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Abstract

Automatically identifying thrombotic phenotypes based on clinical data, particularly clinical texts, can be
challenging. Although many investigators have developed targeted information extraction methods for identifying
thrombotic phenotypes from radiology notes, these methods can be time consuming to train, require large amounts
of training data, and may miss subtle textual clues predictive of a thrombotic phenotype from notes beyond the
radiology note. We developed a generalizable, data-driven framework for learning, characterizing, and visualizing
clinical concepts from both radiology and discharge summaries predictive of thrombotic phenotypes.

Introduction

Generally-speaking, thrombotic events, blood clots within the veins or arteries, obstructing blood flow through the
body, are a significant health threat to patients. In the United States, more than 795,000 individuals experience a
stroke,! 900,000 people experience venous thromboembolism,?> and 1.5 million people experience myocardial
infarctions each year.® Electronic health records afford an opportunity to study thrombotic phenotypes i.c., their
disease burden, treatment efficacy, and health outcomes, among patients as they contain rich details about a patient’s
clinical status including signs and symptoms, comorbidities, laboratory findings, procedures, and diagnoses.

Natural Language Processing to Detect Thrombotic Phenotypes

Natural language processing (NLP) can accurately identify patients with thrombotic event phenotypes using
patient’s clinical notes. Regular expression and rule-based approaches can extract and encode thrombotic events in
an intuitive and explainable way. The pyConText algorithm, a regular expression and rules-based algorithm for
identifying thrombotic event targets (e.g., pulmonary embolisms, deep vein thrombosis) and their contexts
(existence, uncertainty, acuity), has demonstrated promising results.** Specifically, pyConText detects pulmonary
embolisms from CT pulmonary angiography reports with recalls (and precisions) of 98% (83%), 86% (96%), 94%
(93%), and 60% (90%) for disease state (pulmonary emboli present or absent), quality state (diagnostic or not
diagnostic), certainty state (uncertainty present or absent), and temporal state (acute or chronic), respectively.® The
pyConText knowledge base was further developed to detect deep vein thrombosis as well as stroke and its risk
factors.”'® Moreover, using the web-based query-building tool called Data Discovery and Query Builder (DDQB),
Tien et al. have shown how such expressions and rule-logic for negation can be leveraged to classify thrombotic
events 30-days following hip and knee surgeries.'! Their rule-based approach achieved high results: recall (97%) and
specificity (99%) for deep vein thrombosis, recall (97%) and specificity (100%) for pulmonary embolism, and recall
(100%) and specificity (99%) for myocardial infarction. Some NLP systems leverage standardized vocabularies. The
Reveal NLP Engine, based on the MedLEE (Medical Language Extraction and Encoding Systems), extracts clinical
terms using the Systematized Nomenclature of Medicine (SNOMED) terminology and applies inference rules to
classify VTEs from radiology reports.> Reveal NLP has demonstrated high sensitivity (83%) and specificity (97%)
when processing 6373 radiology reports from 3,371 hospital encounters.

Advanced deep learning approaches have furthered thrombotic event phenotype detection. Intelligent
(context-aware) Word Embedding (IWE) utilizes domain-specific semantic dictionary mappings to train a neural
embedding to detect pulmonary embolisms documented within chest CT radiology reports.”* IWE performed
comparably to pyConText on the UPMC dataset with an F1-score of 94% to 92% which was used originally to tailor
the pyConText model. Johnson et al. developed an NLP pipeline using a semi-automated binary labeling for
encoding radiology notes indicating patients with and without pulmonary embolism.'* Initially, a rule-based method
has been used to scan the radiology reports for the existence of a set of pre-defined regular expressions related to the
lack of PE evidence in the report. A pre-trained BERT model was then fine-tuned on the training subset of the data,
which led to 99% accuracy in predicting correct labels. Ong et al. used a range of NLP-based techniques to detect


https://paperpile.com/c/KyRQnt/rhOZ
https://paperpile.com/c/KyRQnt/LJj5
https://paperpile.com/c/KyRQnt/rLjZ
https://paperpile.com/c/KyRQnt/pZ92+d5Nr+97qH
https://paperpile.com/c/KyRQnt/pZ92
https://paperpile.com/c/KyRQnt/97qH+d5Nr+fqTo+jXIP+HixK+k9pn
https://paperpile.com/c/KyRQnt/Tloa
https://paperpile.com/c/KyRQnt/IARj
https://paperpile.com/c/KyRQnt/kclR
https://paperpile.com/c/KyRQnt/TcK2

the presence or absence of strokes including subtypes and characteristics of ischemic stroke, middle cerebral artery
territory involvement, and stroke acuity in radiographic reports. They leverage a variety of word to vector
transformation approaches, including bag-of-words, TF-IDF, and GloVe to train logistic regression, k-nearest
neighbor, decision tree, random forest, and recurrent neural networks. Bag-of-words were observed to be more
compatible with low variance classifiers such as logistic regression. In contrast, GloVe may perform better following
deep learning approaches such as recurrent neural networks. Overall, the NLP pipeline achieved AUC-ROC in the
range of 80% to 95% for the three different tasks.

Although many of these approaches demonstrate the benefits of using rule-based and supervised learning
approaches to detect thrombotic phenotypes, these approaches can be time consuming to train, require large amounts
of training data, and may miss subtle textual clues predictive of a thrombotic phenotype from notes beyond the
radiology note. Furthermore, these approaches do not often address or characterize multiple types of thrombotic
phenotypes at once. A data-driven framework for learning, characterizing, and visualizing clinical concepts
associated with thrombotic phenotyped cohorts can be leveraged to overcome these limitations and uncover known
and novel as well as common and distinct characteristics between each thrombotic phenotype. Our long-term goal is
to study the disease burden and health outcomes among patients that experience thrombotic phenotypes as a result of
COVID-19. Our short-term goal is to create a data-driven framework to 1) learn various text-based, clinical concepts
predictive of thrombotic phenotypes across note types in an unbiased and automated fashion, 2) identify common
and distinct clinical concepts from clinical notes for each thrombotic phenotype, 3) understand how well these
concepts inform automatic document classification across thrombotic phenotypes, and 4) visualize semantic
relationships among informative clinical concepts for clinical interpretation.

Methods

This study was approved by the University of Pennsylvania Institute Review Board (#831895). We leveraged the
Medical Information Mart for Intensive Care version 3 (MIMIC-III) database, a database consisting of
de-identified, electronic health records for over 61,000 patients admitted to the Beth Isracl Deaconess Medical
Center in Massachusetts from June 2001 through October 2012."° We queried the following MIMIC-III tables:
patient, admission, ICD codes, and noteevent tables. We defined our thrombotic phenotype subgroups based on
definitions from the Consortium for Clinical Characterization of COVID-19 by EHR (4CE) Acute Kidney Injury
Working Group (see Table 1).'® Six subgroups of thrombotic phenotypes have been defined using the ICD-9 codes:
myocardial infarction, pulmonary embolism, stroke, arterial thrombosis, venous thromboembolism, and
disseminated intravascular coagulation.

Table 1. Thrombotic phenotype definitions.

Category ICD-9

Myocardial Infarction 410, 410.01, 410.02, 410.1, 410.11, 410.12, 410.2, 410.21,
410.22,410.3,410.31, 410.32, 410.4, 410.41, 410.42, 410.5,
410.51, 410.52, 410.6, 410.61, 410.62, 410.7, 410.71, 410.72,
410.8,410.81, 410.82, 410.9, 410.91, 410.92

Pulmonary Embolism 415, 415.11,415.12, 415.13, 415.19, V12.55

Stroke 434,434.01,434.11, 43491

Arterial Thrombosis 444, 444,09, 444.1,444.21, 444.22, 444 81, 444.89, 444.9, 445,
445.01, 445.02, 445.81, 445.89

Venous Thromboembolism 434,434.01,434.1,434.11,434.9, 437, 437.6, 452, 453, 453.2, 453 .3,

453.4,453.41,453.42, 453.82, 453.83, 453.84, 453.85, 453.86, 453.87

Disseminated Intravascular Coagulation | 286, 286.6, 776, 776.2

Applying a Text-driven Approach

We applied an NLP and machine learning-based method for learning distinct characteristics within each specific
thrombotic phenotype using textual features from clinical notes. First, we leveraged discharge summaries and
radiology notes in an effort to derive symptoms, signs, medications, procedures, diagnoses among other clinical
concepts highly-associated with each thrombotic phenotype. Each patient may have one or more notes that are not
associated with a thrombotic phenotype; therefore, we identified relevant notes containing terms associated with
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thrombotic phenotypes including: “thrombosis”, “thrombotic”, “thrombi”, “blood clot”, “blood clots™, “clot”,

EEENT3 EEENT3 EERNT3 EEENT3 EEIN T3 EEENT3 9 9

“clots”, “ischemia”, “ischemic”, “infarction”, “infarctions”, “infraction”, “infractions”, “embolism”, “embolisms”,
“embolus”, “emboli”, “embolic”, “infarct”, “infract”, “occlusion”, “block”, “dissection”, “stroke”. For each patient,
each of their individual notes were assigned the thrombotic event category associated with the ICD-9 billing code
for that inpatient encounter. Next, we encoded clinical concepts identified using scispaCy’s Entity Linker.'” For each
identified entity, we selected the top-ranked candidate among concepts mapped to standardized vocabularies
including the Unified Medical Language System'®, the Human Phenotype Ontology (HPO)!, and RxNorm. To
identify the most informative clinical concepts across the full corpus, we applied the term frequency-inverse
document frequency (TF-IDF), a measure that increases proportionally as the number of times a concept appears in a
document relative to the number of documents that contain the concept. We report the top 20-ranked,
positive-associated concepts for each thrombotic phenotype. To identify common and distinct clinical concepts
learned between note types, we compared the clinical concepts learned between note types using jaccard similarity.

Classifying Notes by Thrombotic Phenotypes

From each TF-IDF corpora, we selected the 2,000 most informative concepts to train and test a binary logistic
regression model for classifying notes by thrombotic phenotype. The model was trained using 80% of notes and
tested using 20% of notes. We applied 5-fold cross validation and L2 regularization to reduce the risk of overfitting.
We report the feature importance of the top 20-ranked positive coefficients for each thrombotic phenotype. We also
report F1-score, recall, and precision for both training and testing sets.

Visualizing Clinical Concepts Associated with Thrombotic Phenotypes

We aimed to better understand the relationships between learned clinical concepts by applying an unsupervised
clustering and visualization technique to explore all positive coefficients for each thrombotic phenotype. As a
knowledge base of clinical concepts and their relationships, we leveraged cui2vec, a combined embedding resource
from three medical data sources: insurance claims database of 60 million members, a collection of 20 million
clinical notes, and 1.7 million full text biomedical journal articles resulting in 108,477 medical concepts.”’ To
visualize and observe semantic clusters among the learned clinical concepts for each thrombotic phenotype, we
leveraged UMAP, a dimension reduction algorithm commonly used to reduce data representations into
2-dimensional space.”’ As a proof-of-concept, we report relevant themes observed among tightly grouped concepts
for each thrombotic phenotype.

Results

In this pilot study, we aimed to develop a data-driven framework to identify, characterize, and visualize clinical
concepts associated with six thrombotic phenotypes.

Applying a Text-driven Approach

In Table 2, the most frequent thrombotic phenotypes observed in our cohort include myocardial infarction (n=4714
patients), venous thromboembolism (n=1798 patients), and pulmonary embolism (n=1131 patients). Among
thrombotic phenotypes, the most documents and corresponding CUIs were observed for myocardial infarction
(n=10422 documents; n=27971 CUIs), venous thromboembolism (n=9666 documents; n=26326 CUIs), and
pulmonary embolism (n=5068 documents; n=22442 CUIs). Thrombotic phenotypes with the most frequent positive
coefficients within the logistic regression model were disseminated intravascular coagulation (n=708 CUIs), venous
thromboembolism (n=700 CUIs), and arterial thrombosis (n=651 CUIs).

Table 2. Characteristics of patients, documents, and CUI counts during each filtering stage.
Thrombotic phenotype Patients | Documents | Total CUls | Total CUIs with positive
coefficients
Myocardial Infarction 4714 10422 27971 695
Pulmonary Embolism 1131 5068 22442 666
Stroke 687 4781 17570 545
Arterial Thrombosis 407 1761 14696 651
Venous Thromboembolism 1798 9666 26326 700
Disseminated Intravascular Coagulation 381 1498 14947 708
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In Figures 2a and 2b, the highest-ranked positive coefficients by description among thrombotic phenotypes across
note types include: myocardial infarction (heart attack, electrocardiogram: myocardial infarction finding, abnormal
cardiac catheterization), pulmonary embolism (blood clot in artery of lung, pulmonary embolism), stroke (stroke,
cerebrovascular accident), arterial thrombosis (endocarditis, ischemia, lower extremity, surgical incision), venous
thromboembolism (stroke, cerebrovascular accident, blood clot in portal vein), and disseminated intravascular
coagulation (slc25al0 gene, ascites, infection in the blood stream, discharge diagnosis). Importance among the top
20-ranked, positive coefficients were higher among features within the discharge summaries alone compared to
radiology + discharge summaries and radiology.

Figure 2a. Feature importance of the top 20-ranked, positive features using logistic regression for each thrombotic

phenotype. From left to right: radiology + discharge summary, radiology, and discharge summary.
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Figure 2b. Feature importance of the top 20-ranked, positive coefficients using logistic regression for each
thrombotic phenotype. From left to right: radiology + discharge summary, radiology, and discharge summary.
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clinical concepts learned across note types. We observed a range of common

positive-associated clinical concepts from 0.446 (arterial thrombosis) to 0.505 (disseminated intravascular
coagulation) between radiology + discharge summary and discharge summary; from 0.293 (myocardial infarction) to
0.335 (venous thromboembolism) between radiology + discharge summary and radiology; from 0.141 (myocardial
infarction) to 0.206 (disseminated intravascular coagulation) between discharge summaries and radiology.

Figure 3. Jaccard similarity of clinical concepts between notes.
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Classifying Notes by Thrombotic Phenotypes

In Table 3, across thrombotic phenotypes, we observe slight reductions in performance, from high to moderate, on
the testing set compared to the training set. On the testing set, we observe moderate to high F-score across
thrombotic phenotypes and note types ranging from 0.63 to 0.82. The most sensitive models learned for myocardial
infarction, pulmonary embolism, and venous thromboembolism were derived from discharge summaries; in contrast
to, stroke, arterial thrombosis, and disseminated intravascular coagulation which were derived from radiology +
discharge summaries. The most precise models learned for pulmonary embolism derived from radiology + discharge
summaries; whereas, the most precise models for all other thrombotic phenotypes were derived from discharge
summaries only.

Table 3. Logistic classification using TF-IDF. Bold=highest metric among note arms.

Thrombotic phenotype Training (n=80%) Testing (n=20%)
Radiology + Discharge Summary F-score | Recall |Precision| F-score | Recall | Precision
Myocardial Infarction 0.80 0.75 0.87 0.78 0.74 0.84
Pulmonary Embolism 0.80 0.80 0.81 0.79 0.76 0.79
Stroke 0.75 0.74 0.77 0.74 0.73 0.75
Arterial Thrombosis 0.75 0.78 0.72 0.73 0.77 0.69
Venous Thromboembolism 0.70 0.76 0.65 0.67 0.73 0.62
Disseminated Intravascular Coagulation 0.81 0.86 0.76 0.77 0.81 0.73
Radiology F-score | Recall |Precision| F-score | Recall | Precision
Myocardial Infarction 0.76 0.74 0.78 0.70 0.67 0.73
Pulmonary Embolism 0.81 0.80 0.81 0.76 0.76 0.76
Stroke 0.75 0.75 0.75 0.72 0.71 0.73
Arterial Thrombosis 0.76 0.74 0.77 0.72 0.72 0.71
Venous Thromboembolism 0.65 0.66 0.65 0.63 0.65 0.62
Disseminated Intravascular Coagulation 0.70 0.67 0.75 0.66 0.62 0.69
Discharge Summary F-score | Recall |Precision| F-score | Recall | Precision
Myocardial Infarction 0.83 0.79 0.88 0.82 0.77 0.87
Pulmonary Embolism 0.83 0.88 0.79 0.79 0.85 0.74
Stroke 0.81 0.75 0.87 0.78 0.71 0.86
Arterial Thrombosis 0.78 0.74 0.82 0.73 0.68 0.80
Venous Thromboembolism 0.81 0.87 0.76 0.75 0.81 0.71
Disseminated Intravascular Coagulation 0.86 0.88 0.83 0.76 0.76 0.76

Visualizing Clinical Concepts Associated with Thrombotic Phenotypes

In Figure 4, among thrombotic phenotypes, using UMAP on cui2vec vectors demonstrates distinct patterns
representing the preserved semantic relationships among concepts learned from clinical data sources.



Myocardial Infarction
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Figure 4. Visualization of clinical concepts with positive coefficients using UMAP on cui2vec vectors.

In Figure 5, within the UMAP visualizations for each thrombotic phenotype, we observed several interesting types
of clinically-meaningful, semantic relationships including prophylaxis (myocardial infarction), comorbidities
(pulmonary embolism), affected anatomy (stroke), care coordination (arterial thrombosis), synonyms (venous
thromboembolism), biomarkers/treatments (disseminated intravascular coagulation).

Figure 5. Semantic relationships observed by thrombotic phenotype.
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Discussion

In this pilot study, we developed and applied a data-driven framework to identify, characterize, and visualize clinical
concepts associated with six thrombotic phenotypes.

Applying a Text-driven Approach

We developed this data-driven approach using standard vocabularies and ontologies to glean informative clinical
concepts from relevant note types - discharge summaries and radiology notes - for classifying documents according
to thrombotic phenotypes. Among the top 20-ranked positive coefficients identified for specific thrombotic
phenotypes of stroke, pulmonary embolism and myocardial infarction, both lay and medical synonyms of diagnoses
were common, e.g., heart attack is @ myocardial infarction. In the case of disseminated intravascular coagulation, we
observed more heterogeneous, clinical concepts among the top-ranked. For example, pathogenic mechanisms
(infection in bloodstream also known as sepsis) was highly predictive which is not surprising given that
disseminated intravascular coagulation is a known complication of sepsis in about 35% of severe cases.”” In the case
of arterial thrombosis, ischemia and endocarditis are also intuitive findings because endocarditis can cause
vegetations of blood and bacteria to form in the blood vessels of your heart forming blood clots that may travel and
cause ischemia within the arteries.”® Ascites fluid reinfusion in severe cirrhosis has frequently been associated with
disseminated intravascular coagulation.** Another intuitive finding by our method is that our model for arterial
thrombosis identified affected arteries (hepatic artery, arterial occlusion); in contrast, our model for venous
thromboembolism identified affected veins (portal vein thrombosis, left branch of portal vein). This finding
demonstrates that our method can identify key vascular differences between these thrombotic phenotypes.

Across thrombotic phenotypes, the top 20-ranked, positive coefficients depicted from the discharge summary alone
consistently appeared to have higher importance scores than those enumerated within the radiology + discharge
summary or radiology note alone. Furthermore, when comparing the clinical concepts learned across note types, we
observed higher jaccard similarity measures of positive-ranked clinical concepts between the discharge summary
and radiology + discharge summary compared to radiology and radiology + discharge summary. This finding
empirically demonstrates a higher proportion of clinical concepts were derived from the discharge summaries than
the radiology note in the combined note model. Although the radiology report is often necessary for making a
clinical diagnosis and mined for identifying affirmed thrombotic phenotypes, we learned that there are significant
clinical indicators derived from the discharge summary which are important for detecting a thrombotic phenotype.

Classifying Notes by Thrombotic Phenotypes

In terms of document classification of thrombotic phenotypes, we observed only slight reductions in performance on
the testing set compared to the training set, suggesting that the cross-validation and L2 regularization did improve
generalizability. On the testing set, we observe moderate to high F-score across thrombotic phenotypes
demonstrating reasonable classification performance; however, additional features could improve both recall and
precision. The variability of performance in terms of recall and precision across note types suggests that one model
and note type might not be suitable across thrombotic phenotypes. We acknowledge that our approach could be
improved by adding non-textual features indicative of a thrombotic phenotype i.e., laboratory data, hospital billing
codes, and assessment scales. Furthermore, our approach does not consider the context of the concept (linguistic
modifiers of negation, severity, temporality, and experiencer) which may improve precision of classifications.”*

Visualizing Clinical Concepts Associated with Thrombotic Phenotypes

We leveraged state-of-the-art word embedding resources and unsupervised dimension reduction techniques to
encourage research teams (informaticists, clinicians, epidemiologists among others) to explore clinically
meaningful, semantic relationships within and across thrombotic phenotypes.

Limitations and Future Work

Our study has several notable limitations. First, encoding text to vocabularies is not perfect. Some features that were
positively associated with a thrombotic phenotype are clearly errors, e.g., slc25al(0 gene was associated with
disseminated intravascular coagulation (DIC), but was likely a mapping omission to dicarboxylate ion carrier (DIC).
To address this issue, we will apply more aggressive filtering techniques and acronym/abbreviation support.?
Second, our study aims to learn informative concepts common and distinct to thrombotic phenotypes across reports
to train a document-level thrombotic phenotype classifier given that ICD coding can be imprecise. In the future, we
will roll up classification to the patient encounter-level by training our model using physician-validated, thrombotic
phenotypes applied to our COVID-19 patient cases.
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Conclusion

We defined a text-based, data-driven framework to learn, characterise, and visualize thrombotic phenotypes using
clinical texts. This generalizable framework could prove beneficial for investigators interested in leveraging clinical
notes to train a phenotype classifier, but not sure which features to include and which notes to generate their models.
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