for each variant in the dataset so that estimates may be interpreted 419 

accordingly. Fourth, we mapped variants to diseases based on disease genes reported 420 

in ClinVar from pathogenic variant submissions. Inaccuracies in ClinVar submissions, 421 

and therefore our mapping from variant to disease, are possible, though we manually 422 

checked mappings extensively against the literature for accuracy.   423 

In conclusion, we present a large-scale, systematic investigation of variant 424 

penetrance that leveraged thousands of exomes linked to the EHR. While we made 425 

available the penetrance measurements of all 37,772 variants for full transparency, we 426 

utilized a stringent set of 5,359 impactful variants that were ClinVar pathogenic or LoF in 427 
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a non-recessive gene for many analyses. We demarcated differences in disease risk 428 

among variants of distinct ClinVar pathogenicity classes, review status, and molecular 429 

consequences. We also accessed a rich resource of clinical phenotypes to thoroughly 430 

explore penetrance: detailed physician notes, medications, biological measurements, 431 

and laboratory results. Critically, we investigated multiple dimensions of penetrance 432 

data spanning five ancestries and six decades of age thresholds. This study provides a 433 

blueprint for future studies to efficiently and accurately determine variant penetrance, 434 

the results of which will greatly improve our understanding of the genetic underpinnings 435 

of human disease. 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 
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METHODS 451 

Study populations and sample filtering 452 

 A flowchart of the study design is provided (Supplementary Figure 1). We 453 

evaluated penetrance from individuals in two large-scale electronic health record (EHR)-454 

linked population-based biobanks: The BioMe Biobank (BioMe) and UK Biobank (UKB). 455 

The study protocols were approved by the Institutional Review Board (IRB) of the Icahn 456 

School of Medicine at Mount Sinai. Use of data from UKB was completed and approved 457 

using the UK Biobank Resource under Application Number 16218. Informed consent 458 

was obtained for all study participants in both BioMe and UKB through the approved 459 

IRB protocols. An overview of the demographics and clinical traits for both study 460 

populations is provided (Table 1). BioMe is an EHR-linked biobank for ~50,000 patients 461 

of African, Hispanic, European, and Other (Asian, Native American, and miscellaneous) 462 

self-reported ancestry who are recruited from the Mount Sinai Health System in 463 

Manhattan, NYC from 2007 onwards. All BioMe participants consented to providing 464 

biological and DNA samples linked to de-identified EHRs. A subset of the individuals 465 

(n=31,250) was exome sequenced before undergoing quality control. A total of 229 466 

samples with discordance between genetic sex and sex listed in the manifest, low 467 

coverage, contamination, low call rate, or duplications were excluded, leaving 30,813 468 

samples. In addition, samples lacking complete demographic data (n=345), younger 469 

than 20 years of age (n=610), or without International Classification of Diseases-Clinical 470 

Modification 10 (ICD-10) diagnosis data (n=819) were removed to generate the final 471 

study set of 29,039 samples. 472 
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The UKB is a population-based longitudinal cohort of ~500,000 individuals chiefly 473 

of British self-reported ancestry between 40-69 years of age who were enrolled at 474 

various sites across the United Kingdom between 2006-201021,67. All individuals 475 

consented to providing medical history, demographic data, and DNA samples. A subset 476 

of 49,960 individuals had their exome sequenced and passed standard quality control 477 

(QC) filters, described extensively elsewhere68. We further excluded samples that 478 

lacked complete demographic information (n=2), or did not have ICD-10 diagnosis 479 

codes available (n=6,563), leaving a final study set of 43,395 samples for analysis. 480 

 481 

Whole-exome sequencing and quality control 482 

In BioMe, variant call files (VCFs) produced by Illumina v4 HiSeq 2500 contained 483 

9,202,884 variants that were called in the samples. Goldilocks Filter (GF) was 484 

implemented on the VCFs. For single nucleotide polymorphisms (SNPs), cells with 485 

depth-normalized quality scores <3 or depth of coverage <7 were set to missing. For 486 

insertions and deletions (indels), cells with depth-normalized quality scores <5 or depth 487 

of coverage <10 were set to missing. Variant sites were then filtered, whereby sites of 488 

heterozygous variation failed the Allele Balance (AB) cutoff and were removed. SNP 489 

sites required ≥1 sample to carry an alternate AB ≥15% and indel sites required ≥1 490 

sample to carry an alternate AB ≥20%. Together, these site filters removed 441,406 491 

sites, leaving 8,761,478 variants after GF. Next, sites with missing genotypes for >2% of 492 

individuals in the dataset (267,955 sites) were removed. AB was calculated for biallelic 493 

SNPs and 320,877 sites with AB <0.3 or >0.8 were removed, leaving 8,172,646 sites. 494 

Lastly, the dataset was filtered to regions within the target regions of the exome capture 495 
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platform (4,256,827 sites) and separated into 2 file sets for biallelic and multiallelic sites 496 

(3,948,623 and 308,204, respectively) due to differences in QC procedures. 497 

In UKB, exome data from the first tranche of exome sequence data generated 498 

with the Functional Equivalence pipeline68 was used. Sequence data and QC for UKB 499 

are described elsewhere21,67.  500 

 501 

Variant curation and annotation 502 

Using exome data from the 72,434 study samples, 37,772 variants associated 503 

with ClinVar1 diseases were ascertained using PLINK version 2.069. To enrich for 504 

penetrant variants, we selected a strict subset of 5,359 clinically impactful (impactful) 505 

variants for most downstream analyses. These were defined by curating variant 506 

summary information in ClinVar VCF files released in December 2019, functional 507 

annotations from Variant Effect Predictor (VEP)28 version 99.2, and genic mode of 508 

inheritance from Online Mendelian Inheritance in Man (OMIM)70. An overview of variant 509 

selection is provided in Supplementary Figure 2. First, we included variants of 510 

pathogenic and/or likely pathogenic classification in ClinVar, and previously unreported 511 

variants with a damaging molecular consequence (splice acceptor/donor, stop 512 

gained/lost, frameshift, or start lost; collectively defined as LoF) annotated by VEP. LoF 513 

variants in a gene were mapped to disease based on prior pathogenic variant 514 

submissions in ClinVar linking genes to diseases (e.g., BRCA1 LoF variants were 515 

mapped to breast cancer based on prior pathogenic variant submissions in ClinVar 516 

linking BRCA1 to breast cancer). This filtered out benign variants or variants with 517 

uncertain or conflicting clinical significance in ClinVar and variants with synonymous 518 
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molecular consequence. As missense variants have varying and uncertain degrees of 519 

pathogenicity, non-ClinVar missense variants were also excluded. We also noted the 520 

review status for each ClinVar variant, which summarizes the level of evidence 521 

supporting a variant’s claim of clinical significance ranging from the lowest level of no 522 

assertion criteria (review status=0), to single submitter or multiple submitters with 523 

conflicting interpretation (review status=1), to multiple submitters with no conflict of 524 

interpretation (review status=2), to reviewed by an expert panel such as ClinGen71 525 

(review status=3), to the highest level of practice clinical guidelines (review status=4). 526 

Second, we excluded variants in genes with exclusively recessive mode of inheritance 527 

reported in OMIM. The gene for each variant was retrieved from NCBI reference 528 

sequences (RefSeq72) and corroborated with genomic coordinates in OMIM. The mode 529 

of inheritance was mined for all phenotypes reported for each gene in OMIM and genes 530 

were then summarized as Dominant (only dominantly inherited phenotypes), Both (both 531 

dominantly and recessively inherited phenotypes), or Recessive (only recessively 532 

inherited phenotypes). 533 

 534 

Phenotyping of carriers 535 

In both UKB and BioMe, we obtained case status using ICD-10 diagnosis codes. 536 

ICD-10 codes are commonly used in genetic population studies to define cases of a 537 

disease61,62 and they map directly to ClinVar diseases in the Systematized 538 

Nomenclature of Medicine Clinical Terms (SNOMED CT)27. All of the 29,039 BioMe 539 

samples and 43,395 UKB samples in the final dataset had ICD-10 diagnosis codes 540 

available. Cases were identified by the presence of a corresponding ICD-10 code while 541 
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controls were identified by the absence of all corresponding ICD-10 codes. We thereby 542 

defined case-control status for over 400 SNOMED CT diseases of non-recessive 543 

inheritance in ClinVar (disease inheritance was retrieved from NCBI’s MedGen 544 

database at https://www.ncbi.nlm.nih.gov/medgen/); 197 of the diseases were present 545 

with at least one case in the final dataset. A complete list of the cases, controls, and 546 

ICD-10 diagnosis codes for each disease is provided in Supplementary Table 1. 547 

Validation of the ICD-10-based phenotyping method was performed in a set of 548 

three analyses in BioMe. First, penetrance estimates using the ICD-10 phenotypes were 549 

compared against results using clinical algorithms from the literature for nine 550 

diseases29–37: age-related macular degeneration (AMD), arrhythmogenic right 551 

ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), familial 552 

hypercholesterolemia (FaH), familial breast cancer (FBC), hepatocellular carcinoma 553 

(HCC), idiopathic pulmonary arterial hypertension (IPAH), prostate cancer (PCa), and 554 

type 2 diabetes (T2D) (Supplementary Table 3, Supplementary Table 4). Second, we 555 

verified ICD-10 phenotypes by manually reviewing physician notes in the problems list 556 

(PL) for six diseases: Alzheimer’s disease (AD), AMD, FaH, FBC, ischemic stroke, and 557 

T2D (Supplementary Table 5). For each disease, we extracted physician notes for a 558 

random sample of 50 ICD-10-based cases and 50 ICD-10-based controls. The 559 

presence of symptoms or findings indicative of a diagnosis corroborated ICD-10-based 560 

cases, while the absence of symptoms or findings corroborated ICD-10-based controls. 561 

Third and lastly, we examined the association of biomarker levels with penetrance 562 

estimates for variants in genes with clear biological roles in three diseases: LDLR12 in 563 

FaH (measured by LDL-C and total cholesterol), HNF1A38 in MODY (measured by 564 
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glucose and hemoglobin A1c), and UCP339,40 in obesity (measured by BMI and weight). 565 

We extracted median biological measurements for carriers and medication usage 566 

relevant to FaH (statins) and T2D (insulin, insulin analogs, pramlintide, glucagon-like 567 

peptide 1 agonists, metformin, sulfonylurea, dipeptidyl peptidase 4 inhibitors, glitazone, 568 

sodium-glucose transport protein 2 inhibitors, or alpha-glucosidase inhibitors) to control 569 

for the effect of medications on biological measurements in association analyses. 570 

 571 

Statistical analysis 572 

 All statistical tests and plots were made using R statistical software version 573 

3.5.375. Differences in categorical variables were assessed with a Fischer’s exact test, 574 

while differences in continuous variables were tested with a two-sided t-test. 575 

Significance level was set at P<0.05 for comparisons between two groups. Risk 576 

difference (RD) between the prevalence of disease in carriers and non-carriers was 577 

computed, and significance was evaluated with Fisher’s exact test. A strict Bonferroni 578 

correction was applied to P-values in analyses involving multiple comparisons, including 579 

comparisons of mean penetrance for five ClinVar pathogenicity classes, mean 580 

penetrance for four ClinVar review status levels, and mean penetrance for eight 581 

molecular consequences. Phenotype validation using PL physician notes was 582 

performed by computing the ratio of PL-based cases to ICD-10-based cases and PL-583 

based controls to ICD-10-based controls to determine case and control concordance, 584 

respectively. Association analyses of variant penetrance with biomarker levels were 585 

performed using a multivariable linear regression, adjusted for clinical covariates of age, 586 
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sex, BMI (except in the analysis of obesity), 10 genetic principal components (PCs), and 587 

medication usage where relevant. 588 

 589 

Data availability  590 

The UKB data may be browsed at http://biobank.ndph.ox.ac.uk/showcase/ and 591 

access to data can be requested at https://www.ukbiobank.ac.uk/register-apply/. More 592 

information about BioMe can be found at 593 

https://icahn.mssm.edu/research/ipm/programs/biome-biobank/researcher-faqs. The 594 

complete penetrance dataset and gene disease map used for all analyses 595 

(Supplementary Tables 1, 9 and 10) will be made available upon peer review with no 596 

restrictions on the data released. 597 
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FIGURES 866 

Figure 1. Biomarker levels in carriers of clinically impactful variants with varying 867 

penetrance for three diseases in the BioMe Biobank. 868 
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 870 
Metabolite and clinical measurements for carriers of clinically impactful variants with 871 

varying penetrance for three diseases in the BioMe Biobank. Clinically impactful 872 
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variants are reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function 873 

in a gene that mediates disease via loss-of-function mechanism, and in a gene with 874 

non-recessive inheritance. Mean of measurements is compared between penetrance 875 

strata with two-tailed t-test: *, P<0.05; **, P<0.01; ***, P<0.001. a, Variants in low-876 

density lipoprotein receptor (LDLR) are stratified by penetrance for familial 877 

hypercholesterolemia (Low [0%], Medium [greater than 0 and less than 100%], and 878 

High [100%]) and shown as box plots with measurements of low-density lipoprotein 879 

cholesterol (LDL) and total cholesterol (cholesterol) levels in carriers. b, Variants in 880 

hepatocyte nuclear factor 1-α (HNF1A) are stratified by penetrance for maturity-onset 881 

diabetes of the young (Low [0%], Medium [greater than 0 and less than or equal to 882 

50%], and High [greater than 0 and less than 100%]) and depicted as box plots with 883 

levels of glucose and hemoglobin A1c (HbA1c) in carriers. No impactful variants in 884 

HNF1A were of Low penetrance. c, Variants in uncoupling protein 3 (UCP3) are 885 

stratified by penetrance for obesity (Low [0%], Medium [greater than 0 and less than 886 

100%], and High [100%]) and displayed as box plots with body mass index (BMI) and 887 

weight of carriers. 888 
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Figure 2. Distribution of observed disease risk for 5,359 clinically impactful variants in 72,434 individuals. 895 

 896 
 897 
Distribution of observed disease risk for 5,359 clinically impactful variants in 72,434 individuals. Risk difference is the 898 

difference in disease prevalence between carriers and non-carriers of a variant of interest. Clinically impactful variants are 899 
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reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function in a gene that mediates disease via loss-of-900 

function mechanism, and in a gene with non-recessive inheritance. Diseases are sorted by descending mean variant risk 901 

difference (diamonds), with all variant risk difference estimates plotted (points) along with the standard deviation (error 902 

bars) per disease. A complete tabulated list of results is provided in Supplementary Table 6.903 
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Figure 3. Penetrance of 34,301 variants stratified by ClinVar pathogenicity, ClinVar review status, and molecular 916 

consequence. 917 

 918 
 919 
Penetrance of 34,301 variants in non-recessive genes stratified by ClinVar pathogenicity, ClinVar review status, and 920 

molecular consequence. Penetrance distributions are shown as violin plots in red, purple, and green color on a base-10 921 

logarithmic scale with the mean penetrance overlaid as points, alongside disease prevalence in non-carriers shown as 922 

violin plots in grey color with the mean disease prevalence superimposed as points. Pathogenic/likely pathogenic variants 923 

are grouped as pathogenic and benign/likely benign variants are grouped as benign. *, two-tailed t-test P<0.05; **, 924 

P<0.01; ***, P<0.001; ****, P<0.0001. a, Penetrance is stratified by classification of variant pathogenicity in ClinVar. 925 

a b c
**** ** ns * ns **** **** ** ns **** ** * **** ns ns *** ns
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Pathogenic variants on average have the highest penetrance (6.9% vs. 0.86% next highest mean penetrance in uncertain 926 

class; P=5x10-270). Only pathogenic variants confer a significantly increased risk of disease on average to carriers 927 

compared to baseline disease risk in non-carriers (risk difference [RD]=0.046; P=1x10-22). Other pathogenicity, variants 928 

with a ClinVar pathogenicity classification other than pathogenic, benign, conflicting, or uncertain. b, Penetrance is 929 

stratified by variant review status in ClinVar as reviewed by experts (review status=3), multiple submitters (review 930 

status=2), single submitter (review status=1), or no assertion criteria (review status=0). Variants reviewed by experts 931 

(review status=3) have the highest penetrance on average (18% vs. 6.3% next highest mean penetrance in review 932 

status=2 group; P=9x10-17). Pathogenic variants of review status=3, =2, and =1 confer a significantly increased risk of 933 

disease on average, with RD=0.15 (P=1x10-13), RD=0.042 (P=3x10-10), and RD=0.020 (P=4x10-3), respectively. c, 934 

Penetrance is stratified by molecular consequence annotated with Variant Effect Predictor (VEP). Frameshift variants on 935 

average have the highest penetrance (10% vs. 4.1% for missense; P=2x10-13). There was a significantly elevated risk of 936 

disease on average with frameshift (RD=0.064; P=3x10-19), splice acceptor (RD=0.020; P=5x10-3), splice donor 937 

(RD=0.011; P=4x10-2), stop gained (RD=0.018; P=3x10-7), and missense variants (RD=0.022; P=4x10-4). 938 
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Figure 4. Association between age of disease onset and age-dependent change in 939 

penetrance for 157 diseases. 940 

 941 
 942 
Association between age of disease onset and age-dependent change in penetrance for 943 

157 diseases. Diseases correspond to the 5,359 clinically impactful variants and are 944 

grouped according to their age of onset: Earlier, Later, or Any. Change in penetrance is 945 

displayed as a violin plot for each age of onset group when comparing two carrier age 946 

thresholds with the mean change in penetrance superimposed as a point. ΔPenetrance 947 

(%), change in variant penetrance represented as a percent (+ values indicate greater 948 

penetrance estimate with the older age threshold and - values indicate greater 949 

penetrance estimate with the younger age threshold); age comparison, two carrier age 950 

thresholds for which penetrance is compared (e.g., 20-70 compares penetrance with 951 

carriers ≥20 years old and penetrance with carriers ≥70 years old); onset, disease 952 

groups according to age of onset; *, two-tailed t-test P<0.05; **, P<0.01; ***, P<0.001; 953 
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****, P<0.0001. A complete plot including diseases with ΔPenetrance >5% or 954 

ΔPenetrance <-5% is provided (Supplementary Figure 5). a, The BioMe Biobank has 955 

carriers of age 20-90 years old and ΔPenetrance is assessed over five carrier age 956 

thresholds: Later diseases have greater ΔPenetrance on average than Earlier diseases 957 

for 20-40 (P=0.006), 20-50 (P=0.002), 20-60 (P=0.02), and 20-70 (P=0.02) age 958 

comparisons. b, UK Biobank has carriers of age 40-69 years old and ΔPenetrance is 959 

evaluated over two carrier age thresholds: there is no difference in ΔPenetrance 960 

between Later and Earlier diseases for either 40-50 (P=0.2) or 40-60 (P=0.2) age 961 

comparisons. 962 
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Figure 5. Disease risk associated with clinically impactful variants in disease-977 

predisposition genes for breast cancer and hypercholesterolemia. 978 

 979 
 980 
Disease risk associated with clinically impactful variants in known breast cancer- and 981 

hypercholesterolemia-predisposition genes. Clinically impactful (impactful) variants are 982 

reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function in a gene that 983 

mediates disease via loss-of-function mechanism, and in a gene with non-recessive 984 

inheritance. a, Penetrance of impactful variants in 10 known or suspected breast 985 

cancer-predisposition genes is displayed as pink violin plots with the mean penetrance 986 

overlaid as a point, alongside disease prevalence in non-carriers shown as grey violin 987 

plots with the mean prevalence superimposed as a point. Violin plots are sorted by 988 

genes with descending mean penetrance, with the highest mean variant penetrance of 989 

38% in BRCA1 (n=48 variants, mean risk difference [RD]=0.32; P=2x10-6) and 38% in 990 

BRCA2 (n=92 variants, mean RD=0.32; P=1x10-10). *, two-tailed t-test P<0.05; **, 991 

P<0.01; ***, P<0.001; ****, P<0.0001. b, Heterogeneity in the penetrance of 59 impactful 992 

a b
**** **** ** * ns** ns ns ns

ns
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low-density lipoprotein receptor (LDLR) variants is shown. The number of variants is 993 

plotted as a histogram across four quartiles of penetrance. [0, 25), penetrance less than 994 

25%; [25, 50), penetrance greater than or equal to 25% and less than 50%; [50, 75), 995 

penetrance greater than or equal to 50% and less than 75%; [75, 100], penetrance 996 

greater than or equal to 75%. 997 
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TABLES 1016 
 1017 
Table 1. Overview of baseline demographic and clinical traits for 72,434 individuals 1018 

from two population-based biobanks. 1019 

Trait BioMe 
(n=29,039) 

UKB 
(n=43,395) 

Male, n (%) 11,684 (40%) 19,330 (45%) 

Age, mean (SD) 59 (16) 57 (8) 

European ancestry, n (%) 9,376 (32%) 40,447 (93%) 

African ancestry, n (%) 7,190 (25%) 916 (2%) 

Hispanic ancestry, n (%) 8,528 (29%) -- 

Asian ancestry, n (%) 1,349 (5%) 1,088 (3%) 

Mixed ancestry, n (%) 2,028 (7%) 344 (0.8%) 

BMI in kg/m2, mean (SD) 28 (7) 28 (5) 

SBP in mmHg, mean (SD) 127 (20) 140 (19) 

DBP in mmHg, mean (SD) 73 (12) 82 (11) 

LDL-C in mg/dL, mean (SD) 98 (36) 63 (16) 

Total cholesterol in mg/dL, mean (SD) 177 (45) 102 (21) 

HbA1c in %, mean (SD) 6 (2) 6 (3) 

Glucose in mg/dL, mean (SD) 106 (47) 93 (20) 

HTN, n (%) 12,962 (45%) 11,094 (26%) 

T2D, n (%) 7,044 (24%) 2,820 (6%) 

FBC, n (%) 1,488 (5%) 1,581 (4%) 

AMD, n (%) 1,041 (4%) 352 (0.8%) 

 1020 
Overview of baseline demographic and clinical traits for 72,434 individuals from two 1021 

population-based biobanks: BioMe Biobank (BioMe) and UK Biobank (UKB). n, number; 1022 

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; 1023 

LDL-C, low-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; HTN, hypertension; 1024 

T2D, type 2 diabetes; FBC, familial breast cancer; AMD, age-related macular 1025 

degeneration; --, no Hispanic ancestry individuals are in UKB.  1026 
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