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Abstract

Vaccination strategy is crucial in fighting against the COVID-19 pandemic. Since
the supply is limited, contact network-based interventions can be most powerful to
set an optimal strategy by identifying high-risk individuals or communities. How-
ever, due to the high dimension, only partial and noisy network information can be
available in practice, especially for dynamical systems where the contact networks
are highly time-variant. Furthermore, numerous mutations of SARS-CoV-2 impact
considerably the current infectious probability, requiring real-time network updat-
ing algorithms. In this study, we propose a sequential network updating approach
based on data assimilation techniques to combine different sources of temporal in-
formation. We then prioritise the individuals with high-degree or high-centrality,
obtained from the assimilated networks, for vaccination. The assimilation-based
approach is compared with the standard method (based on partially observed net-
works) and a random selection strategy in terms of vaccination effectiveness in a SIR
model. The numerical comparison is first carried out using real-world face-to-face
dynamical networks collected in a high school, following by sequential multi-layer
networks, generated relying on the Barabasi-Albert model emulating the department
of Computing at Imperial College London in the UK as an example.
Keywords: Network science, Data assimilation, COVID-19 vaccination, Centrality
measure, Multi-layer networks

1. Introduction

The world is still in the middle of a pandemic involving COVID-19. The World
Health Organization (WHO) and partners are working together on the response,
tracking the pandemic, providing recommendations on critical steps, delivering nec-
essary medical supplies to those in need and, finally, racing for the development
and introduction of safe and reliable vaccines. Every year, vaccines save millions of
lives. Vaccines work to identify and fend off the viruses and bacteria they attack
by training and preparing the body’s natural defences, the immune system. If the
body is eventually exposed to such disease-causing germs, the body is ready to kill
them instantly, avoiding illness. More than 50 vaccine candidates for COVID-19 are
currently in trials1. And several have already been distributed in all countries to
protect individuals. No other vaccine in the human history is so eagerly anticipated

1https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
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since until now no drugs are demonstrated to be available to treat COVID-19. Dif-
ferent types of vaccines are put into supply and recently started to be used [41], such
as AstraZeneca, Pfizer, Moderna and Gamaleya. Until February 7th 2021, over ten
millions vaccine doses have been already administered in the United Kingdom. Since
the vaccination capacity is still limited until now, people who are most at risk, such
as healthcare workers and aged population [39], are given priority. In fact, vaccina-
tion strategies play an essential role in preventing the rapid diffusion of COVID-19
pandemic, especially with the recent delay of vaccine delivery2. Clustering analysis
is investigated following transmission cascades in local social communities. Among
all connecting clusters, special attention has been given to educational settings,
including high schools and universities [29]. Much effort has been devoted to main-
taining the possibility of face-to-face teaching during the pandemic. On the other
hand, thousands of clusters and outbreaks of COVID-19 have been reported in edu-
cational establishments. Hence, finding an optimal vaccination strategy for students
and staff become vital to protect children and young people.

A continuous effort has been made for several decades to develop the simu-
lation of infectious diseases based on observed social networks, including, for in-
stance, H1N1 influenza (face-to-face contact network) [8] and HIV (sexual con-
tact network) [30]. Social network-based analysis for disease spread modelling
has been widely implemented since the outbreak of COVID-19 [36], [19], with
the help of SIR (Susceptible-Infected-Recovered) or SEIR (Susceptible-Exposed-
Infected-Recovered) model. When the network structure of contacts is (at least)
partially observable, network-based interventions are most helpful to determining
an optimal vaccination strategy under a limited capacity which has been proved in
a variety of infectious diseases [38], [48]. These strategies are usually based on some
individual-level measures, such as node degree or graph centrality, which requires
knowledge of the full network. Furthermore, a significant variance of COVID infec-
tious probability is observed [14] according to ages or activities. Meanwhile, many
connecting clusters of COVID-19 have been identified at schools and workplaces[54],
where individuals share similar characteristics. Thus the infectious probability of
intra-connections inside those clusters could be considered homogeneous. This fact
leads to the idea of multi-layer networks modelling where the infectious probability
may vary from layer to layer.

Much effort is given to use network-based information for formulating optimal
policy responses to COVID-19, including social distancing and countrywide lock-
down [5]. However, the observation of social networks is often noisy (with either
missing connections or mistaken edge weights), and for most of the time, incomplete
[48]. Obtaining precise knowledge is most challenging since face-to-face contact net-
works are strongly time-variant. The noise-level could be up to 74% (missing edges)
for observed connection networks, as mentioned by [32]. On the contrary, as pointed
out by [2], contact tracing applications can significantly reduce the rate of infection
in the studied population when the participation rate is above 60%. In other words,
it is critical to maintaining an error level inferior to 40%. Therefore, a considerable
gap can be found between the requiring precision and the available data of the tem-

2https://www.bbc.co.uk/news/world-europe-55771223
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poral networks. A real-time updating of prior network knowledge is thus essential
to improving vaccine efficiency.

In this paper, by investigating how the accuracy of network data could impact
the vaccination effectiveness, we propose a real-time network updating approach
based on sequential DA techniques. Originally developed in meteorological and
environmental science, DA has been applied to a wide variety of industrial domains,
including geophysical modelling [7], hydrology [11] and economics [42]. Recently, a
sequential DA algorithm is also used for real-time parameter identification in the
SIR model for COVID spread simulation [52]. An important advantage of using
DA, compared to other statistical models for network reconstruction(e.g [46]) is
that DA is widely used for large-dimensional problems with noisy and limited prior
data. DA and dynamical network data have been combined in [12] which proposes
a graph clustering approach to efficient localization of error covariances within an
ensemble-variational DA framework. [28] presents a relation between statistical
inference using graphical models and optimal sequential estimation algorithms such
as Kalman filtering. In this work, DA is employed for a real-time update of the
network, including novel information from dynamical observations. It contributes
to leverage the information embedded in different noisy/incomplete observations by
an optimisation process to reconstruct the current network. This is computationally
feasible for large-scale problems thanks to the sparsity of the contact networks. Here,
we propose two DA models for different parametrizations:

1. The first consists of reconstructing the complete contact network structures
by observing edges in temporal sub-networks (as described in Section 4);

2. The second adjusts inhomogeneous infectious probabilities in a multi-layer
network modelling (as described in Section 5).

These two models are respectively applied to

1. a real-world dynamical network data set describing the contacts of a French
high school students in a week [22], collected using wearable sensors;

2. generated scale-free multi-layer networks, where each layer stands for a social
community/cluster, determined by individual characteristics such as age or
activity.

Preliminary analysis is performed to understand the data structure (clustering,
classes, grades) of the high school contact networks and to demonstrate the time-
variance. The same data set, collected in a high school in Lyon, has been used to
simulate the COVID outbreak and to estimate the reproductive ratio R0 in [36]. It
is also shown in their work that the study of contact networks in schools or work-
places could lead to more optimal contact-limiting strategies, such as self-isolation
or countrywide lockdown. As for multi-layer systems, the dynamical networks are
generated using the Barabasi-Albert model [1], with a power law degree distribution.
The latter exists widely in real social networks. Since the mutations of SARS-CoV-
2 have been continuously arisen, the infectious probability in each network layer
is supposed to be time-variant, following an additive stochastic process. In both
cases, the SIR simulation is carried out with realistic assumptions of COVID-19 to
simulate the SARS-CoV-2 propagation while real-time observations are generated
synthetically based on preliminary network analysis. The DA models proposed in
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this paper are general, which could be applied to various scenarios with different
types of real-world dynamical networks and observation data.

In summary, in this work we

• simulate the COVID-19 propagation and vaccination impact using real or gen-
erated multi-layer networks with the SIR model.

• propose a DA framework, with two different network parametrizations, to
sequentially update the network structure based on noisy prior information
and real-time observations.

• compare different graph measures, such as node degree, betweenness centrality
for vaccination prioritization criteria on prior and assimilated networks.

The paper is organized as follows. Section 2 introduces the graph-based diffusion
modelling and vaccination strategies. Data assimilation principle and adaptation of
graph data are presented in Section 3. Section 4 shows numerical experiments in
real-world social contact networks, and Section 5 shows experiments with multi-layer
networks. Section 6 closes the paper with conclusions and future work.

2. Graph-based diffusion modelling and vaccination strategies

2.1. SIR model
The analysis of the diffusion is conducted using a standard SIR model [3], which

is a model without an explicit analytical solution of three interrelated non-linear
ordinary differential equations:

dS

dt
= −β IS

N
(1)

dI

dt
= β

IS

N
− γI (2)

dR

dt
= γI (3)

where S denotes the susceptible population size, I denotes the infected people
that are not separated from the population. The recovered population R represents
the patients that not infectious anymore, vaccinated or being quarantined from the
population. The total number of the population is N . The parameters β and γ de-
note the transmission of the virus infection and the recovery rate, respectively. The
SIR assumption has been widely adapted to simulate the COVID-19 propagation
[13],[52] since reported COVID reinfection cases (e.g [51]) are still rare until now.
The SIR model has also been broadly used in network-based disease simulations
through random walk based simulations [30]. Each node symbolize an individual
in the social network, whose status can alter from susceptible to infected (S-I) or
infected to recovered (I-R), according to the random walk through temporal edges
[17].
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2.2. Graph-based vaccination strategy
Both disease spread simulation and optimal vaccination modelling based on so-

cial networks have received an increasing interest for different types of infectious
disease [43]. We consider an directed or undirected graph G that is a pair of sets
G = (V,E), where V = {v1, v2...vn} represents the set of individuals (graph nodes)
and the set E contains the edges, each connecting a pair of individuals. Each graph
edge e ∈ E is represented by a triple e = (vi, vj, wi,j) where vi, vj are the two end-
points and wi,j ∈ R is the edge weight. For unweighted graphs wi,j ∈ {0, 1}, while
for weighted graphs wi,j could represent the frequency or the intimacy of the contact.
In epidemic spread modelling, the infectious probability pi,j from the individual i
to j (and vice versa) is often in function of wi,j, pi,j = IP(wi,j). We remind that
pi,j may also depend on individual-level characteristics of vi and vj, such as age
or activities. The connecting graph, also called as a social network, can be fully
represented by the associated adjacency matrix A = {Ai,j}i,j=1,...,n. We use three
Boolean vectors {It,Lt,Rt} ∈ {{0, 1}n}3 to indicate the status of each individual,
either infected, vaccinated or recovered in the SIR model at time t. The recovery
period Tγ ∈ N is a random variable generated individually for each individual.

If we adopt the edge-wise function IP(.) in the whole network,

IP(G)i,j = IP(Ai,j), (4)

the infectious probability vector Ipt ∈ (0, 1)n at time t in this SIR model reads

Ipt =
(
IP(At−1) It−1

)
� (1n −Rt)� (1n − Lt−1)� (1n − It−1), (5)

where 1n = [1, 1...1]T and � stands for the vector-wise Hadamard product.

Following a uniform probability distribution, the vector of infections It is simu-
lated using Ipt and It−1. The only controllable variable in Eq. 5 is the vaccination
vector Lt.

Different graph-based vaccination strategies can be employed to enhance the
immunization impact with a limited vaccination capacity. The state of art ap-
proaches are usually determined by observed individual- or community- level social
connections, often involving classical graph measures, for instance, graph degree, be-
tweenness centrality [21] or community links[9]. Much effort has also been devoted
to putting these strategies into practical settings where significant positive impacts
have been observed [26]. Since available graph data often include non-negligible
uncertainties (missing vertices or edges), statistical models are commonly employed
to provide an optimal estimation of these graph measures. Practical approaches
involve, for example, the fixed choice designs (FCD) [37] and the nomination strat-
egy [18], both based on an estimation of the graph degree. Even with partially
observed dynamical networks, the vaccination strategy could be significantly im-
proved in terms of reducing the maximum infected number and delaying the disease
propagation, compared to a random choice [53]. Nevertheless, precise knowledge of
the network structure is crucial to determine an optimal vaccination strategy. It is
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especially compulsory for communities-based approaches (e.g [25], [9]), since graph
clustering algorithms can be sensitive to noises. However, the data collection of dy-
namical social networks remains cumbersome, especially for large dimensional prob-
lems. In this paper, we conducted our analysis based on three classical strategies,
considered as less sensitive to data noise, compared to community-based approaches.

Random
The individuals to be vaccinated are randomly chosen, according to the number

of doses limited, where no network knowledge is used.

Highest degree
For each temporal network, we choose to vaccinate people with the most contacts

based on prior knowledge. Only observable individuals are taken into account. The
degree d(v) of node v in a network is simply defined as the sum of the column (or
the row for undirected graphs) of the adjacency matrix,

d(v) =
n∑
k=1
|Ak,v| (6)

Highest Centrality
The betweenness centrality [21] g(v) of node v is defined as the number of short-

est paths of all pairs of nodes in the graph that pass by the node v,

g(v) =
∑

u 6=q 6=v

σA
uq(v)
σA
uq

u, q ∈ V (7)

where σA
uq represents the total number of shortest paths from node u to node q and

σA
uq(v) is the number of those paths that pass through v.

Other graph measures relying on detailed understandings of the network (e.g [9])
could also be used to establish a vaccine strategy. However, in real applications, the
precise knowledge of the network is often out of reach. Here, our criteria for choos-
ing graph-based vaccination strategies are two-folds: computationally efficient and
non-sensitive to observation noises. The latter ensures the "validity" of the method-
ology even when working with incompleted networks. To enhance our estimation of
dynamical contact networks, we make use of data assimilation algorithms.

3. Data assimilation principle and adaptation of graph data

In this section we introduce the variational data assimilation concept and the
resolution using a linear estimator. We also introduce the novel approach which
combines DA techniques with dynamical network data.

3.1. Variational assimilation and BLUE
DA algorithms aim to combine different sources of noisy information in order to

provide a more reliable estimation of the current system. The state variables could
be either a physical field or a sequence of parameters. The true state, denoted by
xtrue, stands for the theoretical value of the state at some given coordinates/time,
often out of reach in real-world applications. The objective of the assimilation is to
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gain an optimal approximation xa of the true state xtrue, based on the prior infor-
mation which are two parts: an initial state estimation xb (so-called the background
state) and an observation vector y. The former is often issued from prior numerical
simulations/predictions while the latter can be obtained via physical measures of
some control variables. Their tolerances, regarding theoretical values, are quantified
by εb and εy,

εb = xb − xtrue ∼ N (0,B) (8)
εy = y−H(xtrue) ∼ N (0,O),

where the observation operator H from the state space to the observable space is
supposed to be known. The probability distributions of the prior error are supposed
to be centred Gaussian, characterized respectively by the covariance matrices B and
O.

The key idea in variational methods is to find a balance between the background
and the observations using maximum a posteriori (MAP) method [10]. This leads
to the loss function weighted by the inverse of B and O,

J3D-VAR(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y−H(x))TO−1(y−H(x)) (9)

= 1
2 ||x− xb||2B−1 + 1

2 ||y−H(x)||2O−1 . (10)

The optimisation problem defined by the objective function of Eq. (10) is called
three-dimensional variational method (3D-VAR), which can also be considered as
the general equation of variational methods without considering the transition model
error. The output of Eq. 10 is denoted as xa, i.e.

xa = argmin
x

(
J(x)

)
. (11)

If H can be approximated by some linear operator H, Eq. 11 can be solved via
BLUE (Best Linearized Unbiased Estimator) formulation,

xa = xb + K(y−Hxb) (12)
PA = (I−KH)B (13)

where PA = Cov(xa − xtrue) is the analyzed error covariance and the K matrix,
given by

K = BHT (HBHT + O)−1 (14)
is so called the Kalman gain matrix. In the rest of this paper, we denote H as the
linearized transformation operator. The case when H is non-linear is more chal-
lenging for finding the minimum of Eq. 9, especially for high-dimensional problems.
The resolution often involves gradient descent algorithms (such as "L-BFGS-B" or
adjoint-based numerical techniques).

3.2. Online assimilation with graph data
The essential idea is to perform real-time updating of the partially observed dy-

namical networks based on other available information, such as sub-graph structures
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or the current number of infected. To this end, the prior observed network Ab
t at

time t is considered as the background state (i.e, xbt = Ab
t) while other information

is embedded in the observation vector yt.
Once the current contact network is updated thanks to Eq. 10, vaccination

strategies could be implemented on the analyzed network xat = Aa
t (i.e step 1 →

step 2 in Fig. 1) which is a more accurate approximation of the true state. The
degree and the betweenness centrality of the assimilated network is given by

dat (v) =
n∑
k=1
|(Aa

t )k,v|, ga(v) =
∑

u 6=q 6=v

σAa

uq (v)
σAa

uq

. (15)

where (Aa
t )k,v denotes the k, vst element of the adjacency matrix Aa

t . Similar
expressions of dbt(v) and gb(v) taken on the background state can be given using Ab

and σAb . The principle of real-time assimilation with graph data is illustrated in
Fig. 1 where the virus propagation is simulated using the SIR model as described in
Section 2.2 between two vaccination steps. Compared to the overlapped graph, the
advantage of working with temporal networks is that the temporal correlation could
be considered. In fact, an individual can be active solely during a relatively small
period of time as shown later in Section 4.1. Therefore, instead of using overlapped
graph (even available), analysing temporal networks can result in a more optimal
real-time vaccination strategy.

Step 1 Step 2

Figure 1: Illustration of real-time DA updating for partially observed contact networks

A major challenge for implementing DA algorithms with graph data is the com-
putational cost since the adjacency matrix At, considered as the state variable is
a two-dimensional vector. We can rely on the assumption of graph sparsity and
appropriate parameterization to reduce the computational burden. In this work, we
propose two DA frameworks for dynamical networks updating, respectively intro-
duced in Section 4 and 5. The former aims to reconstruct the full network with
observations of sub-graphs while the latter attempts to adjust the parameterized
community-wise infectious probability, relying on a multi-layer modelling. These
two modellings, relatively at local and global scale, show also the flexibility of this
data assimilation framework.
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4. Numerical experiments in real-world social contact networks

4.1. Assumptions and preliminary analysis
This study is based on the recently (before the COVID outbreak) collected face-

to-face contact data in a French high school [22], which has been used to simulate
COVID outbreak [36]. The connection networks of 329 students (coverage of 86%
of the students) in a high school of Lyon are available for 7374 time steps in a week.
For the sake of simplicity, we condense the dynamical graph to 78 time steps by
overlapping every 100 consecutive networks. Each time condensed time step sym-
bolizes 30 ∼ 60 minutes. The temporal networks remain sparse since the average
graph density (i.e. number of non-zero edges divided by the number of node pairs)
equals to 0.76%. All contact networks are assumed undirected, which means the
associated adjacency matrices are all symmetric (i.e., At = AT

t ) and the virus could
spread in both directions of an edge. According to [36], the infectious probability (of
a 20-second contact) in this network can be estimated as p ≈ 0.1% ∼ 1%. However,
this estimated probability might be contested regarding newly discovered SARS-
CoV-2 variants [27]. In this paper, in order to adequately investigate the optimality
of different vaccination strategies, we fix the infectious probability to p = 2%. The
average recovery period in the SIR model is set to 60 time steps (around 4 to 5
days), following a uniform probability distribution, i.e. Tγ ∼ unif(55, 65).

We start by performing some preliminary analysis of the network data to better
understand the underlying graph structures. The overlapped network (i.e. ∑78

t=1 At)
of all time steps is shown in Fig. 2(a) where a clear community structure can be
observed. Identifying these communities is crucial for simulating the disease spread
[31], especially for highly infectious virus like SARS-CoV-2 [47], as well as determin-
ing optimal vaccination strategies. To this end, we make use of the Fluid community
detection algorithm proposed by [45] which is advantageous for sparse graphs since
the algorithm complexity is linear to the number of non-zero edges in the network,
i.e. O(|E|).

In real applications, specifying the number of communities remains usually cum-
bersome. Here, we apply several times the community detection algorithms against
different assumed community numbers kc, before evaluating the performance rate
pr(C) [20] of the obtained partition C. The latter, defined as

pr(C) =
|Ec|+

(
n(n− 1)− |Ec̄|

)
1
2n(n− 1) . (16)

where |Ec|, |Ec̄| indicate respectively the number of edges intra- and inter-clusters.
The performance rate is commonly used as an indicator for finding the optimal
community number, which is a standard approach for graph clustering problems.
According to the result presented in Fig. 2(b) where we observe clearly a stationary
of performance rate starting from kc = 4, we choose to proceed with the optimal
number of clusters koc = 3. The final clustering result is displayed in Fig. 2(a) where
clusters/communities are shown in red, green and blue color. The three detected
communities are equivalently distributed, as shown by the reordered adjacency ma-
trix (Fig. 2(c)), respectively with 106, 110 and 111 nodes. From a practical point
of view, these communities could be considered as different grades or classes in the
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high school, with a similar structure to the graph data presented in [23].
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Figure 2: Preliminary analysis of the dynamical high-school connection network: (a): Overlapped
contact network, (b): Performance rate pr(C) against assumed community number (c): Reordered
adjacency matrix after clustering (d): Node degree distribution of the first and the last 50 time
steps.

4.2. DA modelling and numerical results
Since it is infeasible to collect contact networks via wireless equipment in all

educational settings post lockdown, the objective of this study is to enhance the
vaccination strategy when only partial/noisy information is available, for instance,
via tracing applications. For this reason, the full contact networks Atrue

t are supposed
to be out of reach. In terms of background states and observations, we suppose the
temporal network is only partially observable a priori where 50% to 70% of nodes
are missing in the background estimation of the network Ab

t ∈ R329×329. The miss-
ing nodes are selected randomly and kept invariant at all time steps. In reality, the
missing nodes could refer to, for example, people who haven’t installed the tracing
application on their smartphones. On the other hand, we dispose an observation
vector yt which contains the sub-networks for each of these three detected clusters.
In other words, we suppose the intra-community contacts of students in each class/-
grade are fully observable by yt. The objective is to performing DA algorithms
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sequentially to correct the knowledge of the background network relying on the ob-
served sub-networks. The transformation operator H is thus linear (sub-Identity
matrix) and the DA problem is solved via BLUE as shown in Eq. 10. xtb = vect(Ab

t)
and yt are vectorized with Identity error covariances B and O as demonstrated in
Fig. 3.

After each vaccination, the SIR model is applied to simulate the virus propa-
gation until the next time step, as summarized in Eq. 5. An essential advantage
of BLUE-type formulation with invariant prior covariances is that the Kalman gain
matrix could be computed offline a priori since it is invariant to current xb and y.
Thus the computational cost of DA can be reduced considerably. The vaccination
capacity is fixed 2%(= 6 individuals of all students for all strategies (random, high-
est degree, highest centrality) presented in Section 2.2, based on prior or assimilated
graphs.

⋯

⋯

⋯
⋯

state

observation

Transformation operator

Figure 3: DA process at the current time where intra-connections are observable

The evolution of the number of infected |It|, according to different vaccination
strategies, is displayed in Fig. 4 where the percentage of missing nodes in the back-
ground state is fixed respectively as 50%, 60% and 70%. To acquire robust numerical
results, each type of simulation with or without vaccinations is repeated 10 times
and their average values are drawn in solid or dashed curves in Fig. 4. Standard
deviations of the simulations (except dashed lines) are also displayed with trans-
parent shades to ensure the robustness of the comparison. The averaged maximum
number of infected of each strategy is shown in Table 1. We remind that vaccina-
tions take place at every time step for 6 selected students (≈ 2% of the population)
after the simulation of virus propagation with a contamination probability of 2% for
each temporal edge. The initial infected It=0, commonly used for all simulations, is
randomly simulated with a probability of P

(
(It=0)k)

)
= 10% for k = 1, . . . , 329.

From Fig. 4, we observe that almost all averaged curves rise to a high point and
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peaked around t = 50 − 60 when all individuals are either infected or vaccinated.
Since the vaccination process takes place in a relatively short period (a week), we
suppose the infected individuals are not detected in real-time. As a consequence, a
student can be vaccinated after being infected by the virus, leading to vaccine fail-
ure. This fact emphasizes the importance of the vaccination strategy chosen. What
can be clearly observed in Fig. 4 is the decreasing of the infected number, according
to the vaccination strategy in the order of free (no vaccination)→ random→ back-
ground→ assimilated (DA). This order is globally consistent, regardless of time. In
the first place, all vaccination strategies manage to significantly reduce the number of
infected and delay virus propagation, compared to the free simulation (green curve).
In terms of maximum infected numbers, for all three cases, the peak value reduced
in average 26%, 34%, 34%, 40% and 37%, respectively for random, background with
highest degree, background with highest centrality, assimilated with highest degree
and assimilated with highest centrality. All other strategies are dominated by the
assimilated curves, especially when proceeding with the highest degree strategy. The
difference, in particular between background and assimilated curves, can be more
significant if working with large-scale networks. On the other hand, for background-
network-based strategies, a growth of maximum infected number against prior error
level is noticed in Table. 1 while the results based on assimilated networks remain
robust. This fact promotes the use of data assimilation on network data when prior
error level can not be precisely specified. We remind that the missing nodes at each
time step are generated independently with no temporal correlation, explaining why
reasonably good results can be obtained with 70% missing nodes. In summary, nu-
merical results show that the DA-based real-time updating of networks improve the
impact of vaccination considerably, resulting in reducing virus spread.

In these experiments, the use of node degree (solid curves) and betweenness
centrality, for both background (red) and assimilated (blue) cases, exhibits similar
performances. Such fact indicates a high-level (non-negligible) inter-clusters con-
nections where a contrary case can be found in section 5.
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Figure 4: Evolution of infected against different prior error level (percentage of unobserved ver-
tices): (a) 50%, (b) 60%, (c) 70%. Standard deviations are also displayed by transparent shades.
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strategy

prior error
level 50 % 60 % 70 %

Free 88% 88% 88%
Random 62% 62% 62%

Background (hd) 51% 55% 56%
Background (bc) 52% 55% 55%
Assimilated (hd) 47% 50% 47%
Assimilated (bc) 51% 52% 50%

Table 1: Maximum number of infected (in percentage) against different vaccination strategies

5. Experiments with multi-layer networks

5.1. multi-layer modelling of scale-free networks
As stated in recent researches [35], the infectious probability of COVID-19 can

differ significantly from different communities of population, according to their age,
gender, activity and so on. For example, both the transmissibility and the mortality
rate is reported to be higher for aged people, soliciting appropriate strategies to
protect this fraction of the population. Furthermore, SARS-CoV-2 variants may
also vary geographically [4], leading to inhomogenous transition probabilities. Since
the outbreak of the COVID-19 pandemic, a continuous effort has been given to un-
derstanding the behaviour of virus infection with respect to individual-level (e.g.
aged people [40]) and community-level (e.g. healthcare workers [50]) characteristics.
These phenomena lead to the idea of using multi-layer networks, where different
types of connections exist between graph nodes (see Fig. 5(a)), for simulating the
virus spread in social networks. In general, multi-layer (also known as “multiplex”)
networks [15] are widely used to study graph diffusion problems [24] and to define
generalized versions of Pagerank[16]. Recently, multi-layer modelling has also been
applied to COVID-19 spread simulation [49] where each layer refers to a potential
contamination community, such as school, workplace or transport. Appropriate use
of these layer information can optimise vaccination strategies as mentioned in [6],
by prioritising the population with high risk and high transmissibility.

Since the collection of large-scale face-to-face contact multi-layer dynamical net-
works is extremely complicated, we rely on conceptual modelling in this work to fur-
ther examine the performance of the novel approach. Dynamical contact networks of
1000 individuals and 5 layers (each of 200 nodes) are synthetically generated, where
each layer suggests a specific group of the population, according to their age or
activities (e.g. students, healthcare workers). Assuming all the edges in the tempo-
ral networks are fully observable, our objective here is to calibrate the time-variant
infectious probabilities {pi,t}i=1,...,5 based on the observation of infected number in
each of those layers {Ii,t}i=1,...,5. The temporal variance of {pi,t}i=1,...,5 can be a
consequence of SARS-CoV-2 mutations. More precisely, the values of {pi,t}i=1,...,5
update every 5 time steps, following a stochastic process,

pi,5tm+1 = max(pi,5tm + δp,m, 0) for tm ∈ N (17)
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where δp,m ∼ unif(−0.04%, 0.04%) and the observation vector consists of in-
cremental infected numbers ∆Ii,t = Ii,t − Ii,t−1. For inter-layer connections, the
infectious probability is determined by the layer of the receiving nodes, i.e.

IP(Gt)i,j = IP
(
(At)i,j × pi,t

)
, (18)

as shown in Fig. 5(a). It is worth mentioning that the associated adjacency ma-
trix At is no longer symmetric under this assumption. Nevertheless, the network
virus spread modelling in section2.2 remains valid.

As for the generation of temporal networks, we depend on the concept of scale-
free networks [44] where the degree distribution follows a power law,

Psf(k) ∼ k−γ (19)

where Psf(k) stands for the probability of a node to have k connections while 2 ≤
γ ≤ 3 is a chosen parameter. To simulate intra-connections in each layer, we use the
Barabasi-Albert (BA) model [1], which is scale-free with γ = 3, incorporating two
important concepts in graph theory: growth and preferential attachment[33], widely
existed in social networks. Therefore, BA model is a reference tool to generate real-
world-like networks, including web connections or citation networks. For generating
a BA network, nodes are added to the network consecutively where the probability
of the new node to be connected with the existing node v writes

PBA(v) = d(v)∑
j d(j) . (20)

The denominator in Eq. 20 represents twice the current number of edges in the net-
work. Individuals with a higher degree own a stronger ability to grab links added
to the BA network, which is an adequate assumption for social networks. Moreover,
the inter-layers connections are generated randomly with a density of 0.5%, much
sparser than intra-layer edges. Eventually, an example of a complete temporal net-
work is drawn in Fig. 5(b) where the five layers are shown in different colors.

Since temporal edges are supposed to be known in this modelling, we aim to
estimate {pi,t}i=1..5 based on the evolution of the infected numbers in all five layers.
In fact, we can predict ∆{Ii,t}i=1..5 via a prior estimation of {pi,t}, establishing a
state-observation mapping H ∈ R5×5 for DA algorithms. More precisely, the DA
problem could be addressed as

xb =


pb1,t
pb2,t
pb3,t
pb4,t
pb5,t

 , y =


∆I1,t
∆I2,t
∆I3,t
∆I4,t
∆I5,t

 , H = 200×N (AtIt)� (1n − Lt) (21)
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(a) (b)

Figure 5: (a): Illustration of multi-layers network modelling where the infectious probability de-
pends on the layer of the reception node. (b): Different layers in one temporal contact network
where, for example, the yellow layer could represent the community of academic staff in the de-
partment of Computing at Imperial College London and the other layers stand for students of
different grades (CIa).

where

N =


11×200, 01×200, 01×200, 01×200, 01×200
01×200, 11×200, 01×200, 01×200, 01×200
01×200, 01×200, 11×200, 01×200, 01×200
01×200, 01×200, 01×200, 11×200, 01×200
01×200, 01×200, 01×200, 01×200, 11×200

 . (22)

The simulation/vaccination framework is similar to the one in Section 4 with a
vaccination rate of ≈ 2% of the population at each time step. This means all people
will be vaccinated before t = 50. For all assimilations, the error covriances are
set to be identity matrices as in Section 4. Our goal is to determine an optimal
vaccination order based on available noisy information. In order to cover more
possible scenarios, we set various initial probabilities {pi,0}, as shown in table 2,
denoted as CIa, . . . ,CIf . For the sake of simplicity, {pi,0} always follow a decreasing
order from layer 1 to layer 5. Typically, the initial probabilities in CIf are more
homogeneous, compared to CIa or CIe. To give an example, CIa could be used
to simulate, for instance, the scenario in the department of computing at Imperial
College where nearly 800 students plus faculty members can be found. The layer
with high infectious probability may consist of professors, (senior) researchers and
HR officers while the other four layers can stand for graduate or undergraduate
students of different grades. The former community possesses definitively a much
higher average age, in contrast to the latter. Furthermore, each community holds
a dense intra-connections, coherent with our model assumption. The diversity of
initial conditions (CIa, . . . ,CIf ) ensures the robustness of the proposed approach.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
CIa 2.5% 1% 1% 1% 1%
CIb 3.5% 1.5% 1% 0.5% 0.5%
CIc 2.5% 2.5% 2.5% 0.5% 0.5%
CId 4.5% 1.5% 1% 0.5% 0.5%
CIe 3.5% 2.5% 1% 1% 0%
CIf 2% 2% 1.5% 1% 1%

Table 2: Initial infectious probability {pi,0} in different layers

The experiments set-up is similar to the one in Section 4. While computing the
node degree and the betweenness centrality, the graph edges are weighted by either
the background ({pbi,t}) or the analyzed ({pai,t}) layer probabilities. Since the layer
information is unattainable a priori, background networks are set to be homoge-
neous (i.e {pb1,t ≡ pb2,t ≡ pb3,t ≡ pb4,t ≡ pb5,t}). The evolution of the infected number,
issued from a Monte Carlo test of 10 simulations, is illustrated in Fig. 6. The stand
deviation is represented by colored transparent zones. We also display the result of
using exact {pi,t} (instead of {pbi,t} (red) or {pai,t}(green) ) for vaccination in yellow.
This curve is thus considered as the optimal target for the assimilation-based strat-
egy. When vaccinating the nodes with the highest degree, a substantial advantage
of the DA approach (solid green line) compared to the background (solid red line)
one, can be noticed in all six sub-figures of Fig. 6. In fact, both the maximum in-
fected number and the averaged standard deviation have been significantly reduced,
as confirmed in table. 3. On the contrary, DA gives much less impact when select-
ing the individuals with highest centrality as shown by dashed lines in Fig. 6. A
reasonable explanation could be the phenomena of brokerage [34]. The endpoints
of the few inter-layer edges play an essential role in virus spread. These nodes, also
known as “broker”, do not necessarily own a high degree in the graph. However,
since many shortest paths pass by them from one layer to another, the betweenness
centrality may peak at these nodes with or without adjusting {pi,t}. Such fact shows
that when the precise knowledge of inhomogeneous infectious probability is out of
reach, proceeding with highest centrality might be a robust choice. Nevertheless,
both the dashed green line and the dashed red line are dominated by the solid green
line (assimilated networks with highest degree) in all six sub-figures.

We also notice that for Fig. 6(a,b,d) where the five layers exhibit more vari-
ance for the initial probabilities, the assimilated curve is much closer to the op-
timal one. In fact, optimally vaccinating a very inhomogeneous network requires
less accurate knowledge of layer probabilities as long as the most infectious lay-
ers can be identified. For example, proceeding with (5%, 1%, 1%, 1%, 1%) and
(7%, 0.5%, 0.5%, 0.5%, 0.5%) for vaccine priorities may lead to very similar results.
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Figure 6: Evolution of infected number (average of 10 simulations) following initial conditions CIa

.. CIf

highest degree
max std

prior DA true prior DA true
CIa 44.9% 23.2% 21.5% 10.5% 3.7% 1.7%
CIb 43.8% 23.9% 22.6% 10.9% 2.4% 1.4%
CIc 49.1% 29.8% 21.0% 8.1% 2.8% 1.7%
CId 45.8% 22.8% 21.1% 9.7% 2.9% 1.8%
CIe 48.6% 29.8% 22.7% 8.4% 3.2% 2.0%
CIf 47.8% 30.9% 21.1% 9.1% 3.6% 1.6%

Table 3: Averaged maximum infected number and averaged standard deviation when using node
degree as order of vaccination priority

highest centrality
max std

prior DA true prior DA true
CIa 32.6% 30.8% 23.3% 6.0% 5.1% 1.6%
CIb 27.3% 28.6% 22.5% 2.8% 2.6% 2.2%
CIc 32.7% 32.6% 23.6% 4.4% 3.4% 2.0%
CId 31.3% 32.8% 22.7% 30.0% 30.0% 18.0%
CIe 35.1% 31.6% 22.9% 36.3% 24.3% 17.8%
CIf 34.0% 34.7% 23.5% 3.8% 3.9% 2.2%

Table 4: Averaged maximum infected number and averaged standard deviation when using be-
tweenness centrality as order of vaccination priority
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The evolution of the normalized true layer probabilities pi,t∑
k
pk,t

, as well as their

posterior (analyzed) estimation pa
i,t∑

k
pa

k,t

is drawn in Fig. 7. Each row represents
one simulation (not the average) from CIa to CIf . For the most infectious layer
(first column in Fig. 7), p1,0 (in red) is always under-estimated since at the begin-
ning of assimilation we proceed with homogeneous networks using pbi,0. This gap is
then rapidly reduced with the increasing of pa1,t, result in a more optimal vaccina-
tion strategy. Since vaccinating infected individuals is ineffective, the early phase
(around first 20 time steps) of the outbreak is crucial to delay the COVID spread
because the most active individuals (either in terms of degree or centrality) can be
infected very quickly. Therefore, the DA correction at the beginning of the vaccina-
tion process plays an essential role in reducing the propagation speed. On another
note, the strong oscillation of red curves implies a high instability of the observation
vector yt = [∆Ii,t]i=1..5 due to sampling uncertainties. For real applications, the
balance between the background state xbt and the observation yt, adjusted by error
covariances B and O, is worth further investigation. In addition, the correlation
between different layers (for example, healthcare workers and hospitalised patients)
can also be taken into account by the extra-diagonal elements in B and O.

In summary, the assimilation-based vaccination strategy shows competitive per-
formance in this multi-layer modelling even though the assimilated layer probabili-
ties are not always accurate. Using the assimilated temporal networks with “highest
degree” dominate other approaches, with a smaller average infected number and
lower standard deviation.

6. Conclusion and Future Work

Despite that continuous effort, suchlike vaccination or countrywide lockdown, has
been given, it is still unclear these days how the COVID-19 pandemic could play
out. Determining an optimal vaccination strategy is essential for long-term com-
bating against the COVID, especially with arising SARS-CoV-2 mutations. When
the ability to vaccinate the entire population is restricted, using temporal contact
network information can improve significantly the vaccination impact on slowing
down the disease propagation. This may allow the loosening of some restrictions,
which is crucial to rescue the economy from the current pandemic. In this paper,
we propose a data assimilation framework to monitor the evolution of social contact
networks based on different information sources. The assimilated networks are used
to govern vaccination strategies by prioritising high-risk individuals. An impor-
tant strength of this framework compared to other network reconstruction methods,
stands for the flexibility of dealing with available data and the efficiency for large-
scale networks. We have applied the proposed approach to real high school contact
networks with synthetic observations and to real-world-like dynamical multi-layer
networks generated using Barbasi-Albert model. The latter is used to simulate virus
propagation with inhomogeneous community-level infectious probabilities. In both
applications, the proposed method exhibits a significant advantage in terms of ef-
fectiveness (smaller infected number) and robustness (lower deviation). The choice
of graph measures for identifying high-risk individuals, such as node degree or be-
tweenness centrality has also been discussed through numerical results in this study.
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Figure 7: The true and estimated infectious probability (normalized) for one simulation with
different initial conditions CIa...CIf in each row

We notice that some recent work focuses on establishing data-driven models to pre-
dict individual- or community-level infectious probabilities by learning on personal
data, involving height, weight and health records. Computational fluid dynamics
(CFD) simulations are also being developed to simulate SARS-CoV-2 transmission
in schools and offices. Future work can be considered to improve individual-level
modelling by incorporating these features in the contact networks. Our work opens
promising perspectives to governing optimal vaccination strategies when more net-
work information (e.g. from tracing applications) can be available.
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