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Abstract 

Preventive and modelling approaches to address the COVID-19 pandemic have been primarily 

based on the age or occupation, and often disregard the importance of heterogeneity in popula-

tion contact structure and individual connectivity. To address this gap, we developed models 

based on Erdős-Rényi and a power law degree distribution that first incorporate the role of heter-

ogeneity and connectivity and then can be expanded to make assumptions about demographic 

characteristics. Results demonstrate that variations in the number of connections of individuals 

within a population modify the impact of public health interventions such as lockdown or vacci-

nation approaches. We conclude that the most effective strategy will vary depending on the un-

derlying contact structure of individuals within a population and on timing of the interventions. 
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Author summary 

The best strategy for public health interventions, such as lockdown or vaccination, depends on 

the contact structure of the population and the timing of the intervention. In general, for hetero-

geneous contact structures that mimic the COVID-19 spread, which is characterized by the pres-

ence of super spreaders, vaccinating the most connected individuals first was the most effective 

strategy to prevent infections and deaths, especially when coupled to serological tests. Models 

considering heterogeneity in human interactions need be used to identify the best potential vac-

cine prioritization strategies. 

 

 

Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the 

coronavirus infectious disease COVID-19, has infected over 165 million and caused more than 

3.4 million deaths globally. [1, 2] It continues to spread in most countries despite the wide range 

of preventive approaches that have been deployed. 

In the absence of effective vaccines, country-level responses ranged from strict and prolonged 

lockdowns aimed at completely stopping transmission, to allowing a substantial proportion of the 

population to get infected to ultimately reach natural herd immunity, which is when the propor-

tion of individuals who have been exposed to a disease and developed immunity is enough to 

protect remaining susceptible individuals from exposure and stop the spread of a disease. [3] 

Even with new evidence suggesting that heterogeneity in age and social connectivity reduces the 
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proportion of individuals that need to be infected to reach herd immunity, the human cost of this 

approach is unacceptable from a public health perspective, and effective immunization of the 

population remains the only viable approach to reach herd immunity. [4] Now that effective vac-

cines against SARS-CoV-2 have been approved, it is imperative to identify prioritization strate-

gies that maximize the impact of the limited doses available to reach herd immunity with the 

minimum loss of human life. [5] 

Most countries have laid out vaccination strategies that prioritize healthcare workers, followed 

by those living in elderly care facilities, or essential workers (e.g., teachers, food industry), and 

then age groups from older to younger. [5-8] This prioritization of older populations is based on 

disease severity and higher risk of death of COVID-19 among this group. However, another pop-

ular prioritization strategy - that has been shown to be effective for influenza - is to begin with 

younger individuals to create an immune shelter around those most vulnerable. [9] Beubar et al. 

[10] evaluated these two strategies in different contexts and demonstrated that, in most scenarios, 

years of life lost were minimized by strategies that prioritized adults over 60 years, even as inci-

dence was minimized when younger adults were prioritized. The exceptions to that rule were un-

der low community transmission (basic reproductive number - R0 = 1.15 vs 1.5) or when the effi-

cacy of the vaccine was significantly lower among older populations; in these cases, prioritizing 

adults between 20-49 years resulted in the greatest reductions in mortality. A limitation of previ-

ous studies has been that they have mostly been based on age and individual connectivity has not 

been considered independently. While dividing the population in age groups is a practical and 

actionable solution for vaccine prioritization, it has the limitation of being a social construct with 

artificial cutoffs, which can sometimes mask the important role of the underlying contact struc-

ture. 
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Another challenge estimating the potential impact of COVID-19 preventive approaches has been 

that traditionally epidemiological models have depicted populations and epidemics as homogene-

ous [4], however the spread of COVID-19 has been characterized by a high variance in its repro-

ductive number (Rt) which leads to a pattern of super-connected individuals being responsible 

for most infections. [11, 12] This represents a major deviation from how influenza, which has a 

smaller Rt variance, spreads and requires adjustments to traditional models. The use of graphs to 

represent the contact structure of populations and the study of epidemics on networks have re-

cently gained strong interest [13,14,15]. Hence, the aim of this study was to build on these ap-

proaches to qualitative estimate the role of individual connectivity and contact heterogeneity on 

the COVID-19 epidemic, and to identify the vaccination strategies that minimize infection and 

death based on the underlying contact structure of the population. 

 

Methods 

We used a model that focuses on the interactions that infectious individuals have during the pe-

riod when they are contagious. It is a middle-ground approach between agent-based [23] and 

mean-field [24,25,26] models, in the sense that we do not model every interaction that occurs in 

the population, as an agent-based model would, but we keep some randomness in the interactions 

instead relying on averages, which is one limitation of mean-field models. In line with the meth-

odology previously applied by Holme (2017) [27], we consider a random graph of interactions, 

in which connections between nodes (i.e., individuals) represent interactions during the infectiv-

ity period (which we will call “risky interactions” or “risky contacts”).. In other words, we first 

choose at random the interactions individuals will have if they become infected. After setting up 
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the underlying graph, we spread the infection on top in the form of a traditional SIR model, and 

let the infection spread like a contact process on top of the graph. 

In order to assess how the contact structure of the population can affect the dynamics of an epi-

demics, we compared two types of populations, a homogeneous one, modelled by an Erdős-Ré-

nyi graph (ER) [16] and one with high variance in the number of contacts per individual, mod-

elled by a graph with power-law degree distribution (PL) [17]. The degree distributions of both 

graphs are shown in Fig 1 and a visualization of their structure (with small N) is shown in S1 

Fig. A detailed description of the construction of the graphs is presented next.  

 

Interaction graphs 

The Erdős-Rényi graph is one of the most classical random network models. [16] In a graph with 

𝑁 vertices, for any pair of vertices there exists an edge with probability 𝑞 = !!
"

, independently of 

each other. Hence, the number of connections per individual is binomially distributed with pa-

rameters 𝑁 and 𝑞, which has mean 𝑁𝑞 = 𝑒 and variance 𝑁𝑞(1 − 𝑞).  

To construct a graph with power-law degrees, we followed the method proposed by Qiao et al.  

Power-law [17] with exponent 𝜸 roughly means that the probability that a given vertex in the 

network has 𝒌 connections (in other words, it has degree 𝒌) behaves like 𝒌#𝜸 for large 𝒌 if the 

total population size is large enough compared to 𝒌. [17] To construct this graph, to each individ-

ual 𝒊 we assigned a random number 𝜹𝒊, which is an exponentially distributed random variable of 

parameter 𝝀 (this parameter is related to the exponent 𝜸), and we fixed a positive parameter 𝒃 

(this parameter is related to the average number of connections per individual). Each pair of indi-

(viduals 𝒊, 𝒋) has risky interaction with probability 𝒃𝟏'𝜹𝒊'𝜹𝒋.  With this construction, we have 

𝜸 = 𝟏 + 𝝀 𝒍⁄ 𝒏6𝑬8𝒃𝟏'𝜹𝒊'𝜹𝒋9:, where 𝑬 denotes expectation. In order to have e=44, we chose 𝒃 
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such that 𝑬8𝒃𝟏'𝜹𝒊'𝜹𝒋9 = 𝒆
𝑵
. To do so, we used the moment generating function of an exponential 

random variable.  We needed to choose 𝒃 such that: 𝑬8𝒃𝟏'𝜹𝒊'𝜹𝒋9 = 𝒃𝑬8𝒃𝜹𝒊9𝑬8𝒃𝜹𝒋9 =

𝒃 < 𝝀
(𝝀#𝒍𝒏𝒃)

=
𝟐
= 𝒆

𝑵
. For this study, 𝝀 was set to 3, leading to 𝜸= 0.509.  

Infection dynamics 

After simulating the structure of the interactions in the population, we simulated the spread of the 

infection using a SIR model, which is a continuous-time Markov chain where individuals can be 

in each of four states: Susceptible, Infected, Recovered or Dead. At time 0, we started with one 

infected individual chosen at random (the rest were all susceptible). Infected individuals could 

transmit the disease to susceptible individuals (if they had a risky interaction during the simula-

tion). At the end of the infectious period, the infected individual either recovered or died. We as-

sumed that recovered individuals could not be reinfected (S2 Fig, S1 Movie, S2 Movie). 

In more detail, for each individual that gets infected (the ‘focal’ individual) the duration of the 

infectivity period is an exponential random variable with parameter 𝑻𝒓	=	10. This means that the 

expected duration of the infectivity period is 10 days. During this infectious period, the focal in-

dividual could each of their contacts with probability 𝑷𝒊. The way we implemented this in a Mar-

kovian way was by assigning to each of his neighbors an exponential random variable of param-

eter 𝑻𝒊. If one (or several) of these variables is smaller than the infectivity period, the focal indi-

vidual transmitted the disease to the corresponding neighbor. All these exponential random vari-

ables were assumed to be independent. The parameter 𝑻𝒊 was chosen in such a way that the prob-

ability of infecting each of the susceptible neighbors 𝑷𝒊 was 0.05. To do so, we used a classical 

result on the minimum of two exponential random variables: 𝑷𝒊 =
𝑻𝒊

(𝑻𝒊'𝑻𝒓)
.  
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At the end of the infectious period, the focal individual either died with some probability 𝑷𝒅 or 

recovered with probability 𝟏 − 𝑷𝒅. The probability of death was initially set to 0.01 for all indi-

viduals and then modified based on connectivity for extended models. 

 The process was simulated using a Gillespie algorithm. Simulations were performed in R and 

code is available in a git repository (see Data Availability). 

Lockdown strategies 

In our models, a lockdown corresponded to reducing the number of edges in the graph, i.e., de-

creasing the number of potential infectious contacts between individuals. We considered differ-

ent lockdown strategies: 

- Lockdown 1 (LD1): We removed each edge of the graph independently with some proba-

bility p = 0.5.  

- Lockdown 2 (LD2): The number of contacts of any individual was bounded by M. To im-

plement this strategy, we considered individuals sequentially. For each individual, if he 

has d contacts where d>M, we deleted M-d of these interactions at random. Otherwise, 

the number of his contacts remained unchanged.  

In both cases, the lockdown started when the cumulative number of infected individuals reached 

a certain threshold (0, 10 or 30% of the total population) and it was lifted after a fixed number d 

of days. To provide a “fair” comparison, M was chosen in such a way that on average the same 

number of connections was removed in LD1 and LD2, in the Erdős-Rényi and power law cases. 

This corresponded to M= 26. However, in the power-law case, this choice yielded a very strong 

reduction of the number of edges (since most edges are carried by super-spreaders, that had a 

degree much higher than M). Therefore, in supplementary figures 4 and 5, we also show a vari-
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ant of this strategy (Lockdown 2b), where M=82, which is the value needed to have a similar re-

duction in the number of edges as in LD1 for the power-law graph. This strategy has no effect in 

the Erdős-Rényi case since the variance in the number of contacts is smaller so it is very rare to 

find individuals with more than 82 connections. 

Vaccination strategies 

In our model, vaccination corresponds to reducing the number of vertices with certain prob-

ability based on the effectiveness of the vaccine (efficacy ϵ). Each vaccination strategy corre-

sponds to a way of subsampling D individuals in a population of size N. We implemented six dif-

ferent vaccination strategies that corresponded to different ways of choosing the sample of indi-

viduals to vaccinate. 

• “Uniform”: D individuals uniformly selected at random for vaccination.  

• “Most connected”: D individuals selected in order from most connected (those with the 

highest degree) to less connected.  

• “Neighbor”:  Randomly selected one individual and vaccinated a connection (i.e., one 

that is connected to the first one by an edge) also selected at random. This was repeated 

until D individuals were selected and vaccinated, ensuring that tendentially, individuals 

with a high number of connections got vaccinated. This is a real-life approximation fol-

lowing an approach that has been used to identify and vaccinate the most connected indi-

viduals, cf. [26]. 

• “Among most connected”: Subdivided the population into two groups of equal size: the 

“most connected” (those having the highest degree) and the “least connected” and chose 

D individuals uniformly at random among the most connected. This is a real-life approxi-
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mation where groups which tend to be highly connected (i.e., healthcare workers, front-

line workers) are prioritized for vaccination. A similar approach was suggested by Shah-

zamal et al. in the form of a vaccination strategy using an app to detect individuals that 

had been to high-risk locations. [28]. 

• “Among least connected”: Subdivided the population into two groups of equal size: “most 

connected” (those having the highest degree) and the “least connected” and chose D indi-

viduals uniformly at random among the least connected.  

• “Least connected”: D individuals selected in order from least connected (those with the 

lowest degree) to more connected.  

We tested two variants of each of these strategies: 

• Strategy S: selecting only among the susceptible individuals. 

• Strategy SIR: selecting among the susceptible, infected or recovered (but not among the 

dead). 

If vaccination is conducted at time 0, both strategies are equivalent because everyone is sus-

ceptible.  

As a simplifying assumption, we considered that vaccinated individuals do not contribute to 

disease spread. It was assumed that in fully vaccinated individuals, the vaccine had an effective-

ness of 0.9. This means that among the D chosen individuals, only ϵD were effectively deleted 

from the graph. We tested three different vaccination starting times where vaccination started af-

ter the cumulative proportion of infected individuals reached 0%, 10% or 30%. Most models 

were conducted with vaccine doses available to vaccinate 25% of the population, but in an ex-
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tended model we tested the impact of different interventions when the number of doses was dou-

bled but the effectiveness (𝝐) was decreased from 0.9 to 0.5 to mimic the dose sparing strategies 

that have been applied in some countries.  

As mentioned before, the probability of death was originally set uniformly to 𝒑𝒅 = 0.01, 

thus the number of infected is directly correlated with the number of dead. In extended models 

that assumed that old individuals were less connected and more vulnerable than younger individ-

uals, we assigned a probability of death of 𝒑𝒅 = 0.07 to the 17% least connected and 𝒑𝒅 = 0.005 

for the rest.  This percentage corresponds to the proportion of individuals older than 65 in 

Utrecht and the probabilities are in line with the case fatality rate of COVID-19 for different age 

groups. [29, 30]  

Choice of the parameters 

Since the simulations are computationally intensive and we wanted to test as many scenarios as 

possible, we chose a population size of 20000 (N). We also assessed if the sample size affected 

the results from the models with sample sizes varying from 5000 to 60000 (Fig S3). We ob-

served that the fraction of infected individuals seemed to reach a stationary behavior for large N, 

which is a good indicator that, qualitatively, a larger population should behave similarly to our 

small world simulations.  

The average number of risky interactions (e) was set to 44 following a study made in the city of 

Utrecht, Netherlands. [29] In this study, individuals of different age groups reported the number 

of people with whom they had a conversation of at least 10 minutes during a week, which we 

consider is a proxy for the number of risky interactions.  We took the average of these numbers 

(according to the population census).  

 
Repeatability and sample size 
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The results presented consider independent realizations of the process. In a small number of sim-

ulations, the epidemic died out after infecting less than 0.5% of the population. These simula-

tions were excluded from the results (because they are not consistent with the case of COVID-

19). Results presented show the mean and standard error of 30 repetitions conditioned on infect-

ing a macroscopic fraction of the population (>0.5%). Results are always expressed as the frac-

tion of the population size N, instead of absolute numbers of individuals. For the purposes of this 

analysis, we considered interventions significantly different if over 95% of the simulations did 

not overlap.  

 
Key observables 

In order to analyze the effect of connectivity of the underlying graph as well as the efficiency of 

lockdown and vaccination strategies, we consider different observables. These include the total 

number of infections after the end of the epidemic, the infection curve (which provides infor-

mation about the maximum number of active cases as well as about the duration of the epidemic 

and the eventual emergence of secondary infection waves) and the mortality of the epidemic. 

Apart from these classical and commonly studied observables, we also consider the so-called 

rank-connectivity plots (cf. Fig 1 and Fig 4). These depict the degrees of the infected individuals 

in the order that they became infected. The shape and variance of this curve provides information 

about the relation between the connectivity properties of the graph and the dynamics of the epi-

demic, e.g., a decreasing curve corresponds to an epidemic where highly connected individuals 

tend to get infected first. 

 

Results 
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Association of connectivity with time to infection 

In the first model assessing the relationship between connectivity and time to infection, under the 

parameters described above (N=20000, e=44, 𝑃5	=0.05), we computed the basic reproduction 

number R0   as the expected number of cases directly generated by one infected individual if all 

their neighbors are susceptible, i.e., R0 = e.𝑃5 	=	2.2. The effective reproduction number Rt (esti-

mated from the simulations using 14 days rolling windows) varied from 1.7 at the beginning of 

the outbreak to 0.9 towards the end.  

In baseline simulations, highly connected individuals tended to get infected early, while less con-

nected individuals got infected at random times throughout the epidemic. This was especially 

clear for heterogeneous contact structures, where the average number of risky connections per 

individual at early stages was significantly higher and decreased with time (Fig 1). We also ob-

served that the total number of people that were infected before the epidemics died out was 

smaller in the heterogeneous setting.  

Lockdown strategies based on contact structure. 

In a homogeneous population, Lockdown 1, where a restriction to mobility is imposed by the au-

thority causing the removal of each interaction with some probability, and Lockdown 2, which 

imposed a maximum number of contacts per individual had similar effects, decreasing the over-

all number of infections from 0.84 ± 0.001 (without  any intervention) to 0.77 ± 0.001 in both 

cases. The maximum number of infected individuals in a time period also decreased significa-

tively. However, in the heterogeneous population Lockdown 1 had a greater effect minimizing 

the overall number of infections from 0.69 ± 0.001 (without  any intervention) to 0.57 ± 0.001. 
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However, Lockdown 2, which resulted in a smaller reduction in the overall number of infections 

(0.64 ± 0.001), had a significantly lower maximum number of infected individuals through time 

and there is a secondary wave of infections. In this case, Lockdown 2 is more likely to prevent a 

collapse of the health system, and thus could be a preferable strategy. Consistently with this, 

Lockdown 2 is the only one that has an impact in the average number of connections through 

time (Fig 2).  

Vaccination strategies based on contact structure. 

In the simulations with doses available for 25% of the population, vaccinating the most con-

nected among the susceptible (S vaccination) resulted in the smallest proportion of infected indi-

viduals in homogeneous populations (0.45 ± 0.002 when vaccinating at time 0 vs 0.84 ± 

0.001without intervention) although the effect was larger in the heterogeneous graph (0.18 ± 

0.003 vs 0.69 ± 0.0007) (Fig 3). Similar results were obtained when varying the timing of the in-

tervention. In models where susceptibility status was not considered (SIR vaccination), the bene-

fits of targeting the most connected individuals decreased when more people had been infected 

before the intervention. For both graphs, vaccinating uniformly performed similarly to vaccinat-

ing the most connected when the intervention started after 30% of the population had already 

been infected. These strategies only reduced the proportion of infected from 0.84 ± 0.001 to 0.65 

± 0.003 in the homogeneous case and from 0.69± 0.0007 to 0.55 ± 0.002 in the heterogeneous 

case. (Fig 3). Vaccinating the least connected or among the least connected resulted in the high-

est proportion of infections in every scenario. 

When the vaccine intervention was implemented early, when 10% of the population or less was 

infected, vaccinating the highly connected individuals first resulted in the greatest decline in the 
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speed of propagation. However, when the intervention was implemented after 30% of the popu-

lation had been infected, the decrease in the speed of propagation was much smaller (Fig 4).  

Vaccination strategies, connectivity, and mortality 

In models where number of connections was linked to fatality rate, in the homogeneous case 

(ER), uniform and most connected strategies performed similarly, decreasing significantly the 

proportion of deaths from 0.014 ± 0.0001 in the control to 0.009± 0.0001 in both cases, when 

vaccinating at time 0. In this scenario, vaccinating the least connected (which were also the most 

vulnerable) was the best strategy yielding a proportion of deaths of only 0.004 ± 0.0001. Similar 

results were obtained when varying the time of the intervention. In a heterogeneous population 

(PL), the most connected (S and SIR) were the strategies that prevented more deaths, especially 

when the intervention started early, where the proportion of deaths was reduced from 0.004 ± 

0.00008 in the control case to 0.0012 ± 0.00007. Uniform and least connected strategies per-

formed equally well (0.003 ± 0.00007), preventing significantly less deaths than most connected 

S but slightly more deaths than the control. When vaccination started after 10 or 30% of the pop-

ulation had been infected, most connected S had an advantage over most connected SIR. (Fig 5). 

Dose sparing under different vaccination strategies 

In the case of a homogeneous population (ER), strategies that complete the vaccination schedule 

increasing effectiveness and those that vaccinated more people with lower effectiveness yielded 

similar results with respect to the total number of infected individuals. However, in the case of a 

heterogeneous population (PL), when vaccinating the most connected individuals, administering 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.03.11.21253348doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.11.21253348
http://creativecommons.org/licenses/by/4.0/


15 

the two doses to fewer people was a more efficient strategy producing a smaller number of in-

fected individuals. For the uniform strategy, the way of administering the doses made no differ-

ence. (Fig 6).  

 

Discussion 

 In this study, we modelled different lockdown and vaccination strategies based on con-

nectivity. Our results confirm that heard immunity was reached earlier in heterogeneous scenar-

ios, which is consistent with recent evidence from Britton et al. [4] Further, we also found that 

the level of heterogeneity in the underlying structure of risky contacts, also modified the effec-

tiveness of different interventions such as lockdowns or vaccination approaches.  This is particu-

larly relevant for the case of COVID-19 where a few highly connected individuals have been re-

sponsible for most of the infections.  

 In order to account for differences in connectivity and heterogeneity, we used graph mod-

eling approaches, which are gaining interest in the study of epidemics, [13,14,15] and developed 

an innovative application that allowed us to test preventive interventions on clearly distinct ho-

mogeneous and heterogeneous graphs. Previous studies had attempted to affect connectivity of 

graphs by removing uniformly chosen vertices from a random graph, [18,19,20] but found that, 

in the case of heterogeneous graphs to really affect connectivity, almost all vertices had to be re-

moved, which limited their ability to test interventions. In an alternative approach, [21], the au-

thors studied the propagation of an epidemic (SIS) on a heterogeneous graph when removing 

some special vertices, chosen using fine properties on the underlying graph and interpreted it as a 

prioritization strategy. Our approach, using two distinct fixed underlying graphs and considering 
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different strategies to remove vertices, allows us to make fair comparisons of different prioritiza-

tion strategies under different context. Moreover, this approach opens the possibility of testing 

interventions at different times of the epidemic. Furthermore, the models presented in this paper, 

do not require perfect knowledge of the underlying contact structure to generate valuable recom-

mendations, this is particularly important for public health because usually this information is 

also unknown to decision makers fighting an epidemic.  

 We first used our models to assess the role of heterogeneity in the case of lockdown inter-

ventions. We compared two strategies: Lockdown 1 which can be interpreted as the result of a 

general stay-home initiative and Lockdown 2 which could correspond to protective measures like 

the prohibition of events with many participants or restriction of the number of individuals who 

are allowed to meet at the same time. We demonstrated that the best intervention depends on the 

underlying contact structure of the population. In a homogeneous population, both strategies are 

equivalent, while in the heterogeneous population Lockdown 2 is more likely to prevent a col-

lapse of the health system, and thus would be a preferable public health strategy. 

 We then used our model to assess the efficacy of different vaccination strategies. In the 

heterogeneous context, interventions that prioritize more connected individuals performed better 

at preventing infection and deaths when compared with uniform strategies where vaccines are 

distributed at random.  Conversely, strategies that prioritized the less connected individuals had 

the worst outcomes even when a higher fatality rate was assigned to the less connected. Most 

current COVID-19 strategies begin vaccination with highly connected individuals (healthcare 

workers, populations living in elderly care facilities) but then turn to vaccinate older and vulnera-

ble populations which tend to be among the least connected [31]. If in fact more vulnerable indi-
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viduals are less connected, current vaccination strategies that prioritize older and more vulnera-

ble individuals over younger and more connected might be suboptimal to address the COVID-19 

pandemic.  

 Another important result is the importance of intervention timing during the history of the 

epidemic. Especially under heterogeneous contact structures that are similar to the COVID-19 

spread pattern, highly connected individuals tend to get infected very early and drive the early 

stages of the contingency. This is consistent with what was reported by Hoffmann et al. that also 

found that in a heterogeneous graph, the highly connected individuals are over-represented in the 

group of infected individuals at the initial phase of an epidemic. [22] Besides studying this find-

ing in relationship with lockdown strategies, we also expanded it to study the role of timing on 

the impact of vaccination strategies. Our results connect this radical contact-driven transfor-

mation of the topology of the graph over time with the success or failure of intervention targeting 

most connected individuals depending on the time of the intervention. Further, this finding high-

lights the importance of considering what proportion of the population has already been exposed 

to the virus and potentially developed some immunity when the intervention is implemented. We 

observed that in the absence of susceptibility-based targeting, interventions prioritizing highly 

connected individuals were more effective early in the epidemic. Others have highlighted the im-

portance of antibody testing to prevent infection and death, [10, 32] and our results further sup-

port this approach especially when targeting highly connected individuals late in an epidemic 

when a high proportion has already been infected. The proportion of healthcare workers with 

SARS-CoV-2 antibodies ranges between 2-50% in different settings, [33] based on our results, 

targeting the available doses based on previous immunity could maximize its impact especially 

in settings where seroprevalence is high.  
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 A challenge of these connectivity-based strategies is that identifying the most connected 

individuals in real life is not easy. To address this, we tested two modified versions of the “most 

connected” vaccination strategy (see S6 Fig and S7 Fig). The first one consists of randomly se-

lecting an individual and then vaccinating a person connected to them (neighbor), which biases 

the selection towards the most connected. For the second one, we divided the population into two 

groups based on their number of connections (most and least connected) and then sampled 

among the most or least connected group. In the heterogeneous scenario, vaccinating the most 

connected remained the most effective approach; however, neighbor and among the most con-

nected also performed better than uniform, supporting the targeting of highly connected individu-

als as a promising strategy for COVID-19 vaccination. An operationalization of vaccinating 

among the most connected would be to prioritize individuals with occupations that require face-

to-face interactions, for example those in the service industry.   

 A criticism of targeting the most connected individuals has been that these tend to be 

young and less vulnerable [31], hence we also extended these models to assess their impact on 

mortality under the assumption that connectivity is inversely associated with fatality. In the ho-

mogeneous structure (ER), vaccinating the most vulnerable resulted in reduction in the number 

of deaths. However, in heterogeneous structures, strategies targeting more connected individuals 

performed better than uniform and least connected, especially when targeting the susceptible. 

Uniform approaches have the advantage of being easier to implement and they perform signifi-

cantly better than targeting less connected individuals, which resulted in the greatest number of 

infected. According to our models, the uniform approach is not always bad, vaccinating just 25% 

of the population with this strategy reduced infections compared to the control and, in some 

cases of late intervention, it can even outperform vaccinating the more connected individuals. 
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Some counties in the US started implementing uniform approaches because they originally faced 

challenges distributing vaccines to older populations first, [34] our results support this vaccina-

tion approach or those prioritizing frontline workers over targeting less connected individuals.  

 Most of the vaccines that are available for COVID-19 were designed to be administered 

in two doses (and the effectiveness was shown to be over 90%). However, it has been suggested 

that governments should aim to give as many people as possible a single dose, instead of using 

half the vaccines currently available on second doses (i.e., dose sparing). [35] The effectiveness 

after a single dose has been estimated to be around 50%. In the case of a heterogeneous popula-

tion, when vaccinating the most connected individuals, administering the two doses was a more 

effective strategy producing a smaller number of infected individuals. However, when the least 

connected were prioritized, dose sparing resulted in fewer infections, suggesting that if current 

strategies that prioritize less connected individuals continue, applying a single dose to more peo-

ple would be the best approach (although still significantly worse than targeting the most con-

nected or even distributing the vaccine at random).  

 

  A strength of this study is the middle-ground modelling approach between agent-based 

[21] and mean-field [22] models, that combines the dynamic nature of the first with the computa-

tional efficiency of the latter. This is achieved by focusing solely on the interactions that infec-

tious individuals have during the period when they are infectious, a crucial part of the social dy-

namics of the propagation of the virus. While our method disregards some features of a real soci-

ety, it allows us to capture the essential differences between homogeneous and heterogeneous 

contact structures. In this sense, a limitation of these models is that they do not provide quantita-
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tive estimates of the exact impact of different interventions, however they provide sound qualita-

tive judgments that allow to rank different vaccination strategies based on number of infections 

and deaths. Similarly, the graphs used in this study were parameterized based on data from a sin-

gle study from a European city and have a relatively small sample size compared to most urban 

areas, however modifying the average number of contacts or the sample size did not modify our 

findings.  

 In conclusion, the effectiveness of vaccination strategies depends on the heterogeneity of 

the underlying contact structure and the timing of the intervention, it is important to consider this 

when implementing COVID-19 preventive approaches. Future applications of these models that 

were specifically designed to include differences in heterogenicity include the study of COVID-

19 adaptation in these different scenarios and applications to other preventive approaches or in-

fectious diseases.  

 

Data availability 
Code is available at: https://github.com/JulioNava31/The-role-of-connectivity-on-COVID-19-
preventive-approaches.  
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Figures 

 

Fig 1. Two different ways of modelling social interactions. Top panels represent the distribution 
of the number of risky interactions in the ER and the PL graphs with 20000 individuals. Panels in 
the middle show a realization of the SIR process for each of the models. Bottom panels show the 
number of risky interactions individuals have, as a function of the order in which they are in-
fected (dots show the average over 30 simulations). 
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Fig 2. Effect of the different lockdown strategies. The lockdown starts when 10% of the popula-
tion is infected and lasts for 45 days. Top panels represent the proportion of infected individuals 
at the end of the infection in 30 different simulations. The panels in the middle represent the 
number of infected people as a function of time. Error bars indicate standard deviation (com-
puted from 30 repeats). Vertical bars indicate the start and the end of the lockdown. In the bot-
tom panels, we show the average degree of the infected individuals as a function of their rank of 
infection for the two lockdown strategies. The controls are shown in Fig 1.   
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Fig 3. Proportion of infected and dead individuals for three vaccination strategies. The plot 
shows the proportion of infected at the end of the infection for 30 repetitions. The number of 
doses of the vaccine represents 25% of the population size (N = 20000).  Error bars represent 
standard deviation. Different starting times are shown in the different panels (when 0, 10 and 
30% of the individuals have been infected). On the top right panel, when vaccinating the most 
connected, the epidemic always died out quickly, before infecting at least 50 individuals, which 
is the minimum required to be considered a successful simulation (see Methods). 
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Fig 4. Effect of the vaccination strategy on the rank of infection. The dots represent averages 
over 30 simulations. The number of doses of the vaccine represents 25% of the population size 
(N= 20000). In these simulations we vaccinate individuals regardless of their status (S, I, R). 
Vertical bars indicate the time when the intervention is made. 
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Fig 5. Proportion of deaths, for an effectiveness of 90% and for different values of tV (top panels 
vaccination starts at 10% and bottom panels at 30%) The horizontal lines in the middle of the 
boxes show the mean values among all simulations, the upper and lower edges of the boxes are 
the quantiles q0.25and q0.75 corresponding to 75% respectively 25%. The vertical lines reach 
until q0.25-1.5*(q0.75-q0.25) downwards and until q0.75+1.5*(q0.75-q0.25). The points repre-
sent outliers (i.e., simulations whose results are atypical). 
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Fig 6. Dose sparing. Two doses: 25% of the population receives two doses of the vaccine (effec-
tiveness 90%). One dose: 50% of the population receives a single dose of the vaccine (effective-
ness 50%). Error bars represent standard deviation.  The time of the vaccination 𝑡6 is when the 
cumulative number of infected individuals reaches 10%. 
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Supplementary Figures 

 

S1 Fig. An Erdős-Rényi graph (left hand side) and a power-law degrees graph (right hand side). 
For an easy visualisation, the parameters where set to N = 200, e = 12,  𝜆=3. 

 

S2 Fig. Transition rates of our SIR model. Susceptible individuals can become infected with 
probability 𝑃5if they have an infected neighbour. Infected individuals remain infected for an ex-
ponential random time with mean 𝑇7. At the end of this infectious period they can recover with 
probability 1 − 𝑃8 or die with probability 𝑃8 	. 
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S3 Fig. Infected and recovered curves for population sizes 10 000, 20 000, 30 000, 40 000, 50 
000, 60 000 and 70 000. The curves represent the proportion of individuals in each category as 
functions of time. Each curve corresponds to the mean over 30 repetitions.  A, C: Erdős-Rényi 
graphs, B, D: Power-law degree, A, B: e = 5. C, D: e = 10. The rest of the parameters are 𝑝5= 0.5 
and 𝜆 =3. 
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S4 Fig. Effect of the duration of the lockdown for different strategies. Top panels: proportion of 
infected individuals through time. Bottom panels: distribution of the total number of infected in-
dividuals for 30 different simulations. The lockdown starts when the cumulative number of in-
fected individuals is 10%.  In the top panels, the dashed lines show the beginning and the end of 
the lockdowns (and its standard deviation indicated by a horizontal line). In the bottom panel 
dashed lines correspond to the average proportion of infected individuals for each condition. 
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S5 Fig. Effect of the starting time for the lockdown. The duration is fixed as 30 days, and we 
vary the cumulative proportion of infected individuals at the start of the lockdown tL. Top pan-
els: proportion of infected individuals through time. Bottom panels: distribution of the total num-
ber of infected individuals for 30 different simulations. The dashed lines have the same meaning 
as in S3 Fig. Observe that for tL=1%, lockdowns have no substantial effect on the maximum of 
the infection curve in the Erdős-Rényi case, and the same holds for lockdown strategy 2a in the 
power-law degree case. A lockdown started later (at tL=5% or 10%) is better with this respect.   
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S6 Fig. Proportion of infected and dead individuals for all the vaccination strategies. The plot 
shows the proportion of infected at the end of the infection for 30 repetitions. The number of 
doses of the vaccine represents 25% of the population size (N = 20000).  Different starting times 
are shown in the different panels (when 0, 10 and 30% of the individuals have been infected). On 
the top right panel, when vaccinating the most connected, the epidemic always died out quickly, 
before infecting at least 50 individuals, which is the minimum required to be considered a suc-
cessful simulation (see Methods).  
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S7 Fig. Effect of the number of doses of the vaccine. Plots show the total number of infected in-
dividuals in 30 simulations for the Erdős-Rényi (right) and power-law (left) graphs. From top to 
bottom we increase the number of individuals that we can vaccinate (10, 25, 50%). The time of 
vaccination is when the cumulative number of infected reaches 30% of the populations (𝑡6= 
30%).  
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Supplementary Materials 
 

S1 Movie. 
Propagation of the epidemics in an Erdős-Rényi graph. Vertices are colored depending on the 
status of the individual they represent. Blue: susceptible, red: infected, green: recovered, black: 
dead. The edge connecting i and j is colored in red when individual i infects individual j. The 
numbers that appear at the end are the number of individuals that were infected by each individ-
ual. 
 

S2 Movie.  
Propagation of the epidemics in a power-law degree distribution graph. Vertices are colored de-
pending on the status of the individual they represent. Blue: susceptible, red: infected, green: re-
covered, black: dead. The edge connecting i and j is colored in red when individual i infects indi-
vidual j. The numbers that appear at the end are the number of individuals that were infected by 
each individual. 
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