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We apply Bayesian inference methods to a suite of distinct compartmental models
of generalised SEIR type, in which diagnosis and quarantine are included via extra
compartments. We investigate the evidence for a change in lethality of COVID-19
in late autumn 2020 in the UK, using age-structured, weekly national aggregate
data for cases and mortalities. Models that allow a (step-like or graded) change
in infection fatality rate (IFR) have consistently higher model evidence than those
without. Moreover, they all infer a close to two-fold increase in IFR. This value
lies well above most previously available estimates. However, the same models
consistently infer that, most probably, the increase in IFR preceded the time window
during which new variant B.1.1.7 became the dominant strain in the UK. Therefore,
according to our models, the caseload and mortality data do not offer unequivocal
evidence for higher lethality of a new variant. We compare these results for the UK
with similar models for Germany and France, which also show increases in inferred
IFR during the same period, despite the even later arrival of new variants in those
countries. We argue that while the new variant(s) may be one contributing cause of
a large increase in IFR in the UK in autumn 2020, other factors, such as seasonality,
or pressure on health services, are likely to also have contributed.
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Summary
Model structure. We study a family of non-geographic compartmented models structured by
age, and by epidemiological and diagnostic state. They include stages within exposed (E) and
infected (I) classes, and separation of symptomatic and asymptomatic infected individuals; E and
I classes are subdivided according to whether they have had a positive test.
Disease transmission between compartments is modelled by contact matrices derived from sur-

vey data and previous Bayesian inference [1]. Non-pharmaceutical interventions are incorporated
via time- and age-dependent transmission rates. This dependence is parameterised by functions
that account for lockdowns, seasonal changes, etc., with parameters inferred from the data except
where known a priori (e.g. lockdown dates).
The process of diagnosis is modelled explicitly through the subdivided compartments. The

targeting of tests towards symptomatic individuals is controlled by a single inferred parameter.
Tested individuals have reduced infectivity, as a model for self-isolation. The fraction of asymp-
tomatic cases is presumed fixed. Most other parameters are inferred (including initial conditions
in March 2020). Our models are stochastic at all stages, including the infection and the diagnosis
processes.
Similar models are considered for Germany and France. All models are analysed with the

same Bayesian methodology as outlined below.

Data. We analyse age-structured, weekly data for cases and mortalities for the UK, France and
Germany starting in early March 2020. Our explicit modelling of diagnostic tests allows us to
directly use data on the number of daily tests performed and their outcomes to inform parameter
estimation. For the UK, the data we used are (i) ONS data for COVID deaths; (ii) PHE data
for total numbers of tests; (iii) PHE data for numbers of positive tests. The time series analysed
extends from March 2020 until January 2021.

Methods. In line with the data used, we treat diagnosed cases and mortalities as the only
observables; other compartments are treated as unobserved, with occupancies to be inferred from
data. Parameters governing overdispersion for infection and death are likewise inferred.
We perform inference using a likelihood function that includes the stochasticity in all model

transitions (infection, disease progression, testing, death). The likelihood of the observed data is
computed in an approximation that becomes exact for large population sizes, taking into account
all statistical dependencies in this limit. Inference is performed at the level of maximum a
posteriori (MAP) estimates. Using these MAP estimates we approximate the evidence for each
model, allowing us to compare the credibility of different models given the same set of data.
We use the software package PyRoss to build all the models and run the inference procedure [2,

3].

Model specifications. Wecompare several distinctmodels that differ primarily in how interven-
tions and fluctuations are addressed. Some of these variants (Type 1) allow for a time-dependent
infection fatality rate (IFR) and some do not (Type 0). Most of our Type 1 models assume a step
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change in IFR but a ramped (tanh) variation is also studied. In Type 1 models, the values of IFR
before and after the change are parameterised in terms of their log-ratio, whose prior is normal
distributed with mean zero and standard deviation log(3). The prior for the time of the change is
normal with mean 2020-12-12 and standard deviation 2 weeks.
For both Type 0 and Type 1 models we consider several possibilities for the time-dependence

of model parameters other than the IFR. For the UK, these are (A) no dependence; (B) changing
infectivity; (C) changing overdispersion: (BC) changing infectivity and overdispersion.

Findings. Type 1 models for the UK consistently attain a significantly higher model evidence
than Type 0 models. (Specifically, they show systematically larger values of the log-posterior.)
For each Type 1 model, we separately infer that in the UK, the IFR rose by a factor of about two
in late October or early November 2020: the MAP values vary between 1.9-2.2 depending on the
model chosen. A similar change is also inferred in Germany and France, but is somewhat less
pronounced.
Among the France/Germanymodels, the ratios of inferred IFRs before/after the step are smaller

than in UK but still indicate significant changes, around 1.4 for France and 1.8 for Germany.
The IFR changes in UK are inferred to take place significantly before the B.1.1.7 variant became

the dominant UK strain. The significant inferred IFR change in Germany is (to our knowledge)
not associated with any new variant.

Interpretation. These findings support the hypothesis [4–6] that the lethality of COVID-19 in
the UK increased significantly in late autumn 2020. The MAP estimates further suggest that a
larger increase than previously suggested [4, 5], of roughly a factor 2, arose with an onset time
in early November. However, the fact that this onset time precedes the rise to dominance of new
variant B.1.1.7 suggests that this rise is not solely responsible for the change in IFR. Other factors,
such as seasonality and/or pressure on health services, may also be important. If these factors
came into play significantly before the arrival of B.1.1.7, then the MAP-estimated onset time of
early November could represent a compromise between two successive episodes of increasing
IFR within models that, as so far implemented, allow only one.
Note that the IFR depends on the true number of infections (not just diagnosed cases as in the

case fatality rate) which, in our model, is itself estimated from the data for cases and testing.
Underestimation of this number can lead to an overestimate of the IFR. However, to explain the
factor-two increase in fitted IFR this way would require implausible assumptions to be made
concerning change in testing efficacy in late autumn 2020 (models TT0, TT1, P0).

1. Introduction
The new variant B.1.1.7 of the SARS-CoV-2 virus first emerged in the UK in September 2020.
It is now well known to be more infectious than the prior UK strain and for this reason has not
only become dominant in the UK itself, but rapidly taken hold in a number of other countries
(including the USA) where it is either already the dominant strain or predicted soon to become
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Figure 1: Network structure of the model(s). Every compartment (except S and E) has a quaran-
tined version, transitions into which occur via testing. New infections are transmitted
by individuals of the classes coloured red (with the stage Is2 being less infectious).
Classes R and Im (mortalities) are no longer infectious.

so [7]. However, it is still uncertain whether B.1.1.7 also leads to more severe cases of COVID-
19, resulting in turn in a higher fatality rate [4, 5]. This question has prompted the search
for anomalies in the relation between aggregated case and mortality numbers. Simple visual
inspections of these data, accounting for the typical time lag between cases and mortality, have
suggested that infections with SARS-CoV-2 become more lethal in late 2020 [6].
However, the relation between reported cases and mortalities is not always straightforward to

interpret. The time between infection and potential deaths is stochastic, so that a time series of
mortality data will tend to show less rapid changes than corresponding case numbers. Moreover,
as the available testing capacity changes with time alongside the demand for tests, reported case
numbers are not directly representative for the true number of cases.
In order to overcome these challenges while still focusing on (nationally) aggregated data for

cases and mortalities, we choose to analyse such data in the context of well-mixed compartmented
models, whose complexity is adjustable for this purpose [3, 8]. These models take into account
not only the stochastic dynamics of infection and progression of the disease, but also of tests
being assigned to individuals of the various compartments at a given overall rate.
Our goal is to establish the evidence for a change in the UK lethality of COVID-19 in a

Bayesian fashion, using the reported age-structured data for nationwide cases and mortality. For
that purpose, we compare different models that either do or do not allow for a change in the
infection fatality rate (IFR). We analyse differences in their posterior probability, optimised for
fixed data over a set of model parameters. Generally, one would expect that the likelihood of
a model increases as more details are added. In order to judge the significance of changes in
the posterior, we compare a whole set of model variants differing in the level of detail, and see
whether the ones that do allow for changing IFR perform better than those that do not.
The model specification, simulation, likelihood computation, and optimisation is carried out

using the software package PyRoss, which we have developed during the past year [3].

2. Model structure and data
Infection dynamics. We consider a suite of compartmented models (referred to as model
variants below) all with M = 7 age groups, and 14 classes, as shown in Fig. 1. These classes
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are abbreviated as S, E, A, Ia, Is1, Is2, Im, R; along with diagnosed/quarantined versions of all
compartments (except S and E), labeled as AQ, IaQ, etc. The age groups are 0-14, 15-29, 30-44,
45-64, 65-74, 75-84, and 85+ (for our UK model variants), referred to by running indices i or j.
The transitions from the susceptible (S) to the exposed (E) compartment are induced by infected
individuals in the compartments activated (A), asymptomatic (Ia), and the two symptomatic
infected stages (Is1, Is2). The corresponding infection rate reads∑

j

βiai (t)Ci j a j (t)[A j + Ia
j + I s1

j + cI s2
j ]/N j, (1)

with the infectiousness βi, the intervention function ai (t), the contact matrix Ci j , the total
population per age-group Ni, and a factor c for the reduction of the infectiousness in the second
symptomatic stage. The contact matrix we use is based on survey data and previous Bayesian
inference [1]. Quarantined individuals are assumed not to infect anyone, so the classes in Eq. (1)
are restricted to unquarantined compartments
After a presymptomatic stage (A), individuals become either symptomatically (Is1/Is2) or

asymptomatically (Ia) infected, according to an age-dependent fraction αi of asymptomatic cases.
The outcome of the infection is either recovery (R) or death (Im). Progression though all these
stages is modelled though linear transition rates, matching the latent and incubation periods, and
the typical time from infection until death. The latter is determined by the exit rate γs from both
stages Is1 and Is2, and is inferred. Otherwise, we fix parameters relating to disease progression
to values informed by the literature, see [8] for details.

Contact behaviour. We model changes in the contact behaviour and (potentially) in the in-
fectiousness via the time dependence of ai (t). These changes can be can be age-dependent,
e.g. to model shielding of the elderly or increased contacts at schools and workplaces. To keep
the number of control parameters manageable, we separate the time and the age-dependence of
ai (t) as ai (t) = a(t)(1 − s(t)hi) and constrain the vector hi for the age dependence to the form
[0, 0, 0, h4, h5,6, h5,6, h7], with the largest element set to 1 as a reference. At pre-defined (and
occasionally inferred times) the parameters a(t) and s(t) undergo changes and their new values
are inferred. We consider the interventions (or other changes) in the UK listed in Tab. 1. See
Appendix B for the interventions considered for France and Germany.

Testing. Testing is modelled as the transfer of individuals from the undiagnosed version to the
diagnosed (or “quarantined”) version of a compartment. For a given overall rate of testing τ(t),
the transition rate from some compartment X to XQ is

τX = τ(t)πXφX/N (2)
with normalisation N =

∑
X πX X . Assuming perfect tests, which, however, do not detect the

exposed stage, we use the true negative rate φX = 0 for X being S, E, or R, otherwise the true
positive rate φX = 1. The factors πX encode testing priorities for the various compartments.
We set πIs1 = πIs2 = 1 as a reference, and πIm = 20 to ensure that mortalities get reliably
detected1. The only fit parameter we infer is πa, the priority for testing individuals that are not
1For the early weeks, when tests were scarce, we set πI s2 = 5 and πIm = 100.
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dates type control parameters
before 2020-03-20 before lockdown (reference) a(t) = 1, s(t) = 0
2020-03-20 to 2020-03-27 imposition of lockdown linear decrease of a(t), new value s(t)
2020-03-27 to 2020-07-24 easing of / increasing non-

compliance with lockdown
linear increase of a(t), linear change of
s(t)

2020-07-24 to 2020-11-06 lockdown lifted new values of a(t) and s(t)
inferred increase of contacts / infectious-

ness in autumn
tanh-shaped increase of a(t), centre and
width to be inferred

inferred several local interventions,
summarised as a single one at
time to be inferred

new values for a(t) and s(t)

2020-11-06 to 2020-12-04 national lockdown (England) new values for a(t) and s(t)
2020-12-04 to 2021-01-08 tiered lockdown new values for a(t) and s(t)
after 2021-01-08 national lockdown new values for a(t) and s(t)

Table 1: Interventions considered in the basic UKmodel. Dates are always rounded to the closest
Friday.

symptomatically infected (i.e. of classes S, A, Ia, R). It interpolates between random testing for
πa = 1 and very targeted testing for πa = 0. The progression through stages in the quarantined
compartments is the same as in the non-quarantined ones, but quarantined individuals cause no
further infections (effectively assuming perfect self-isolation). Once tested positive, individuals
remain in the quarantined compartments. The recovered class RQ therefore includes individuals
that have actually left quarantine, but we keep this class separate for the purpose of counting
previously diagnosed cases.

Lethality. The lethality of COVID-19 is encoded in the infection fatality rate (IFR), i.e., the
probability of any infected to die eventually. As an auxiliary quantity for the specification of our
model, we define a symptomatic infection fatality rate (SIFR), as the fatality rate for symptomatic
infections only. Its numerical value can be expected to be close to reported case fatality rate,
provided that testing is exhaustively targeted at symptomatic infections.
We choose both transition rates from Is1 to Is2 and from Is2 to Im as γs

√
sifri, with the

age-dependent symptomatic infection fatality rate sifri; recoveries (to class R) happen from both
stages at rate γs (1 −

√
sifri). Since we use a fixed fraction αi of asymptomatic cases, the IFR

follows readily as ifri = (1−αi)sifri. The discussion of relative changes in the IFR applies equally
to the SIFR.

Noise. All transitions are modeled as Markov rates, i.e. they are inherently stochastic. In order
to account for additional sources of noise or variation that are not present in the well-mixed
model, we infer overdispersion parameters that scale up the fluctuations in transitions related to
infections, testing, and deaths.
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Observables. We consider the reported cumulative case numbers as the sum of all quarantined
classes for each age cohort. The reported cumulative mortalities are identified with the numbers
of class ImQ2. We ensure that no deaths remain unnoticed, by formally assuming that individuals
in class Im continue to get tested at high priority. The numbers in all other compartments are
considered as hidden, and are implicitly reconstructed by the inference procedure.

Data. We use weekly data from the week beginning 2020-03-07 to the week ending 2021-01-15.
For cases, we use the daily numbers reported on the UK government webpage [9], reported by
specimen date and in 5-year cohorts. We coarse-grain these data to weekly numbers and to our
choice of age groups.
Death numbers by week of reporting have been obtained from the UK Office for National

Statistics (ONS) webpage [10]. These data appear to be incomplete after 2020-12-25 and have
therefore been padded with mortality data from the government webpage, which are more up-to-
date but not age-structured3.
The daily number of PCR tests performed is available from the government webpage [9]. For

early testing data (before 2020-04-21) we use data published by [11, 12]. The data is coarse-
grained to weekly numbers, from which we build the testing rate τ(t) as a stepwise constant
function.
For France, we use data for deaths in hospitals [13], and PCR testing [14]. The latter includes

the number of tests performed for each age-group, except for early data where instead we use
non-age structured test numbers [15].
For Germany, we use data provided by the Robert Koch-Institute for cases and deaths [16], and

tests [17].

3. Model variants
We consider several variants of the basic model outlined above, labeled by A0, A1, B0, etc.
Some of the variants have an IFR that is constant in time, as indicated by the Type number 0.
Type number 1 indicate time-dependent changes of the IFR; Type 2 also indicates this but via a
mechanism involving slowed recovery rather than higher death rate (which also ultimately results
in more deaths). The Type letters refer to other details of the model variant, a priori unrelated to
the IFR.

Basic model (A0). The model outlined above, without any further additions.

Step-change in IFR (A1). As model A0, but with a simple step-change in IFR. The size of the
change and time of change are inferred (except for the two youngest cohorts, where fatal cases

2For mortalities, we merge the age groups 15-29 and 30-44 to match the available data.
3More recent data have become available in the meantime, however, we stick to this procedure to ensure compa-
rability between results for the model variants. For the weeks in question, the sum over all age groups in class
ImQ is considered as observable.
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are extremely rare). The change in IFR is parameterised in terms of the log-ratio of the values,
with a prior that is normal distributed with mean zero and standard deviation log(3). The prior
for the time of the change is normal with mean 2020-12-12 and standard deviation 2 weeks.

Change in recovery rate (A2). As model A0, but with a step-change of the recovery rate to
rγs (1 −

√
ifr) with some factor r . The rates for progression to Is2 or Im are unchanged. This

effectively changes the SIFR (and accordingly the IFR) to

sifr′ =
sifr(√

sifr + r
(
1 −
√
sifr

))2 . (3)

This way of introducing a change in IFR causes the death numbers to evolve more smoothly,
without the need for a further fit parameter. For r < 1, the IFR rises, and all additional deaths
occur after the ones that would have occurred had rates remained unchanged. (With a fixed
recovery rate, the longer a patient does not recover, the more likely they are to die eventually.)

Model with easing/increase in infectiousness (B0). AsmodelA0, butwith a linear increase in
a(t) and a linear change in s(t) during the November lockdown. This could model the increasing
non-compliance or changes in the infectiousness (new variant of the virus), or both.

Tanh-shaped IFR change (B1). As model B0, but with a tanh-shaped change in IFR. The time
around which this change is centred (which we refer to as the onset time), the width, and the
amplitude are inferred. (We deem that this increased level of detail is harmonious with the already
more detailed model B0.)

Model with change in overdispersion (C0). As model A0, but with a change in the three
overdispersion parameters for infections, testing, and deaths. The change is allowed to happen
on 2020-10-02, a date chosen to match a potentially new stochastic dynamics as the second wave
gains momentum. The new values of the parameters are inferred independently. This reflects
potential changes in the testing strategy and in the infection dynamics in the second wave, and
can avoid the overestimation of case and death numbers, that is often observed as a side-effect of
mismatching overdispersion parameters.

Jump-like change of IFR and overdispersion (C1). Asmodel C0, but with a simple jump-like
change in IFR.

Combinedmodel (BC0). Acombination ofmodels B0 andC0: It has a change in overdispersion
parameters in the second wave and easing/non-compliance (or increasing infectiousness) during
the November lockdown.

Combined model with changing IFR (BC1). A combination of models B1 and C1: As model
BC0, but with a tanh-shaped change of IFR as in B1.
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Test and trace (TT0). When case numbers are low, effective contact tracing is possible. This
could mean that more asymptomatic cases are uncovered in summer than at the height of the
first and second wave. As a simple model for this effect, building on model BC0, we allow for
the inference of the testing priorities πA and πIa for pre- and asymptomatic infected individuals
different from the priority πa of classes S and R. This change comes into effect with the beginning
of large-scale contact tracing on 28th May 2020. Testing priorities remain unchanged thereafter;
however, as long as the testing priorities of A and Ia remain below those of Is, the effect of contact
tracing will only become relevant for large test rates and low case numbers, so that the class Is of
undiagnosed individuals can be depleted.

Test and trace with changing IFR (TT1). As model TT0, but with a tanh-shaped change in IFR
(as in B1).

Time-dependent test priority (P0). As model BC0, but with a time-dependent change in πa,
the only parameter entering our model for testing. The change in πa is tanh-shaped, with centre
(the onset time), width and amplitude to be inferred. This change may reflect changes in the
testing strategy, that have happened during the course of the pandemic.

4. Model comparison
Using our software package PyRoss, we can calculate the logarithmic likelihood of the observed
data for each of the model variants and for any choice of the model parameters and initial
conditions [8]. This computation is based on the inherent stochasticity specified for the model. It
employs a multivariate Gaussian approximation of the joint probability of all compartment values
at all observed points in time, thus taking into account all correlations across compartments and
time. The approximation becomes exact in the limit of large population sizes and is therefore
appropriate for our well-mixed models applied at national level.
Given an informed choice of prior distributions for all parameters and initial conditions, we

have determined for each model variant the parameters that maximise the posterior probability
(MAP). Results are summarised in Tab. 2 and Fig. 2. Remarkably, the model variants with a
change in IFR consistently attain higher posteriors. As we have centred the prior for the factor
of change in IFR to the value 1 (representing the null-hypothesis that there has been no change),
the prior always decreases with a change in IFR, but this reduction of the prior is overbalanced
by quite some margin by the increased likelihood derived from data. The inferred change in IFR
is always around the factor of two for the UK data. Note that for model A2 the change in the
recovery rate amounts even to a factor of 2.35 in IFR for the oldest cohort.
Although closely related, the log-posterior should not be naively equated with model evidence.

To calculate the latter, one would also need to consider (sub-exponential) contributions from
integrating over the parameter space, and the Occam factor penalising the additional number of
fit parameters. Nonetheless, it is remarkable that even though the models A0, B0, C0, and BC0
have different numbers of fit parameters, their variation in the log-posterior is nowhere near as
big as the difference to the variants with a changing IFR. We have not calculated the full model
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Country Model # Params log-Prior log-Posterior IFR change

abs ∆ abs ∆ Onset Factor
UK A0 (base) 67 −354 −4281

A1 69 −20 +55 26 Oct 1.967
A2 69 −9 +49 23 Nov r = 0.399

UK B0 (base) 69 −350 −4269
B1 72 −21 +61 7 Nov 2.135

UK C0 (base) 70 −365 −4282
C1 72 −35 +52 27 Oct 2.017

UK BC0 (base) 72 −400 −4272
BC1 75 −26 +56 9 Nov (±9 days) 2.197(±0.19)
P0 75 −22 +59 [29 Nov] [3.000]4

UK TT0 (base) 73 −368 −4270
TT1 76 −25 +56 9 Nov 2.201

GER C0 (base) 59 −268 −3438
C1 61 +3 +79 26 Nov (±2 days) 1.803(±0.08)

FRA C0 (base) 75 −254 −4137
C1 77 0 +55 3 Nov 1.372

Table 2: Summary of MAP results. We list the country considered along with the model variant,
the number of inferred parameters and initial conditions, the logarithmic prior and
posterior, and, if applicable, the inferred onset time and factor of a change in IFR. For
Type 0 (base) models without any IFR change, absolute values of log-prior and log-
posterior are shown, indicated by “abs”. For other models, we show values relative to
the corresponding base model, indicated by ∆. For models UK-BC1 and GER-C1 we
indicate the uncertainty in the inferred parameters for the IFR change as the standard
deviation in a Gaussian approximation of the posterior.

evidence [18–20] for each variant, because it is computationally expensive. However, our previous
results obtained using Markov Chain Monte Carlo simulations for models calibrated with death
numbers have shown that indeed the model evidence is largely dominated by the log-posterior,
such that the latter can be used as a meaningful proxy to compare model evidences [8].
The uncertainty of the inferred parameters around the MAP values for a given model variant

can be assessed by considering the local shape of the posterior close to the MAP parameters. For
models BC1 in the UK and model C1 in Germany, we have calculated the Hessian of the log-
posterior at the MAP value, which yields a multivariate Gaussian approximation of the posterior.
Evaluating the standard deviation for the onset time and factor of the IFR change results in error
estimates that are in line with the observed variation of those parameters across the different
model variants. We expect similar uncertainties for all UK model variants, but refrain from
repeating this rather tedious computation for each of them. The smaller uncertainties observed
for Germany are indicative for the overall better fit of the model with the German data, but may
also be characteristic for the step-like change of IFR in model C1.
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Figure 2: Plot of log-posterior and log-prior. Models without change in IFR in blue, models with
change in IFR in orange.

For each model and set of MAP parameters, we can plot a deterministic solution. This is
the most likely trajectory, conditional on the inferred initial condition, and the mean of the
multivariate Gaussian approximation for all compartment values at all times. Fully detailed plots
of the MAP trajectories for each of the model variants are shown in Appendix C.
Unsurprisingly, the results for the most detailed model variants BC0 and BC1 produce mean

trajectories for cases and mortalities that fit the data best, as shown in Fig. 3. Among these two
solutions, the even better fit of the model variant with change in IFR (BC1) is not only evident
through the likelihood computation, but also visible to the naked eye.
In Fig. 4 we show the MAP trajectories for the variants of models A, B and C. On visual

inspection, none of these models fit the data as accurately as BC0 and BC1 in Fig 3. However,
such visual inspection is not always as reliable an estimate as our Bayesian posterior, which
accounts for temporal correlations in the data. For example, we find that the likelihood strongly
penalises models where the rate of growth (or decay) of infections does not match the data.
Also, the (idealised) step-changes in the intervention function a(t) mean that MAP trajectories
may over/under-shoot the data at the change points. In combination, these two factors mean
that agreement between expected trajectory and data may be imperfect on visual inspection;
however, the posterior is being correctly maximised and the results of inference are robust. This
is because deviations of the data from the mean trajectory are consistently taken into accounted
for the implicit inference of unobserved compartments. For example, the inferred change in IFR
is remarkably consistent between the model variants for the UK, despite considerable differences
in the mean trajectory for each model.This observation reassures us that the evidence for a change
in IFR would persist in a model that is even more detailed than model BC.
Some differences between models A/B and C are due to a generic feature of our computation

4Change of πa . MAP value attained upper bound set by prior.
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Figure 3: Mean trajectories of weekly cases and deaths for the MAP parameters of models BC0
(dashed blue) and BC1 (solid orange), along with data (black)

of the likelihood. When the estimated overdispersion parameters are too low to account for the
observed noise in the data, the optimiser tends to overestimate the expected case and deaths
numbers, thereby increasing the variance of weekly changes. Considering the resulting MAP
trajectories for models A and B, it seems that the inferred overdispersion parameters, which serve
well to fit the first wave, are too small to match the level of noise in the second wave. This leads
to an overestimation of both expected case and death numbers. Differences between cases and
deaths in this overestimation could negate the perceived change in IFR. This has prompted us to
analyse model C, allowing for changes in the overdispersion parameters for the second wave. It
is consistent with the results of models A and B, which rules out that the observed changes in the
IFR stem from temporal changes in the overdispersion.
The models C0/C1 reproduce the observed height of the second wave, but not the dip between

the second and third wave. Note that model C (just like model A) has the November lockdown
fixed without easing, leading to a larger reduction in cases and deaths than in reality. Model BC
(easing and change of overdispersion) reproduces the short-livedness of this reduction better.
The sudden drop in mortalities (individuals with COVID-19mentioned on the death certificate)

in late August / early September is not reproduced by any of our models. This might be related to
changes in the legal definition of such deaths. We do not model this here, but note that adjusting
the data for a lasting change in the definition from this time onwards would likely lead to an even
larger increase in the IFR than the MAP estimates 1.9-2.2 reported above.
We also did the inference procedure for model C0/C1 with data for France and Germany, using

appropriate forms of the intervention function, as detailed in the Appendix B. A similar change in
IFR seems to be present there as well, though somewhat less pronounced in France and happening
somewhat later in Germany.
In Fig. 5 we show the inferred mean fraction of infected individuals, conditional on the

observation of cases and deaths at all points in time. This result is compared to the data from the
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Figure 4: Mean trajectories of weekly cases and deaths for the MAP parameters of the various
model variants, along with data (black). Models without change in IFR are shown as
dashed, models with change in IFR solid.
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(orange) and P0 (grey). For comparison, we also show the prevalence of infections
reported in the ONS infection survey.
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ONS infection survey [21], seeking to determine the fraction of the infected population through
random asymptomatic testing. We note that numbers in our results are always bigger than in the
infection survey, except when they are rapidly rising. This could be an indication that individuals
count as infected for longer in our models than they test positive in a PCR test. Also, the fixed
estimate we use for the age-dependent fraction of asymptomatic infections may be incorrect
(based on early data [22], as described in our paper [8]).
We note that differences in the conditional numbers of infections betweenmodels BC0 and BC1

mainly show up in the first wave. For that time, data from the infection survey is not available,
and data on testing may be incomplete. Nonetheless, it is remarkable that the inferred numbers
of infection largely agree between models BC0 and BC1 from June onwards, encompassing the
inferred time of change in IFR. Hence, we can rule out that the change in IFR in model BC1 is
merely due to changes in the inferred true number of cases. It is rather that the observed timeline
of deaths is more likely in model BC1 than in model BC0, for similar estimated total numbers of
infections.
Based on the remaining discrepancies between the our inferred infection numbers and the

ONS survey, one could still argue that we overestimate the true case numbers early on and/or
underestimate them later, leading to an apparent increase in the IFR. The model variants TT0/TT1
and P0 serve to address this possibility.
The goal of contact tracing is to detect and isolate asymptomatic cases of COVID-19 and ideally

to also detect cases early on in the presymptomatic stage. However, due to limited capacity, the
test and trace system is only effective when case numbers are low and there is sufficient testing
capacity, such as in the summer months. This could mean that with increasing testing numbers
and the large-scale test and trace system being put in place in late May, the reported cases after
the first wave are closer to the true cases than expected by the model variants considered so far.
The results for the pair of variants TT0 and TT1, with their (albeit rudimentary) realisation of
contact tracing, give no indication that this might explain an apparent change in the IFR. Quite
to the contrary, TT1 infers a somewhat larger change in IFR than the Type 1 models already
considered. The posterior of models TT0 and TT1 change only marginally compared to BC0 and
BC1, respectively.
In principle, it is possible that the inferred factor-two change in IFR in early November could

instead be explained by large changes in the numbers of undiagnosed cases. We illustrate this
fact using model P0. It allows for a time-dependent change of the testing priority πa, and
we deliberately set a loose prior on the timing and amplitude of this change. This model
attains a posterior probability that is comparable to that of the models with a change in the IFR.
(Coincidentally, prior and posterior are almost identical to those of TT1, therefore P0 is not shown
in Fig. 2.) The prior would have allowed to place the change in πa as early as July, yet it is inferred
as late November (four weeks after the mean of the Gaussian prior distribution). The amplitude
of the IFR change is inferred as a factor 3, unexpectedly saturating an upper bound we set on this
parameter. This would mean that, to explain the data in terms of a changed testing regime rather
than an actual IFR change, at the height of the second wave, tests must have become at least three
times less targeted at symptomatic cases of COVID-19. It seems to us highly unlikely that this
change could be explained, for example, by a rise in cases of flu, and we would expect evidence
for this scenario to rapidly diminish under a more realistic choice of prior. We also note that, as
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shown in Fig. 5, the inferred true number of infections for P0 matches the data from the infection
survey much worse than for models BC0 and BC1.

5. Discussion
In this paper, we have reported evidence for an increase in lethality of COVID-19 in the UK in
late autumn 2020. Bayesian inference provides clear and consistent evidence for such an increase,
across the suite of models we considered. This finding complements similar conclusions based
on the visual inspection of nationally aggregated case and mortality data [6].
We would not generally expect aggregated case and mortality data, analysed with a well mixed

compartmental model (or suite thereof), to identify clear or definitive causes for an increase of this
kind. So our conclusion is (in common with [6]) that something happened to increase lethality,
but the data does not clearly say what it is that happened.
It is natural to speculate that the increase is related to the emergence of one or more new

virus strains, whose potentially increased lethality has been the subject of several cohort-based
studies summarised previously in a UK Government publication [5]. Those works estimate a
lethality increase for B.1.1.7 by factors ranging up to 1.7 [23]. In contrast, a study by Davies
et al. using a compartmented model including two virus strains [24] did not produce clear
evidence for any change in severity (only a large increase transmissibility). From our suite of
compartmented models, we infer not only a larger increase in IFR than so far attributed to B.1.1.7
severity alone, but also a most likely onset date for this increase that precedes the widespread
emergence of B.1.1.7 in the UK. Moreover, we infer a very similar change in Germany (alongside
a more modest one in France) despite even lower prevalence there, at that time, of B.1.1.7 or any
comparable new strain. We argue on these grounds that the arrival of B.1.1.7 is unlikely to be
the sole cause of the dramatic UK increase in IFR in late 2020.
This suggests that factors such as seasonality and/or pressure on health services may have

contributed to the change. Of these, seasonality more credibly would have had similar effects
in the UK and Germany (and perhaps weaker effects in France, but this is far from clear).
This conclusion may also be supported by a study from Israel addressing changes of in-hospital
mortality rates [25]. If such factors started to increase IFR in early autumn, then the MAP
estimates of the onset time, for either a single step-change or a single ramped increase, might
represent a compromise between two separate episodes of increasing IFR, with only the latter
linked to a new variant. This could allow the fitted onset time to precede arrival of B.1.1.7, with
the latter still contributing strongly to the total increase in fatality.
Such arguments remain, for now, speculative. To further investigate potential connections

between newvariants and the observed change in IFR, one should explicitly represent the dominant
mutant strain though additional model compartments, with increased infectiousness and possibly
increased lethality. Such a model could be calibrated using data for the prevalence of mutant
strains.
The increase in lethality might also be generic for the peaks of waves of infection, when

hospitals are under severe strain. We have not yet analysed the possibility for two changes in IFR:
a reduction in spring and an increase in autumn. This might also reflect seasonal variations in
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the resilience of patients. Figs. 3 and 4 show that the inferred most likely trajectories actually
overestimate the cases in the first wave somewhat in order to get the number of deaths right, and
even more so for the models with change in IFR. The possibility of a high IFR in the first wave,
falling back in late spring before rising again in autumn, might resolve this discrepancy.
It will be interesting to see whether the evidence for a change in IFR persists as models become

calibrated with more recent data and additional types of observations. This might include data
for hospital admissions, antibody testing, or random asymptomatic testing (as already considered
a posteriori in this report). More data would also enable more detailed versions of our models
to be constructed. For example, we have neglected so far the possibility of reinfection (loss of
immunity). It would be also possible to represent more accurately the timing of the progression
through stages of infection [26]. Large-scale vaccination campaigns may also be accounted for
in future variants of these models.
As an additional caveat, we emphasise that these well-mixed models cannot describe regional

variability, such as situations where the epidemic is shrinking in one region and growing in
another. Moreover, the evidence for the UK IFR change is partly based on the relatively poor fits
achieved by models with fixed IFR. It follows that if substantially improved fits were obtained
for models that include regional variability (with fixed IFR), our conclusions might have to be
re-evaluated. On the other hand, we are not aware of a specific mechanism by which regional
variability would generate the discrepancies observed here between the models and the data.
These possibilities might be also tested by future work.
Finally, we would like to advocate the advantages of creating a suite of models within a single

platform to which consistently identical inference procedures can be applied. It is of course
valuable to have independent modelling teams doing their own preferred type of data analysis and
then comparing the results of these studies to see if a consensus emerges. However, the integrated
model-building and inference machinery gathered within the PyRoss platform has in this case
allowed rapid implementation of a number of purpose-built models and their comparison, in a
fully Bayesian way, in the month immediately following the appearance of [6]. (In fact [6] was
posted on medRxiv on 22 January; a complete draft of the current paper was circulated to relevant
members of the UK Government advisory group SPI-M on 24 February.)
The PyRoss platform [2] is open source, and freely available to all users.
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A. Constitutive equations for the basic model
The differential equations determining the deterministic evolution of the mean occupation num-
bers of each compartment read

Ṡi = −λi (t)Si (4a)
Ėi = −γE Ei + λi (t)Si (4b)
Ȧi = −γA Ai + γE Ei − τ(t)πa Ai/N (t) (4c)

ȦQ
i = −γA AQ

i + τ(t)πa Ai (4d)
İa
i = γAαi Ai − γa Ia

i − τ(t)πa Ia
i /N (t) (4e)

İa,Q
i = γAαi AQ

i − γa Ia,Q
i + τ(t)πa Ia

i /N (t) (4f)
İ s1
i = γA(1 − αi)Ai − γs I s1

i − τ(t)πs1I s1
i /N (t) (4g)

İ s1,Q
i = γA(1 − αi)AQ

i − γs I s1,Q
i + τ(t)πs1I s1

i /N (t) (4h)

İ s2
i = γs

√
sifri (t)I s1

i − γs I s2
i − τ(t)πs2I s2

i /N (t) (4i)

İ s2,Q
i = γs

√
sifri (t)I s1,Q

i − γs I s2,Q
i + τ(t)πs2I s2

i /N (t) (4j)

İm
i = γs

√
sifri (t)I s2

i − τ(t)πmIm
i /N (t) (4k)

İm,Q
i = γs

√
sifri (t)I s2,Q

i + τ(t)πmIm
i /N (t) (4l)

Ṙi = γa Ia
i + γs (1 −

√
sifri (t))(I s1

i + I s2
i ) − τ(t)πa Ri/N (t) (4m)

ṘQ
i = γa Ia,Q

i + γs (1 −
√
sifri (t))(I s1,Q

i + I s2,Q
i ) + τ(t)πa Ri/N (t) (4n)

with
λi (t) =

∑
j

βiCi j (t)(A j + Ia
j + I s1

j + cI s2
j )/N j (5)

and
N (t) =

∑
i

[
πa (Si + Ei + Ai + Ia

i + Ri) + πs1I s1
i + πs2I s2

i + πmIm
i

]
. (6)

The stochastic differential equations underlying our computation of the likelihood follow in
a linear noise approximation of the corresponding master equation. Denoting the stochastic
compartment numbers also as Si, Ai, . . . (for notational simplicity), a stochastic noise term is
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added to each term in Eq. (4). This leads to

Ṡi = −λi (t)Si −
√
ηinfectλi (t)Siζ

(0)
i (t) (7a)

Ėi = −γE Ei + λi (t)Si

−
√
γE Eiζ

(1)
i (t) +

√
ηinfectλi (t)Siζ

(0)
i (t) (7b)

Ȧi = −γA Ai + γE Ei − τ(t)πa Ai/N (t)

−
√
γA Aiζ

(2)
i (t) +

√
γE Eiζ

(1)
i (t) −

√
ηtestτ(t)πa Ai/N (t)ζ (3)

i (t) (7c)
ȦQ

i = −γA AQ
i + τ(t)πa Ai

−

√
γA AQ

i ζ
(4)
i (t) +

√
ηtestτ(t)πa Ai/N (t)ζ (3)

i (t) (7d)

etc.

with white noise processes satisfying 〈ζ (µ)
i (t)〉 = 0 and 〈ζ (µ)

i (t)ζ (ν)
j (t′)〉 = δi jδµνδ(t−t′). In order

to account for sources of noise otherwise not resolved in the model, we include overdispersion
factors in the noise terms relating to infections (ηinfect), to testing (ηtest), and to deaths (ηdeath).
The latter is included in transitions from I s2,Q to Im,Q and from Im to Im,Q.

B. Intervention functions for France and Germany

dates type control parameters
before 2020-03-08 before lockdown (reference) a(t) = 1, sh(t) = 1, s(t) = 1
2020-03-18 to 2020-05-13 first lockdown new values for a(t), sh(t), s(t)
2020-05-13 to 2020-06-14 easing of lockdown linear change for a(t), sh(t), s(t)
2020-07-03 start of school holiday change in s(t)
2020-06-14 to 2020-07-11 restrictions are lifted linear change a(t), s(t)
2020-07-11 to 2020-11-01 more easing of restrictions,

schools are reopened
new values for a(t), s(t)

inferred autumn tanh-shaped increase for a(t)
2020-11-27 effect before lockdown is im-

posed
change in a(t)

2020-11-01 to 2020-11-27 second lockdown, primary
schools never close

change in a(t), sh(t)

2020-11-27 to 2020-12-15 easing of second lockdown new values for a(t), sh(t)
after 2020-12-15 introduction of nightly curfew new values for a(t), sh(t)

Table 3: Interventions that are considered in model FRA-C. The a(t) refers to scaling of contacts
for non-school contacts, s(t) refers to the scaling of school contacts, and sh(t) refers to
the scaling of the shielding vector.
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dates type control parameters
before 2020-03-09 before lockdown (reference) a(t) = 1, s(t) = 0
2020-03-09 to 2020-03-23 imposition of lockdown linear decrease of a(t), new value s(t)
2020-03-23 to 2020-06-22 easing of / increasing non-

compliance with lockdown
linear increase of a(t), linear change of
s(t)

2020-06-22 to 2020-11-02 lockdown lifted new values of a(t) and s(t)
inferred increase of contacts / infectious-

ness in autumn
tanh-shaped increase of a(t) and change of
s(t), centre and width to be inferred

2020-11-02 to 2020-12-14 lockdown “light”, local inter-
ventions

new values for a(t) and s(t)

after 2021-12-14 national lockdown new values for a(t) and s(t)

Table 4: Interventions considered in model GER-C. Dates are always rounded to the closest
Monday.
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C. Detailed plots of the MAP trajectories

C.1. UK
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Figure 6: Plots of the MAP trajectories for model UK-A0. Expected trajectories are shown in
black and labelled as ‘sim’ (solid for observable quantities, dashed for hidden quantities).
Data are shown in colour. Panel (a) shows weekly diagnosed case numbers along with
the total number of new infections and the number of tests performed. The vertical lines
indicate times where interventions change. Panel (b) shows weekly deaths. Panel (c)
shows the distribution of ages among the weekly new cases. Data are shown in colour,
stacked and scaled to add up to 1. Analogously, boundaries between age groups in the
simulation are shown in black. Panel (d) shows the prevalence as a fraction of infected
(dashed) and quarantined (solid) individuals in the total population.
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Figure 7: MAP trajectories for model UK-A1, as above. Additionally, the inferred time of change
in IFR is indicated as a vertical line in panel (b).
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Figure 8: Model UK-A2
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Figure 9: Model UK-B0
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Figure 10: Model UK-B1
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Figure 11: Model UK-C0
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Figure 12: Model UK-C1
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Figure 13: Model UK-BC0
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Figure 14: Model UK-BC1
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Figure 15: Model UK-TT0
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Figure 16: Model UK-TT1
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Figure 17: Model UK-P0
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C.2. France
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Figure 18: Model FRA C0.
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Figure 19: Model FRA C1.
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C.3. Germany
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Figure 20: Model GER-C0
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Figure 21: Model GER-C1

30

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.10.21253311doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.10.21253311

	Introduction
	Model structure and data
	Model variants
	Model comparison
	Discussion
	Constitutive equations for the basic model
	Intervention functions for France and Germany
	Detailed plots of the MAP trajectories
	UK
	France
	Germany


