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ABSTRACT 

Background: Obesity is a heritable complex phenotype which can increase the risk of age-related 

outcomes. Biological age can be estimated from DNA methylation (DNAm) using various 

“epigenetic clocks.” Previous work suggests individuals with elevated weight also display 

accelerated aging, but results vary by epigenetic clock and population. Here, we utilize the new 

epigenetic clock GrimAge, which closely relates with mortality.  

Objectives: We aimed to assess the cross-sectional association of BMI with age acceleration in 

twins to limit confounding by genetics and shared environment. 

Methods and Results: Participants were from the Finnish Twin Cohort (FTC; n = 1424), including 

monozygotic (MZ) and dizygotic (DZ) twins, and DNAm was measured using the Illumina 450k 

array. Multivariate linear mixed effects models including MZ and DZ twins showed an accelerated 

epigenetic age of 1.02 months (p-value = 6.1 x 10-12) per 1-unit BMI increase. Additionally, heavier 

twins in a BMI-discordant MZ twin pair (DBMI > 3 kg/m2) had an epigenetic age 5.2 months older 

than their lighter co-twin (p-value = 0.0074). We also found a positive association between 

log(HOMA-IR) and age acceleration, confirmed by a meta-analysis of the FTC and two other 

Finnish cohorts (overall effect = 0.45 years, p-value = 0.0025) from adjusted models. 

Conclusion:  We identified significant associations of BMI and insulin resistance with age 

acceleration based on GrimAge, which were not due to genetic effects on BMI and aging. Overall, 

these results support a role of BMI in aging, potentially in part due to the effects of insulin 

resistance. 
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INTRODUCTION 

Obesity is a global public health which continues to increase in prevalence worldwide1. It 

contributes to numerous adverse health outcomes including cardiovascular disease2, diabetes3, and 

cancers4,5, all of which are considered diseases of aging. It is possible to estimate an individual’s 

age from DNA methylation (DNAm) at selected genomic sites using algorithms known as 

epigenetic “clocks”. These clocks include the original Horvath clock6, PhenoAge7, and 

HannumAge8, as well as the newer GrimAge which is more predictive of mortality than previous 

epigenetic clocks9 and thus may be a more appropriate measure of biological age. The difference 

between the predicted epigenetic age and chronological age is referred to as “age acceleration”, a 

phenomenon that occurs in the context of many diseases such as cancers.6,10,11 Additionally, 

associations of age acceleration with high BMI and obesity have been reported in some,12-15 but not 

all, studies16,17 when epigenetic aging is measured in blood. Two recent studies have identified 

associations between age acceleration based on GrimAge with BMI as well as associated clinical 

measures, such as triglycerides.18,19 Therefore, excess body mass may play a role in the heightened 

risk of conditions including cancers and cardiovascular disease experienced in obesity. 

However, genotype is another important influence on both body composition and the 

epigenome,20,21 which introduces the possibility of genetic confounding in the assessment of the 

association between BMI and epigenetic aging. A monozygotic (MZ) co-twin control study design 

controls for genotype as well as sex and a variety of environmental exposures and experiences 

shared by MZ twin siblings. Here, we assessed the cross-sectional association of BMI with 

epigenetic age acceleration determined using the GrimAge clock in twins participating in the 

Finnish Twin Cohort, and two independent Finnish cohorts. To assess genetic confounding, we 

compared within-pair analyses including dizygotic (DZ) twin pairs and those limited to MZ twin 

pairs. 

MATERIALS AND METHODS 
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Participants and study design. Study participants were MZ and DZ twin pairs participating in the 

Finnish Twin Cohort, comprised of three longitudinal cohorts. The Older Twin Cohort consists of 

same-sex twin pairs born before 1958, while FinnTwin12 and FinnTwin16 are longitudinal studies 

of five consecutive birth cohorts of Finnish twins born between 1975-1979 and 1983-1987,22,23 

respectively; the two latter studies include opposite-sex twin pairs. Participants completed multiple 

surveys on behavioral and lifestyle traits as well as anthropometric measurements. Participants were 

selected for the current analysis if they had available data for blood DNA methylation, sex, 

zygosity, and concurrent height, weight, and age values, resulting in 1447 participants. MZ, same-

sex DZ, and opposite-sex DZ twin pairs were included. A subset of MZ twin pairs participated in 

the TwinFat sub-cohort24,25 (n = 90 pairs), in which more detailed information on body composition 

and markers of cardiometabolic health including fat percentage, subcutaneous fat, intra-abdominal 

fat, liver fat percentage, and fasting total, LDL, and HDL cholesterol, triglycerides, C-reactive 

protein (CRP), leptin, adiponectin, glucose, and insulin as well as the homeostatic model 

assessment of insulin resistance (HOMA-IR) was available. All participants gave informed consent 

for their participation, and the study procedures were approved by the ethics committees of Helsinki 

University Central Hospital (113/E3/2001, 249/E5/2001, 346/E0/05, 270/13/03/01/2008 and 

154/13/03/00/2011). 

Collection of biospecimens and DNA methylation measurement. Twins provided blood samples 

as part of targeted studies.22,23 As described previously, DNA was extracted from whole blood using 

the QIAamp DNA Mini kit (QIAGEN Nordic, Sollentuna, Sweden), and bisulfite conversion was 

performed with the EZ-96 DNA Methylation-Gold Kit (Zymo Research, Irvine, CA, USA) as per 

manufacturer instructions. We used the Illumina Infinium HumanMethylation450 BeadChip to 

measure DNA methylation at more than 480,000 CpGs site throughout the genome26. Samples from 

twin pairs were converted on the same plate in order to reduce batch effects due to technical 

variation.   
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Quality control and preprocessing of DNA methylation data. Sample processing was completed 

in R version 3.6.0. Samples with poor quality were identified using the R package MethylAid with 

default thresholds27; those with a median methylated and unmethylated log2 intensity smaller than 

10.5, an average log2 intensity of green and red channels’ expected signals of non-polymorphic 

controls smaller than 11.75, an average log2 intensity of converted bisulfite type I controls in green 

and red channels smaller than 12.75, an average log2 intensity of high and low hybridization 

controls (green channel) smaller than 13.25, or with less than 95% of probes with a detection p-

value < 0.05 were excluded. Next, we normalized the DNA methylation data using minfi28. 

Removing bad quality samples resulted in a sample size of 1424. We performed functional 

normalization including the first two principal components of the control probes with noob 

background correction in order to reduce technical variation in the data29. We removed probes with 

a detection p-value > 0.01, an intensity value of exactly 0, or a bead count < 3 in more than 5% of 

samples. Beta-mixture quantile normalization was used to adjust beta values for differences due to 

probe type30 using the R package wateRmelon31. We additionally removed probes on sex 

chromosomes, and those identified as unreliable such as due to cross-reactivity32. 

Epigenetic age calculation. In this study, we used the newly developed epigenetic clock 

“GrimAge” developed by the Horvath group9, which is a DNA methylation-based biomarker of 

mortality. The GrimAge value is calculated in a two-step process, first estimating 7-plasma proteins 

including adrenomedullin, beta-2 microglobulin, cystatin, growth differentiation factor 15, leptin, 

plasminogen activation inhibitor 1, and tissue inhibitor metalloproteinase 1, as well as pack-years, 

from DNA methylation data, then using these estimates in combination with age, sex, and estimated 

smoking pack-years in a model developed from Cox proportional hazards regression. The resulting 

GrimAge estimate is scaled to be in units of years, with a higher GrimAge value corresponding to 

higher hazard of death. 

First, we subset the data to only include probes used in estimating GrimAge. Any required 

probes with missing beta values were replaced with a beta value from the “gold database” provided 
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by the Horvath group. Next, we added participant age and sex to the dataset, which are used in the 

estimation process. A python script provided by the Horvath group was used to estimate GrimAge, 

smoking pack-years, and the seven plasma proteins predicted in the first stage of estimation. 

Finally, age acceleration was calculated for each participant by regressing GrimAge on 

chronological age and taking the raw residual. Participants with a negative value of age acceleration 

have a lower epigenetic age than expected based on their chronological age, whereas those with 

positive age acceleration values have a higher epigenetic age. 

Statistical analysis. We used two approaches to assess the relationship between BMI and age 

acceleration, (1) treating each twin as an observation, and (2) treating twin pairs as observation. For 

both approaches, we used linear mixed effects models implemented in R version 3.2.2 and the R 

package lme433 (version 1.1-11). 

In the first case we accounted for the dependency within twin pairs by including a random 

intercept for family id, and additionally included random intercepts for twin cohort and zygosity. 

The dependent variable was age acceleration, while the independent variable was either BMI as a 

continuous measure, BMI as a categorical measure, or one of 14 clinical obesity-related measures 

as continuous measures (fat percentage, subcutaneous fat, intra-abdominal fat, liver fat percentage, 

and fasting total, LDL, HDL cholesterol, triglycerides, CRP, leptin, adiponectin, glucose and insulin 

as well as HOMA-IR). Clinical variables with non-normal distributions were transformed using the 

natural logarithm. Three adjusted versions of the models were performed, (1) adjusting for age, sex, 

and predicted smoking pack-years, (2) additionally adjusting for predicted proportions of CD8 T 

cells, CD4 T cells, natural killer cells, and neutrophils34, and (3) in the case of the clinical models, 

additionally adjusting for BMI. For the within-pair analyses, intrapair differences in epigenetic age, 

BMI, and covariates (predicted smoking pack years and cell type proportions) were calculated. 

Linear mixed effects models were performed with the dependent and independent variables being 

difference in epigenetic age and difference in BMI within a twin pair, respectively, adjusted for age, 

sex, and differences in predicted smoking pack-years and in fully adjusted models the same cell 
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type proportions as in previous models, with random intercepts for zygosity and twin cohort. All p-

values resulting from linear mixed effects models were calculated using the likelihood ratio test 

comparing the full model with the nested model. We considered p-values < 0.05 to be statistically 

significant.  

 Additional analyses were performed in R version 3.6.0. In order to validate our results, we 

next analyzed two independent cohorts, the Dietary, Lifestyle, and Genetic Determinants of Obesity 

and Metabolic Syndrome (DILGOM, n = 305) study and the Young Finns Study35 (YFS, n = 1581). 

DNA methylation was measured in blood using the Illumina 450k array in DILGOM, while both 

the 450k and EPIC array was used in the YFS. The quality control procedure described above was 

used for DILGOM and YFS data. The DILGOM data was preprocessed using the same steps as in 

FTC data; in order to combine the 450k and EPIC data into a single dataset for the YFS the array 

probes were limited to those present on both the 450k and EPIC arrays. GrimAge and age 

acceleration were calculated as described above. We used linear regression to assess the association 

between BMI or clinical measures and age acceleration, adjusting for age, sex, and predicted 

smoking pack-years. We additionally adjusted for predicted proportions of blood cell types as in the 

FTC analyses. 

 We performed a meta-analysis for BMI and the clinical variables overlapping between 

studies using the individual-level results from the FTC, YFS, and DILGOM to obtain the best 

estimates for the effects of each variable on insulin resistance. Random-effect meta-analyses were 

performed using the R libraries meta and metafor. The empirical Bayes method was used for 

estimating the between-study variance. 

RESULTS 

Participant characteristics. Participant characteristics for all participants are presented in Table 1. 

There were a total of 1424 twin individuals from the FTC included in this study, with 790 MZ 

twins, 445 same-sex DZ twins, and 189 opposite-sex DZ twins; additionally, there were non-twin 

participants from the YFS (n = 1591) and DILGOM (n = 304). In the FTC, age ranged from 21-73 
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years old, with an average age of 34.5 years, while the age ranged from 34-49 years in the YFS and 

25-74 years in DILGOM. A majority of participants were female in all three studies (57.7%, 55.6%, 

and 52.9%). The average BMI was lowest in the FTC at 24.7 kg/m2 compared to 26.6 in both the 

YFS and DILGOM. 

Individual analysis. First, we assessed the relation of BMI as a continuous measure with age 

acceleration with twins as individuals. Each 1-unit increase in BMI corresponded to an increase in 

age acceleration of 1.02 months (likelihood ratio p-value = 6.1 x 10-12, Figure 1a). After adjusting 

for cell type proportions, the effect of BMI on age acceleration was slightly attenuated, with each 1-

unit increase in BMI corresponding to 0.91 months (likelihood ratio p-value = 9.0 x 10-11). BMI 

was positively associated with age acceleration in both validation populations, with a one-unit 

increase in BMI associated with an increase in age acceleration of 0.67 months in DILGOM (p-

value = 0.0050) and 1.08 months in the YFS (p-value = 2.6 x 10-27). Performing a meta-analysis of 

these estimates revealed no evidence of heterogeneity between studies (p-value = 0.23), and an 

overall estimate for the effect of BMI on age acceleration of 0.08 years or 0.96 months per each 1-

unit BMI increase (Figure 1b). 

 We observed a linear association of BMI categories with age acceleration; compared to 

individuals classified as underweight, the age acceleration of normal weight participants was 6.6 

months higher, that of overweight participants was 10.9 months higher, and that of obese 

participants was 1.6 years higher (likelihood ratio p-value = 8.9 x 10-9, Figure 1c).  This association 

was attenuated after adjusting for blood cell type proportions, but the association remained 

consistent in direction and significance. 

Differences in epigenetic aging within twin pairs. Next, we calculated the differences in BMI, 

and epigenetic age between each twin in a pair, subtracting the lighter twin from the heavier twin.  

Each 1-unit increase in BMI in the heavier twin was associated with an increase in epigenetic age of 

1.6 months compared to their lighter co-twin (likelihood ratio p-value = 4.7 x 10-12; Figure 2a). 

There was no heterogeneity by zygosity, with the estimate for the random effect at 0. We repeated 
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the same analysis including only MZ twin pairs in order to fully control for the effect of genetics, 

which showed that each 1-unit difference in BMI within the twin pairs was associated with an 

increase in epigenetic age of 1.1 months (likelihood ratio p-value = 0.00010; Figure 2b). 

BMI discordance within monozygotic twin pairs. The average BMI of the lighter twins in BMI-

discordant pairs was 24.9 kg/m2, versus 30.3 kg/m2 for the heavier twins, and the average age was 

41.9 years. The heavier twins were less likely to smoke, with 24.8% of heavier twins current 

smokers, versus 31.6% of lighter twins. Heavier co-twins had higher age acceleration by 5.2 months 

compared to their leaner co-twin (likelihood ratio p-value = 0.0066; Figure S1). The average 

difference in BMI between a discordant pair was around 5 units, resulting in an effect size per BMI-

unit of 1.04 months. 

Clinical measures and age acceleration. A subset of 90 monozygotic twins belonging to BMI-

discordant twin pairs were evaluated clinically for obesity-related measures. In the meta-analysis, 

both log(HOMA-IR index) and log(fasting insulin) were significantly associated with age 

acceleration both before and after adjusting for BMI (Tables 2-4, Figure 3). There was no evidence 

of heterogeneity between studies for HOMA-IR or fasting insulin (Figure 3). Additionally, 

log(CRP) was positively associated with age acceleration in YFS participants, both before and after 

adjusting for BMI (Table 4), but was only significantly associated with age acceleration in FTC 

participants in the model not adjusting for cell types or BMI (Table 2). This association was 

marginally significant in the meta-analysis for the models additionally adjusting for BMI 

(Coefficient = 0.23 years, p-value = 0.053). Other clinical measures were not significantly 

associated with age acceleration in meta-analyses. HDL cholesterol was consistently negatively 

associated with age acceleration, but this was only significant in the YFS, and there was a 

significant amount of heterogeneity between studies (p-value = 0.036). Measures of body fat were 

only available in FTC participants; each dm3 increase in subcutaneous fat was positively associated 

with an acceleration in age of 2.79 months (p-value = 0.0031), each log(intra-abdominal fat dm3) 

was associated with an increased epigenetic age of 5.63 months (p-value = 0.028), and a unit 
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increase in log(liver fat %) corresponded to increased age acceleration of 3.29 months (p-value = 

0.047). 

DISCUSSION 

In this study we investigated the association of BMI with epigenetic aging using a new epigenetic 

clock, GrimAge, using Finnish MZ and DZ twin pairs. We found a positive association between 

BMI and age acceleration as inferred from DNA methylation in blood. Importantly, the observation 

of epigenetic age acceleration between heavy and light twins within BMI-discordant MZ twin pairs 

shows that this association is not due to confounding by shared genetic and environmental effects 

on DNA methylation at aging-associated CpGs. Additionally, we found a linear relationship 

between BMI and age acceleration, with underweight individuals displaying the lowest amount of 

age acceleration, and an incremental increase in the amount of age acceleration through each 

subsequent BMI category. This is noteworthy given that most studies of BMI suggest that 

underweight individuals are at higher risk of disease,36-38 however we find no evidence of that here. 

Finally, we found that the most strongly associated obesity-related clinical features were those 

related to glucose metabolism and insulin resistance, as shown by differences in age acceleration in 

relation to the HOMA-IR index and fasting insulin, even after additionally adjusting for BMI.  

The association of BMI with accelerated epigenetic aging was also observed in two 

independent Finnish cohorts of unrelated individuals, DILGOM and the YFS. However, the effect 

estimates for the relation of BMI with age acceleration were slightly different in the FTC compared 

to DILGOM and YFS. The analysis including all twins showed an increase in age acceleration of 

1.7 months per unit BMI increase among all individual participants, while within BMI discordant 

MZ twin pairs whose co-twins differed in BMI on average by 5 BMI units showed an increase of 

5.2 months in age acceleration, or around 1 month per unit BMI difference. However, DILGOM 

participants displayed an age acceleration increase of around 0.7 months and YFS participants 

around 1 month per unit BMI increase. Nonetheless, our meta-analysis provides no evidence of 

heterogeneity between studies for the effect estimate of BMI on age acceleration. Interestingly, we 
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observed associations of HOMA-IR index with age acceleration in all three cohorts of which the 

magnitude was comparable in all three studies, with the meta-analyses not indicating any 

heterogeneity. The lack of evidence of heterogeneity in the associations of BMI and measures of 

glucose metabolism with age acceleration may indicate that genetics do not strongly confound these 

associations. The association is thus robust to differences in the ascertainment of the samples, and 

can be considered to be a true population effect. 

Based on the results we obtained, insulin resistance may be responsible in part for the effect 

of obesity on epigenetic aging, since adjusting for BMI results in a reduction in the effect estimate 

of HOMA-IR on age acceleration. Obesity and aging both play a role in insulin resistance and type 

2 diabetes39-41. Obesity is known to promote inflammation42, which in turn is involved in the onset 

of lipid-induced insulin resistance41. Interestingly, metformin, a drug used to lower blood glucose 

levels, is being tested as an intervention to protect against aging and age-related diseases43. 

Additionally, we also observed a trend of increased age acceleration with rising CRP, an 

inflammatory marker, however this association disappeared after adjusting analyses for the 

predicted proportion of immune-cell types. 

These findings are consistent with other studies using GrimAge to determine age 

acceleration,18,19 however other epigenetic clocks seem to be able to detect this effect better in other 

tissues such as liver17 and visceral adipose tissue16 than blood. This could indicate that the GrimAge 

epigenetic clock is better suited for usage for assessment of age acceleration related to 

cardiometabolic phenotypes, which is possible given the unique process used to develop the 

GrimAge clock of estimating blood proteins. This includes leptin, for example, which is known to 

be higher in obesity44. Overall, our results support the well-established association of BMI with 

aging as well as a strong role of insulin resistance. 

Further, nutrient-sensing pathways may play a role in the relation of obesity and aging. For 

example, genes belonging to nutrient-sensing pathways including insulin/insulin-like growth factor 

(IGF) pathway, mechanistic target of rapamycin (mTOR), adenosine monophosphate-activated 
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protein kinase (AMPK), and sirtuin deacetylases appear to regulate lifespan in mice45. In fact, 

mutations in these genes including IGF1 and IGFR associate with increased longevity in humans,46 

and a low energy state activates AMPK as well as sirtuins47. This information points to a link 

between nutrient-sensing pathways, weight gain, and aging, since weight gain is caused in part by 

excessive energy intake. 

Our study has several strengths which contribute to its significance. First, the usage of MZ 

twin pairs discordant for obesity allows us to be certain that the associations we identified are not 

entirely due to confounding by genetic predisposition to both obesity and accelerated aging. 

Additionally, we identified associations with obesity-related clinical measures that are in line with 

the results obtained for BMI, with a detrimental effect of insulin resistance and a beneficial effect of 

HDL on aging. Further, we performed meta-analyses for the associations of BMI and obesity-

related clinical measures with age acceleration, and demonstrated consistent associations for BMI, 

HOMA-IR, and fasting insulin with increased age acceleration in all three studies. However, our 

study is limited by the small number of MZ twin pairs discordant for BMI, which is due to the rarity 

of this occurring. Additionally, our study populations consisted of exclusively Finnish participants, 

which may somewhat limit the generalizability of our findings to other populations although this is 

unlikely given that the same associations have previously been observed in other populations. 

CONCLUSION 

In conclusion, we identified significant associations of BMI, HOMA-IR, a measure of insulin 

resistance, and fasting insulin with epigenetic age acceleration calculated using the GrimAge 

epigenetic clock. These associations were not due the effects of genetics on BMI and aging, and 

measures of insulin resistance were also associated independently from BMI with age acceleration. 

Overall, these results suggest that BMI plays a role in aging, along with and perhaps in part due to 

insulin resistance. More research needs to be done to determine if weight loss can reverse BMI-

associated epigenetic aging. 
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TABLES 
Table 1. Participant Characteristics 
    

 N (%) or Mean [Range] 
Variable FTC (n = 1424) YFS ( n = 1591) DILGOM (n = 306) 
Age 34.5 [21 - 73] 41.9 [34 - 49] 52.1 [25 - 74] 
GrimAgea 35 [15.9 - 75.8] 40.9 [27.0 - 63.2] 49.6 [25.9 - 73.9] 
Age Accelerationa 0 [-9 - 17.5] 0 [-9.5 - 20.2]  0 [-13.4 - 14.1] 
Sex    
    Female 822 (57.7) 884 (55.6) 162 (52.9) 
    Male 602 (42.3) 707 (44.4) 144 (47.1) 
Zygosity    
    Monozygotic 790 (55.5) - - 
    Same-sex dizygotic 445 (31.2) - - 
    Opposite-sex dizygotic 189 (13.3) - - 
Cohort    
    FT12 759 (53.3) - - 
    FT16 268 (18.8) - - 
    Old Cohort 397 (27.9) - - 
BMI 24.7 [16.3 - 51.2] 26.6 [16.2 - 58.5]b 26.6 [16.4 - 48.9]b 
Smoking behavior    
    Never 681 (47.8)  800 (50.3) 170 (55.6) 
    Former 294 (20.6) 372 (23.4) 64 (20.9) 
    Current 444 (31.2) 338 (21.2) 72 (23.5) 
    Missing 5 (0.351) 81 (5.1) 0 (0) 
Smoking pack-yearsa -3.7 [-25.9 - 54.8] -2.8 [-26.3 - 46.8] 4.3 [-21.5 - 45.3] 
aInferred from DNA methylation data   
b1 subject with missing data   
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Table 2. Obesity-related clinical measures associate with age acceleration (n = 90). 
        

Variable Median (range)a Coefficientb, c p-valueb Coefficientc, d p-valued Coefficientc, e p-valuee 
Body fat (per 10%) 33.60 (7.10 - 56.30) 6.14 0.012 4.10 0.069 -0.340 0.44 

Subcutaneous fat (dm3) 4.03 (0.5 - 11.73) 2.79 0.0063 2.02 0.031 -0.0580 0.98 

Intra-abdominal fat (dm3)f 0.76 (0.1 - 2.95) 7.35 0.0086 5.63 0.028 2.69 0.55 

Liver fat (%)f 1.04 (0.2 - 25.2) 5.65 0.0011 3.29 0.047 1.69 0.38 

hs-CRPf 5.33 (0.14 - 247.81) 4.32 0.039 2.34 0.26 1.84 0.40 

HOMA-IR indexf 1.11 (0.27 - 6.27) 6.99 0.027 5.17 0.063 3.11 0.32 

fP-insulin (mU/l)f 5.05 (1.2 - 23.5) 8.21 0.014 5.77 0.052 3.69 0.27 

fP-glucose (mmol/l)e 5.08 (4.00 - 6.58) -13.4 0.55 4.79 0.81 -8.54 0.68 

fP-Leptin (ng/ml)e 14.82 (0.74 - 77.64) 7.02 0.036 2.59 0.42 0.37 0.94 

fP-Adiponectin (μg/ml) 2.67 (1.24 - 5.56) -1.31 0.69 0.486 0.87 -0.19 0.95 

fS-HDL cholesterol (mmol/l) 1.34 (0.52 - 3.04) -10.3 0.075 -9.66 0.066 -14.3 0.032 

fS-LDL cholesterol (mmol/l) 2.5 (1.02 - 5.1) 1.33 0.62 1.87 0.42 0.625 0.80 

fs-Total cholesterol (mmol/l) 4.3 (3 - 7) -0.105 0.97 0.0723 0.97 -1.57 0.47 

fS-Triglycerides (mmol/l)f 0.96 (0.37 - 2.65) 6.02 0.21 1.83 0.67 -1.28 0.76 
aUntransformed values 
bModels adjusted for age, sex, and predicted smoking pack-years, with a random intercept for twin family 
cIn units of months 

dModels adjusted for age, sex, predicted smoking pack-years, and predicted proportions of CD8T cells, CD4T cells, natural killer cells, and neutrophils, with a 
random intercept for twin family 

eModels adjusted for age, sex, predicted smoking pack-years, BMI, predicted proportions of CD8T cells, CD4T cells, natural killer cells, and neutrophils, and 
BMI, with a random intercept for twin family 

fNatural log transformation was performed due to skewed distribution of variable 
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Table 3. BMI and obesity-related clinical measures in relation to age acceleration in DILGOM participants (n = 305). 
        

Variable Median (range)a Coefficientb, 
c 

p-
valueb 

Coefficientc, 
d 

p-
valued Coefficientc, e p-valuee 

BMI 25.8 (16.4 - 48.9) 0.59 0.019 0.67 0.0050 - - 
fP-glucose (mmol/l)f 5.8 (4.4 - 15.0) -13.8 0.14 -6.78 0.44 -11.5 0.19 

fP-insulin (mU/l)f 5.3 (1.5 - 94.5) 5.26 0.012 5.52 0.0044 3.61 0.12 

HOMA-IR Indexf 1.33 (0.34 - 23.53) 3.65 0.051 4.16 0.017 2.17 0.29 

fS-HDL cholesterol (mmol/l) 1.42 (0.51 - 2.82) -3.26 0.32 -3.23 0.30 -1.15 0.72 

fS-Triglycerides (mmol/l)f 1.02 (0.37 - 5.14) 2.3 0.39 4.6 0.068 2.59 0.33 
aUntransformed values     
bModels adjusted for age, sex, and predicted smoking pack-years   
cIn units of months   

dModels adjusted for age, sex, predicted smoking pack-years, and predicted proportions of CD8T cells, CD4T cells, natural killer cells, and 
neutrophils 
eModels adjusted for age, sex, predicted smoking pack-years, predicted proportions of CD8T cells, CD4T cells, natural killer cells, and 
neutrophils, and BMI 
fNatural log transformation was performed due to skewed distribution of variable 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.21253271doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.11.21253271


 20 

Table 4. Association of BMI and obesity-related clinical measures with age acceleration in YFS (n = 1591). 
        

Variable Median (range)a Coefficientb, c p-valueb Coefficientc, d p-valued Coefficientc, e p-valuee 
BMI 25.8 (16.2 - 58.5) 1.14 6.6E-27 1.08 2.6E-27 - - 

HbA1Cf 36 (22 - 102) 15.2 0.0018 18.7 3.7E-05 4.89 0.29 

fP-insulin (mU/l)f, g 7.41 (0.06 - 95.7) 6.30 2.0E-21 5.90 1.6E-21 3.14 1.7E-05 

fP-glucose (mmol/l)f, h 5.25 (3.14 - 12.65) 34.6 1.7E-12 33.2 3.7E-13 19.9 2.0E-05 

fS-HDL cholesterol (mmol/l) 1.29 (0.52 - 2.64) -9.69 1.6E-08 -8.99 2.6E-08 -3.77 0.024 

fS-LDL cholesterol (mmol/l) 3.19 (1.06 - 7.05) -0.0628 0.93 -0.00515 0.99 -0.552 0.37 

fs-Total cholesterol (mmol/l) 5.1 (2.8 - 10.2) 0.450 0.44 0.802 0.14 0.222 0.68 

fS-Triglycerides (mmol/l)f 1.05 (0.34 - 6.05) 7.95 1.3E-13 8.92 5.4E-19 5.52 2.0E-07 

hs-CRPf 0.79 (0.05 - 29.08) 5.16 9.9E-32 4.51 1.7E-27 3.02 1.1E-10 

HOMA-IR indexf 1.73 (0.02 - 21.0) 5.82 4.8E-22 5.49 1.9E-22 3.03 4.7E-06 
aUntransformed values     
bModels adjusted for age, sex, and predicted smoking pack-years   
cIn units of months   

dModels adjusted for age, sex, predicted smoking pack-years, and predicted proportions of CD8T cells, CD4T cells, 
natural killer cells, and neutrophils 

  

eModels adjusted for age, sex, predicted smoking pack-years,  predicted proportions of CD8T cells, CD4T cells, natural 
killer cells, and neutrophils, and BMI 

  

fNatural log transformation was performed due to skewed distribution of variable 
g1 sample excluded for extreme logtransformed insulin value (mU/l) of over 8   
h2 samples excluded for extreme log-transformed glucose (mmol/l) value of over 2.75    
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FIGURES 
 

 
Figure 1. BMI associates with age acceleration. (a) Scatterplot with best fit line showing the 
association of age acceleration with BMI in the FTC. (b) Forest plot showing the estimates for the 
association of BMI with age acceleration in each study, and the overall effect from a meta-analysis. 
(c) Boxplot showing differences in age acceleration by BMI category.
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Figure 2. Difference in BMI is related with the difference in GrimAge within twin pairs. (a) 
Scatterplot showing the association of the difference in BMI within twin pairs in relation with the 
difference in GrimAge, including both DZ and MZ twin-pairs. One twin pair was excluded due to 
an extreme difference in BMI of greater than 30. (b) Scatterplot showing the association of the 
difference in BMI within twin pairs in relation with the difference in GrimAge, including only MZ 
twin-pairs.

Figure 2. Difference in BMI is related with the difference in 
GrimAge within twin pairs.
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Figure 3. Obesity-related clinical measures associate with age acceleration. Forest plots 
showing positive associations between (a) HOMA-IR index without BMI adjustment, (b) HOMA-
IR index with BMI adjustment, (c) fasting insulin without BMI adjustment, and (d) fasting insulin 
with BMI adjustment in meta-analyses including all three cohorts. Estimates are in units of years.
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Figure S1. Heavier twins in a BMI-discordant pair more often have higher age acceleration 
compared to their leaner co-twin. Waterfall plot showing the difference in age acceleration in 
years within MZ twin pairs discordant for obesity, subtracting the value for the leaner twin from 
that of the heavier twin. 
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