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ABSTRACT

The COVID-19 pandemic has induced large-scale social, economic, and behavioral changes, presenting a unique

opportunity to study how air pollution is affected by unprecedented societal shifts. At each of 455 PM2.5 monitoring

sites across the United States, we conduct a causal inference analysis to determine the impacts of COVID-19

interventions and behavioral changes ("lockdowns") on PM2.5 concentrations. Our approach allows for rigorous

confounding adjustment and provides highly spatio-temporally resolved effect estimates. We find that, with the

exception of the Southwest, most of the US experienced increases in PM2.5 during lockdown, compared to the

concentrations expected under business-as-usual. To investigate possible drivers of this phenomenon, we use

regression to characterize the relationship of many environmental, geographical, meteorological, mobility, and

socioeconomic factors with the lockdown-attributable changes in PM2.5. Our findings have immense environmental

policy relevance, suggesting that large-scale mobility and economic activity reductions may be insufficient to

substantially and uniformly reduce PM2.5.
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Introduction

Acute widespread social, behavioral, and economic changes have occurred across the United States in the wake of

the COVID-19 pandemic. Most notably, mobility levels decreased substantially1–3 nationwide during the initial

"lockdown period" in March and April 2020 as a result of changes in human behavior and other nonpharmaceutical

interventions, such as government-imposed stay-at-home orders, in response to the rapid spread of the virus. The

unprecedented actions taken to curb the spread of COVID-19 have created a unique "quasi-experiment" that can be

leveraged to study the effect of large-scale behavioral change on air quality.

Exposure to fine particle matter, PM2.5, has been shown to have significant adverse health effects, including

respiratory and cardiovascular morbidity and mortality4–6. To create effective policy to limit PM2.5 exposure,

it is crucial to understand the impact of reductions in certain emission-generating human behaviors on ambient

concentrations. Studies of other, smaller scale quasi-experiments have provided some of the strongest evidence for

the health impacts of air pollution and effective reduction strategies, e.g., the ban of bituminous coal in Dublin7,

restrictions on transportation and industrial activities during the 1996 Atlanta8 and 2008 Beijing Olympic Games9, 10.

Several recent studies, some of which are in pre-print at the time of writing, conduct analyses of the lockdown

effects on air quality using data from a single or a few monitors11 or using nationwide and/or statewide averages of

monitored values12. However, due to the vast differences across space in source-specific contributions to PM2.5, the

crudeness of these aggregated analyses limits their policy relevance. Additionally, a study of 122 US counties by

Berman and Ebisu13 reports a decline in PM2.5, on average, during the lockdown period. However, this study did not

report or analyze trends over space, nor did they consider the environmental policy implications of their results. In

our study, we estimate the effects of the lockdown on PM2.5 concentrations at each of 455 individual monitors in

the Environmental Protection Agency (EPA) monitoring network located throughout the contiguous US. The high

spatial resolution of our effect estimates provides more specific policy insights and enables deeper investigation into

the factors influencing lockdown-related changes in PM2.5.

Even in the context of quasi-experimental conditions, isolating the effects of COVID-19 interventions on

air pollution in general cannot be achieved through simple before-and-after comparisons nor comparison to a

concentrations in the previous year, strategies that are used in much of the existing literature and oft-cited in news

media. Numerous time-varying factors that influence air pollution levels, both observable and unobservable, are

unaccounted for with such approaches, e.g., meteorology, year-to-year trends, and seasonality. For example, PM2.5

levels have decreased 44% in the US since 200014. More rigorous approaches are needed to account for pollution

trends and time-varying confounders as a means of truly characterizing the causal effects of pandemic-related
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behavioral changes.

The aims of our study are best represented as a two-stage approach: first, we estimate the lockdown-attributable

daily changes in PM2.5 concentrations at 455 monitoring sites using a causal inference approach that can adjust for

both observed and unobserved time-varying contributors to PM2.5. Formally, at each monitor, we estimate the PM2.5

concentrations that would have been expected each day in the absence of the COVID-19 pandemic and subsequent

interventions (the "counterfactual") and compare these to the corresponding observed levels at the monitor during the

lockdown. Second, we use these effect estimates to identify environmental, geographical, meteorological, mobility,

and socioeconomic factors that are associated with changes in PM2.5 during the lockdown. We also quantify the

impact of these short-term PM2.5 changes on respiratory and cardiovascular disease hospitalizations using the EPA’s

Core Particulate Matter Health Impact Functions.

Results

We define the "lockdown period" for each ground monitor site as beginning on the day of the corresponding state’s

state-of-emergency declaration and ending on the earlier of April 30th, 2020 or the day businesses began to reopen in

that state (see Extended Data Table E1 for the state-specific dates). We estimate the lockdown-attributable changes

in PM2.5 at each of 455 EPA ground monitor sites using a causal inference approach called the Synthetic Control

Method (SCM)15–17, which leverages a pre/post-intervention study design to estimate intervention effects adjusted

for both time-varying and time-invariant unmeasured confounders under mild assumptions.

We use SCM to estimate the "counterfactual PM2.5 concentrations" during the lockdown period, i.e., the daily

concentrations that would have been expected during the 2020 lockdown period in the absence of the lockdown or

any non-mandated personal behavioral changes that took place due to COVID-19 during same period. Briefly, for a

given monitor site, SCM creates a time series of synthetic 2020 daily PM2.5 concentrations by forming a weighted

average of the year-specific time series of daily PM2.5 concentrations for 2010-2019. The weights are selected to

result in a synthetic 2020 time series that provides the closest approximation of the 2020 pre-lockdown observed

time series of PM2.5 concentrations. The values of the synthetic times series during the lockdown represent our

best guess at what PM2.5 concentrations would have been under a "business-as-usual" scenario, simultaneously

accounting for daily, seasonal, and long-term PM2.5 trends. The values in this synthetic 2020 time series during the

lockdown period are thus taken as estimates of the daily counterfactual PM2.5 concentrations. We then estimate daily

lockdown-attributable changes in PM2.5 concentrations by taking the difference between the observed and estimated

counterfactual PM2.5 levels for each day during the lockdown period. Cumulative estimates of lockdown-attributable

changes in PM2.5 reported hereafter are averages of these daily effect estimates across all days in the lockdown
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period for the specified monitor. For consistency with the causal inference literature, we refer to these estimates as

“average treatment effects on the treated” (ATTs).

Figure 1 maps the estimated lockdown-attributable changes in PM2.5 concentrations (ATTs) at each monitoring

site as well as showing a smoothed map of these estimates, interpolated using inverse distance weighting. Negative

ATT values, depicted in green, indicate that the location experienced a lockdown-attributable decrease in PM2.5

concentrations, while positive (orange/red) values represent lockdown-attributable increases.

Figure 1. (Left) Monitor-level estimated average treatment effect on the treated ("ATT"), in µg/m3; i.e., the

average PM2.5 change attributable to COVID-19 interventions over the lockdown period. (Right) ATTs (in µg/m3)

smoothed across the US using inverse distance weighting.

We find that, during the COVID-19 lockdowns, PM2.5 increased across most of the US compared to what

would have been expected under a business-as-usual scenario. We henceforth refer to smaller lockdown-attributable

increases or larger lockdown-attributable decreases as "smaller increases", and larger lockdown-attributable increases

or smaller lockdown-attributable decreases as "larger increases". The maps suggest that any lockdown-attributable

decreases in PM2.5 are generally limited to areas of the Western and Southwestern United States. However, substantial

lockdown-attributable increases were observed in much of the South, Midwest, and Pacific Northwest. Stratifying

by US Census-defined regions, we find average region-wide increases of 1.19 µg/m3, 1.11 µg/m3, 1.94 µg/m3,

and 0.80 µg/m3 for the Northeast, South, Midwest, and West, respectively. Over the entire country, we observe an

average increase of 1.36 µg/m3 attributable to pandemic interventions.

The formation of PM2.5 is known to be a very complex process– along with being directly emitted, much

of it is formed secondarily in the atmosphere from other pollutants. To better understand factors that may have

contributed to the heterogeneity in lockdown-attributable PM2.5 changes detected by our study (Figure 1), we

investigate associations between the monitor-level effect estimates and the environmental, geographical, regional,

meteorological, mobility, and socioeconomic conditions in the area surrounding the monitor. County-level measures

of each feature are obtained and each monitor is assigned the features of the county in which it lies. Using the
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estimated lockdown-attributable PM2.5 changes as the outcome, we fit a linear regression model including all of

the following features as predictors: 2017 primary PM2.5 emissions from various sources (residential, industrial

processes, industrial boilers, dust, agriculture, and mobile)18; socioeconomic and demographic variables (e.g. poverty

rate, proportion of population age 65+, population density)19; county’s average relative mobility change during the

lockdown period20; level of urbanization21; and indicators for region.

Using this model, we find that industrial boiler emissions and population density have significant positive

associations with lockdown-attributable increases in PM2.5, while a significant negative association was observed

for relative mobility decrease, proportion of population age 65+, and the West region. In addition, areas not

classified as "large central metro", the most urban characterization, have significantly positive associations with

lockdown-attributable increases in PM2.5. A summary of model estimates is provided in Figure 2.

Figure 2. Coefficient estimates and 95% confidence intervals from linear regression model.

Although areas with larger decreases in mobility tended to experience smaller increases in PM2.5, our results

suggest that any positive air quality impacts of these large-scale mobility decreases were insufficient to offset other

non-meteorological factors promoting PM2.5 formation. Supporting this finding is Table 1, which shows the amount

of PM2.5 emissions for each US Census region stratified by source22. Regions with higher emissions from stationary

sources (i.e. fuel combustion sources such as power plants, solvents, agriculture, and other industrial processes)

correspond to areas in which we found higher propensity for lockdown-attributable increases in PM2.5 during the

lockdown. Additionally, mobile sources have a comparatively much smaller impact on PM2.5 emissions (Table 1).
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Type Northeast South Midwest West US Total

Stationary 260,853 (82.7%) 1,181,440 (60.9%) 1,262,981 (81.1%) 568,122 (42.4%) 3,273,396 (63.5%)

Mobile 41,432 (13.1%) 129,699 (6.9%) 97,710 (6.3%) 64,945 (4.9%) 333,786 (6.5%)

Other 13,091 (4.2%) 629734 (32.4%) 196,898 (12.6%) 705,595 (52.7%) 1,545,318 (30.0%)

Table 1. Sources of PM2.5 emissions by US Census region, in tons, with corresponding proportion of total regional

PM2.5 emissions in parentheses from the EPA 2014 National Emissions Inventory22.

We also investigate these lockdown-attributable PM2.5 changes relative to a “baseline” PM2.5 level prior to the

pandemic. For each monitor site, we calculate the baseline as the average PM2.5 concentration observed in the month

of April for 2017-2019. In a linear model, we find a nonsignificant, negative association (-0.076, 95% CI [-0.165,

0.014]) between baseline PM2.5 and the estimated lockdown-attributable changes in PM2.5.

We also assess the sensitivity of our findings to a 1-2 day spike in PM2.5 of unknown origin that we observed

during the lockdown period for many monitors in the Midwest. To do so, we identify and remove these outlier

days, defined as days on which PM2.5 levels spiked to 35 µg/m3 or higher, from our ATT estimates for all monitors.

However, the removal of these outliers did not significantly affect the results (see Extended Data Figure E2).

We calculate the expected impacts of the estimated lockdown-attributable changes in PM2.5 on respiratory and

cardiovascular disease hospitalizations in the age 65+ population for each county in the US, using the EPA’s Core

Health Impact Functions for Particulate Matter23. We sum these changes across counties within each US region to

obtain the results displayed in Table 2. While these figures may not be truly representative of health impacts during

the lockdown due to the numerous changes in the public health sphere catalyzed by the pandemic, they are included

in order to quantify the scope of the potential impacts under such changes in air pollution. These estimates are small

relative to the overall PM2.5 burden in the US24, as expected given the short time-scale and the varying directions of

the PM2.5 changes.

There are a number of limitations of our study. First, due to sporadic data collection at certain monitor sites, there

is a considerable amount of missing PM2.5 data, particularly in prior years that are used to establish expected PM2.5

in the absence of the lockdown. However, much of the missingness is by-design due to EPA monitoring procedures,

and we have set fairly stringent monitor inclusion criteria for our analyses to ensure that observed data are sufficient

to capture important trends. In addition, our models are flexible enough to account for some missing data and

we have visually inspected our results to ensure suitable model fit (Supplementary Figure 1). Furthermore, the

heterogeneity of lockdown procedures, stringency, and adherence to advisories creates difficulty in a clear definition

of the lockdown period. However, the time period we have defined was the period of the most acute lockdowns and
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Region Respiratory (LD) CVD (LD) Respiratory (Yearly) CVD (Yearly)

Northeast 35 64 256 469

South 57 105 416 764

Midwest 83 153 609 1117

West -14 -26 -104 -191

US Total 161 296 1177 2160

Table 2. Estimates of changes in respiratory and cardiovascular disease hospitalizations for populations age 65+

stratified by US census region, both over the lockdown period ("LD") and in the hypothetical scenario that the PM2.5

changes persisted for one year.

we have further mitigated this issue by using consistent criteria for each state.

Our study has found that the impacts of the 2020 COVID-19 lockdowns on PM2.5 levels vary dramatically

across the US, with strong regional trends. In the Midwestern and Southern regions, we unexpectedly observe

consistent increases in PM2.5 compared to expected levels absent the lockdowns, while some areas in the Southwest

experienced substantial decreases. The results of this important quasi-experiment provide evidence that policies to

limit individual-level emissions-generating behaviors like mobility may not, alone, reduce PM2.5 levels, particularly

in certain regions and when accompanied by other social and economic changes. Regulation of stationary emissions

sources may be necessary to meaningfully and uniformly reduce PM2.5 and improve human health.

Methods

All data preparation and analyses are conducted in R statistical software version 4.0.2.

The state-level lockdown period dates used throughout this study are given in Extended Data Table E1. Daily

average PM2.5 concentrations between 2010 and 2019 from 1,580 monitor sites in the continental US are obtained

from the EPA Air Quality System (AQS)25. For 2020, daily average PM2.5 concentrations are obtained from the

EPA AirNow system25, where monitor data are made available prior to their integration into AQS, which occurs

approximately twice per year. Daily meteorological factors (total precipitation, maximum temperature, maximum

relative humidity, wind speed, and wind direction), day of the week, and season are obtained from the Google

Earth Engine26 and merged with the PM2.5 data. Because some monitors have prohibitive amounts of missing

measurements, we set inclusion criteria to select the monitors with sufficient data to establish the time trends needed

for our analyses. Starting with 1,580 monitor sites with PM2.5 measurements between 2010-2020, we remove
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monitors (1) with no PM2.5 measurements during the defined lockdown period for their respective state, roughly

mid-March to late-April of 2020 (918 monitors); (2) with less than 30 days of data during the lockdown period (23

monitors); (3) with no data prior to 2016 (117 monitors); or (4) with data entirely missing for five or more total years

2010-2019 (67 monitors). After applying these exclusion criteria, 455 monitors remain to be used in our analyses.

We rely solely on observed data for our analysis. Our goal is to estimate the daily PM2.5 concentrations that

would have been expected at each monitoring site during the lockdown period under a business-as-usual scenario (i.e.,

without the lockdowns or the non-mandated personal behavioral changes that took place due to COVID-19 during

the same period). Hereafter we refer to these as the "counterfactual PM2.5 concentrations". As a result of long-term,

seasonal and daily trends in PM2.5, complex meteorological variability, and other potential unobserved confounding

factors, PM2.5 concentrations from a single previous year cannot be directly utilized to infer the counterfactual PM2.5

concentrations, nor can a simple average of PM2.5 concentrations over multiple years of historical data. We therefore

use a causal inference approach often referred to as the "synthetic control method" (SCM) to estimate counterfactual

PM2.5 concentrations15–17.

SCM was created to analyze the effects of a policy or intervention on an outcome using a case study. It leverages

time series containing pre- and post-intervention outcome data from (1) a single unit that received an intervention

(the "treated" unit) and (2) a set of control units that did not receive the intervention. Conceptually, using the

pre-intervention data from both treated and control units, it creates a weighted average of the time series from the

control units that best captures the pre-intervention trends in the time series for the treated unit. Then that same

weighted average of the control units’ outcomes is used to estimate the outcome that would have been expected in

the treated unit during the post-treatment period, in the absence of the intervention (the counterfactual outcome).

This weighted average created by SCM is called a "synthetic control". Formally, the optimal weights are identified

by obtaining a latent factor representation of the multivariate time series data. SCM is flexible enough to account for

both time-varying and time-invariant confounders of the intervention effect under mild assumptions. In addition, it

accounts for any remaining pre-lockdown missing data by imputation.

In the classic SCM framework, for a given monitor, we consider each year 2010-2020 to be a "unit", and the time

series of PM2.5 concentrations for each year are the outcomes. 2020 is considered the treated unit and all other years

are controls. Thus, SCM will create a weighted average of daily 2010-2019 PM2.5 concentrations at that monitor,

and use that weighted average to estimate the counterfactual daily PM2.5 concentrations during the lockdown period.

To create a proper synthetic control, we must ensure that the time series from each year are aligned so that the

day represented at a given position in the time series is comparable across years. Because PM2.5 exhibits weekday

and weekend trends that must be accounted for when creating the synthetic control, we align the time series based
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on day-of-week rather than day-of-year. In particular, we let the time series for each year start on the first Monday of

the year, so that aligning entries in the time series represent the same day-of-week and only a few days difference in

day-of-year.

We implement SCM separately on the data from each of the 455 monitors using the gsynth package in R16 with a

matrix completion estimator17. In addition to the default latent factor representation used by SCM, we include in the

model fixed effects for year and time series position and adjust for both weather (maximum temperature, maximum

relative humidity, precipitation, wind speed, and wind direction) and seasonality (month of year) as time-varying

covariates. See Supplementary Figure 1 for monitor-level model fit diagnostic plots.

At each monitor, we take the simple difference of the observed PM2.5 concentrations during the lockdown and

the SCM-estimated counterfactual PM2.5 concentrations to obtain the lockdown-attributable changes in PM2.5 for

each day. We then average these daily effect estimates over the entire lockdown period to obtain the ATT estimate at

each monitor, which is shown in Figure 1.

In the second stage of modeling, we use a linear regression model to identify features associated with the

estimated lockdown-attributable changes in PM2.5. The effect of meteorological variables adjusted for in the first

stage of modeling is first subtracted from the treatment effect estimates. Each monitor is linked to a large set of

features of the county it resides in. The units of analysis in this model are monitors, and the outcome in the regression

model is the monitor-level estimated lockdown-attributable change in PM2.5. Features included as predictors in

the model are: residential emissions, industrial processes emissions, industrial boiler emissions, dust emissions,

agriculture emissions, mobile emissions, mobility change relative to baseline, socioeconomic and demographic

variables (proportion of population age 65+, racial composition, poverty rate, population density), urbanization level

(classified into large central metro, large fringe metro, medium metro, and other), and US census-defined regions

(Midwest, Northwest, South, and West). All features are obtained at the county-level. Descriptions of each variable

and data sources are provided in Extended Data Table E2.

Mobility change was measured relative to a February 2020 baseline and defined by quantifying the number of

Bing tiles Facebook users are seen in during a day27. Socioeconomic and demographic variables were taken from

the 5-year 2018 American Community Survey19 and meteorological variables were obtained from the Google Earth

Engine26. Data on sources of emissions were obtained from the EPA 2017 National Emissions Inventory reports18, 22.

Urban-rural classifications are obtained from 2013 National Center for Health Statistics Urban-Rural Classification

Scheme for Counties21 and large central metro is used as the reference variable in the model. Areas classified as

smaller than "medium metro" are grouped into a variable called "other". The Midwest Region is the reference

variable in the model for region indicators. Coefficient estimates and respective confidence intervals for the model
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including interaction effects between relative mobility change and population age 65+, are provided in Extended

Data Table E1. However, the addition of these interaction effects did not significantly affect the model coefficients.

We use exposure-response functions from the EPA’s Core Health Impact Functions for Particulate Matter and

Hospital Admissions23 to characterize associations between short-term PM2.5 exposure and (1) respiratory disease

hospitalization risk and (2) cardiovascular disease hospitalization risk28, 29. To estimate the health impacts across the

entire continental US, we first interpolate the estimated lockdown-attributable PM2.5 changes to obtain an estimate

for each county (including those without an included monitor). Inverse distance weighting is used to interpolate the

estimated effects at the monitor sites to each county’s centroid, and the resulting interpolated values are treated as

each county’s lockdown-attributable change in PM2.5. We insert each county’s PM2.5 changes into the pre-existing

short-term exposure-response functions for each hospitalization type for individuals 65+ (a log-linear model with

parameter estimates taken from Kloog et al.28 and Bell et al.29) to obtain an estimate of its change in hospitalization

incidence rate. Baseline incidence rates are calculated using a weighted average of hospitalization incidence rates for

people age 65+ (3.352 respiratory hospitalizations/100 people per year; 5.385 cardiovascular hospitalizations/100

people per year). The change in incidence rate is then used to obtain the county’s absolute change in hospitalizations

for each of the two health outcomes in people age 65+. These values are summed across each US census region and

scaled to account for the number of days in the state’s lockdown period, i.e., the number of days of the specified

change in PM2.5 exposure. We also estimate the changes in hospitalization incidence that would have occurred if

these PM2.5 changes had been sustained for an entire year.
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Extended Data

State State of Emergency End Date

Alabama 2020-03-13 2020-04-30

Arizona 2020-03-11 2020-04-30

Arkansas 2020-03-11 2020-04-30

California 2020-03-04 2020-04-30

Colorado 2020-03-11 2020-04-30

Connecticut 2020-03-10 2020-04-30

Delaware 2020-03-13 2020-04-30

District of Columbia 2020-03-11 2020-04-30

Florida 2020-03-09 2020-04-30

Georgia 2020-03-14 2020-04-30

Idaho 2020-03-13 2020-04-30

Illinois 2020-03-09 2020-04-30

Indiana 2020-03-06 2020-04-30

Iowa 2020-03-09 2020-04-30

Kansas 2020-03-12 2020-04-30

Kentucky 2020-03-06 2020-04-30

Louisiana 2020-03-11 2020-04-30

Maine 2020-03-15 2020-04-30

Maryland 2020-03-05 2020-04-30

Massachusetts 2020-03-10 2020-04-30

Michigan 2020-03-10 2020-04-30

Minnesota 2020-03-13 2020-04-27

Mississippi 2020-03-14 2020-04-27

Missouri 2020-03-13 2020-04-30

Montana 2020-03-12 2020-04-27

State State of Emergency End Date

Nebraska 2020-03-13 2020-04-30

Nevada 2020-03-12 2020-04-30

New Hampshire 2020-03-13 2020-04-30

New Jersey 2020-03-09 2020-04-30

New Mexico 2020-03-11 2020-04-30

New York 2020-03-07 2020-04-30

North Carolina 2020-03-10 2020-04-30

North Dakota 2020-03-13 2020-04-30

Ohio 2020-03-09 2020-04-30

Oklahoma 2020-03-15 2020-04-24

Oregon 2020-03-08 2020-04-30

Pennsylvania 2020-03-06 2020-04-30

Rhode Island 2020-03-09 2020-04-30

South Carolina 2020-03-13 2020-04-20

South Dakota 2020-03-13 2020-04-28

Tennessee 2020-03-12 2020-04-30

Texas 2020-03-13 2020-04-30

Utah 2020-03-06 2020-04-30

Vermont 2020-03-13 2020-04-27

Virginia 2020-03-12 2020-04-30

Washington 2020-02-29 2020-04-30

West Virginia 2020-03-16 2020-04-30

Wisconsin 2020-03-12 2020-04-30

Wyoming 2020-03-13 2020-04-30

Table E1. Defined lockdown period for each contiguous US state (and the District of Columbia), beginning on the

day of the declared state of emergency and ending on April 30th, 2020 or the day of business reopenings, whichever

came first.
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Variable Unit of Measure Abbreviations Used Reference

Primary PM2.5 emissions

from agricultural sources
µg/m3 "Agriculture Emissions" US EPA18

Primary PM2.5 emissions

from dust sources
µg/m3 "Dust Emissions" US EPA18

Primary PM2.5 emissions

from industrial boilers
µg/m3 "Industrial Boiler Emissions" US EPA18

Primary PM2.5 emissions

from industrial processes
µg/m3 "Industrial Processes Emissions" US EPA18

Primary PM2.5 emissions

from residential sources
µg/m3 "Residential Emissions" US EPA18

Primary PM2.5 emissions

from mobile sources
µg/m3 "Mobile Emissions" US EPA18

Mobility change rel. to baseline % "Relative Mobility Change" Facebook20

Proportion of population age 65+ % "% Age 65+" US Census Bureau19

Proportion of whites in population % "% White" US Census Bureau19

Population density people/mi.2 N/A US Census Bureau19

Poverty rate % N/A US Census Bureau19

Large fringe metro 0/1 N/A Ingram et al.21

Medium metro 0/1 N/A Ingram et al.21

All other areas 0/1 "Other" Ingram et al.21

Northeast region 0/1 "Northeast"

South region 0/1 "South"

West region 0/1 "West"

Maximum temperature K "Max Temp" Gorelick et al.26

Maximum relative humidity % "Relative Humidity" Gorelick et al.26

Cumulative precipitation mm "Precipitation" Gorelick et al.26

Wind speed m/s N/A Gorelick et al.26

Wind direction Deg. from north N/A Gorelick et al.26

Table E2. List of variables included in regression model, with units of measure and abbreviations used throughout.
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Figure E1. Coefficient estimates and 95% confidence intervals including interaction effects.

Figure E2. (Left) Monitor-level estimated ATTs, in µg/m3, after removal of 1-2 day spikes of unknown origin.

(Right) ATTs (in µg/m3) smoothed across the US using inverse distance weighting.
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