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2. Abstract  

 

Recently, much attention has been paid to the COVID-19 pandemic, yet bacterial resistance 

to antibiotics remains a serious and unsolved public health problem, which kills thousands 

of people annually, being an insidious and silent pandemic. In this study, we explored the 

idea of confinement and the tightening of the hygiene measures to contain the spreading of 

coronavirus, to simulate the effect that it has on lowering the spreading of pathogenic 

bacteria in a human network, and on the need to use antibiotics. For that, we used 

computational biology to generate simulations. 
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3. Introduction 

Antibiotic resistance is today one of the biggest threats in human and public health. It is a 

hidden pandemic! Antimicrobial-resistant pathogens already cause 25 000 deaths per year 

in Europe, 700 000 worldwide, and it is estimated that it could increase to 10 million by 

2050, in the most alarming scenario if no action is taken (1). This also implies higher 

treatment costs due to the prolonged recovery time in biosafety facilities, but also the need 

to resort to more expensive alternative antibiotics (2). 

Antibiotic misuse and over-prescription have long been documented as one of the most 

common errors in human health and one of the main factors that drive development of 

antibiotic resistance in hospitals. Misuse of antibiotics in humans can include unnecessary 

prescription, or treatments that are not streamlined when microbiological culture data 

become available (3,4). 

Hygienic measures, such as hand washing, have long been recommended to break the 

transmission of pathogens, especially in hospitals and health care facilities. Recently, with 

the emergence of the new pandemic of COVID-19, new and stricter recommendations have 

been made, such as avoiding interpersonal contacts, disinfecting hands when touching 

physical surfaces in anthropogenic environments and following strict rules of respiratory 

etiquette, quarantine and confinement. It is therefore expected that, under such drastic 

hygienic conditions and interruption of the transmission of pathogenic microorganisms 

between people, antibiotic resistance in human microbiomes will also be reduced.  

Human metagenomes with higher diversity of virulence genes tend to be precisely those 

with higher diversity of antibiotic-resistance genes (5) possibly facilitating the emergence of 

superbugs. However, the diversity of both gene types is dynamic over time, changing 

according to antibiotics usage and to microbial transmission between people (6). Bacterial 

transmission occurs between people that establish a network of contacts among them. 

What would happen to the diversity of antibiotic resistance genes if most contacts between 

people were abolished? 
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The aim of this study is to simulate the effect of human contacts reduction (person-to-

person transmission in a network of contacts) on the accumulation of antibiotic resistance 

genes, due to the sharing of bacteria belonging to the human microbiota. In the same way, 

we intended to find out if it is to be expected that the decrease in human contacts could, by 

itself, explain a decrease in antibiotic intake in humans. 

This study is based on data from a densely populated region of Portugal, the Lisbon and 

Tagus Valley region. Portugal was one of the European countries that most quickly managed 

to control its first wave of the covid-19 pandemic. Learning from the experience of other 

countries such as Spain or Italy, where SARS-CoV-2 caused many human losses, the 

Portuguese population massively followed the measures of isolation and social distancing 

enacted by their government to combat the pandemic.  

The Lisbon and Tagus Valley region comprises a metropolitan area with about 2.855.000 

persons over 3.000 Km
2
 (7) and the surrounding suburbs, with high daily traffic to and from 

Lisbon and with an overloaded transport network. For the development of this study, we 

used real data on the change in population mobility in this geographical region, immediately 

after the peak of the first wave, on the 1st of April, and extending until September the 30th, 

2020. 
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4. Section heading(s) 

4.1 Methods 

The model used in this article is based on our previously developed model (6). 

Data 

In this work we used mobility data from Google (8) This data is made available to provide 

statistics on what has changed in response to policies aimed at combating COVID-19. The 

data are divided by region and discriminated into the following categories: grocery and 

pharmacy, parks, transit stations, workplaces and residential. For this study we used data 

from Portugal, namely from the Lisbon and Tagus Valley region, with approximately 

3658623 individuals. Data were collected to correspond to the time period between April 1 

and September 30, 2020 which includes a full lockdown period, between 1st April and 4th 

May, followed by a lighter one. 

 

Building the human network 

We simulated a network where each node represents a person or, more precisely, a 

person’s metagenome. The edges represent possible transmission avenues of 

microorganisms.  

We built the social contact network following the Watts and Strogatz method (9) In the 

beginning of each simulation, we construct a regular network, in which each individual is 

connected to the n nearest nodes. Subsequently, we allow each connection to change with 

a probability (p) of 0.5. If it changes, the node will be connected to another node chosen at 

random. In this way, we obtain a small-world network, that remains unchanged in all cycles 
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Number of contacts 

The distribution of the number of contacts per individual per day is not known in Portugal. 

We therefore used the data from the Polymod project, based on diaries of individual daily 

contacts in eight European countries (10). In this project, participants were chosen to 

register all the individuals with whom they had contact during a day. This provided an idea 

of the average number of daily contacts for each country analysed in the project.  

In order to estimate the average number of daily contacts in Portugal, we assumed that 

mobility is correlated with the number of contacts. By comparing the mobility data of 

google from the different countries that participated in this project with the mobility data 

from Portugal, we found that the country’s most similar to Portugal are Belgium and Poland. 

In these countries, there are an average number of 12 and 16 daily contacts, respectively. 

Following this line of reasoning, in our simulations, we define that the average number of 

connections - which may or may not become a contact in a given day - between two 

individuals in the network (n) is 14. 

 

Contacts per cycle 

As previously mentioned, we initially established a small-world contact network. From the 

beginning of the simulation, each individual has an assigned set of different individuals to 

whom he or she will be connected during all the cycles. However, in each cycle, not all 

contacts take place as there may be a reduction in mobility (in percentage). This reduction is 

reflected in an equal percentage decrease in the number of contacts that each individual 

has. For example, if with 100% mobility (base line) an individual is connected to 10 other 

individuals, with 60% mobility in one cycle, the individual will be connected in that cycle to 

only 6 other individuals.  We assume that the connections occurring preferentially are the 

ones with the closest individuals in the network (representing, for example, the household). 

For instance, if the connections of individual 1 defined initially are with individuals 2, 4, 5, 9, 

18, 22, 27, 35, 48, 87 (ten connections), if there is 60% mobility (a reduction of 4 

connections), the connections that do not occur will be with individuals 27, 35, 48 and 87. 
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In the simulations, we considered three mobility scenarios: (i) using the real mobility data 

from Google from the period between April 1st and September 30th; (ii) with a fixed 

mobility of 60%; and (iii) with a fixed mobility of 40%. 

 

The metagenome, pathogenic bacteria, and antibiotic administration 

The model considers the transmission of bacterial pathogens (capable of causing infections), 

as well as antibiotic resistance genes, between people. These genes are present in the 

metagenome. We focused on the presence or absence of genes encoding different 

functions, irrespectively of its copy-number in the metagenome. In the simulations, each 

gene represents a gene family (with similar functions). We divided resistance genes into 

groups, each group having the same number of families. Each group represents genes 

associated with resistance to an antibiotic. Of note, we did not consider resistance to 

multiple drugs in our simulations. Therefore, there will be as many groups as there are 

antibiotics accounted for in the simulations.  We define the diversity of a specific gene kind 

as the number of genes of that type present in a human metagenome.  

To simulate the migration of bacteria from individuals outside the network or the 

ccontamination from sources such as food or contaminated water, we inserted some 

different bacterial pathogenic species into random individuals per cycle. In this model, the 

only difference that we consider between species is the antibiotic to which they are 

susceptible, as explained below.  

Individuals infected by pathogenic bacteria feel sick and take an antibiotic. The antibiotic 

administered is specific for the bacteria that caused the infection disease. The antibiotic 

selects cells carrying resistance genes by eliminating the remaining susceptible bacteria. We 

assume that all families of resistance genes are present in all metagenomes, but in two 

different possible states: in some metagenomes, they are present in low copy number, so 

they are not likely to be transmissible to other individuals in the network; in other 

metagenomes, the copy number of resistance genes is high due to the selective pressure of 

antibiotics to which they were previously submitted. In the latter case, resistance genes are 

likely to be transmissible from person to person.  
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Moreover, upon antibiotic consumption, the following events can occur: (i) elimination of 

susceptible pathogenic bacterial species; (ii) selection of resistance genes belonging to the 

group of resistance to that antibiotic (which means their copy number gets so high that they 

become transferable); (iii) loss of resistance genes associated with other antibiotics with a 

given probability (becoming non-transferable but still present in minute copy number).  

Several processes lead to gene loss. Genes are lost because of the selective pressure by 

antibiotics and because we assume that resistance determinants impose a fitness cost (in 

the absence of antibiotics). To include this cost in the simulations, we consider that each 

metagenome may lose specific resistance genes according to a “loss rate” (with this process, 

these genes become non-transferable). 

 

Algorithm of the program 

Each simulation is composed of several cycles, where each one corresponds to a day. In 

each cycle, we considered all procedures described in the pseudocode (Figure 1). We used 

as default the parameterized values of our model (6). The main steps of the program in each 

cycle are: 

i) Choose the connections that will occur in that cycle according to the percentage of 

mobility in that cycle (as explained above). 

ii) Transfer of pathogenic bacteria and resistance genes between people (i.e., between 

linked nodes in this cycle). 

iii) Look for people infected by at least one pathogenic bacterial species. These people take 

antibiotics (chosen according to the pathogen). The antibiotic eliminates the pathogenic 

species and selects the resistance genes associated with the antibiotic used. The antibiotic 

also eliminates resistance genes unrelated to the administered antibiotic. Finally, the 

metagenome loses a few more resistance genes not associated with the antibiotic. The 

cause of this loss is the fitness cost of resistance genes. 
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iv) The metagenomes of people that did not take an antibiotic in this cycle lose resistance 

genes. This loss is a consequence of the fitness cost imposed by resistance genes on their 

hosts.  

iv) Insert five bacterial pathogenic species in individuals randomly chosen from the 

population. 

 

Figure 1. Flowchart of the algorithm of the program.  
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Statistical analysis 

In each simulation we counted the number of resistance genes of each individual. From 

these data, we constructed a graph that represents how many individuals (vertical axis) 

have each amount of resistance genes (horizontal axis) at the end of the 180 cycles. A 

Kruskal-Wallis test was used to compare the effect of different confinement regimes, 

followed by a Dunn post hoc analysis. We performed both tests with R – version 3.5.1 (11) 

and used the FSA package (12) to perform the Dunn’s test. 

 

4.2 Results and Discussion 

Lockdown breaks many human contacts on the social network 

In Portugal the first pandemic wave COVID-19 occurred between March and August 2020.  

From the 16th of March, the Portuguese authorities decreed a state of emergency and a 

global lockdown. The Lisbon and Tagus Valley area in Portugal is a predominantly urban area 

that showed greater variations in circulation, and therefore in human networks, before and 

during lockdown due to the COVID-19 pandemic. 

According to Google data (8), the mobility was very low in the beginning of April and 

increased mainly since May with many oscillations (Fig.2). The lower mobility registered 

through Google data, gives us an indication of the decrease in the number of contacts 

between individuals. It is, however, only an estimate of the human social contacts, since it 

contemplates only individuals who move with connected mobile data on and does not 

distinguish between individuals who move and contact other people from another 

household, from those who move lonely complying the social distancing rules.  

During lockdown, intimate human connections should remain preserved at home. However, 

we expect a reduction in the transmission of bacteria and pathogens between individuals in 

the community and, therefore, less bacterial enrichment of human microbiomes. As a 

consequence, we can predict a reduced flow of antibiotic-resistant bacterial genes between 

people's microbiomes during confinement (13). 
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Likewise, mobility, as a measure of the number of times an individual leaves home, is not 

the only factor that influences the exchange of microorganisms in a social network of 

contacts. The use of a mask and other behaviours like social distancing, also reduce the 

spread of pathogens, particularly in the case of airborne disease agents. 

  

 

 

Figure 2. Levels of 

confinement used in the 

simulations. We used 

either a fixed number of 

connections (100%, 60%, 

or 40%), or mobility 

according to Google data 

from the region of Lisbon 

and Tagus Valley in 

Portugal in the period 

April 1st - September 

30th. 
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Confinement leads to lower diversity of antibiotic resistance genes in human 

microbiomes 

In order to test the effect of the confinement in reducing the transmission of antibiotic 

resistance genes (ARGs) in the human microbiomes of the population, we simulated four 

different scenarios: i) no confinement, hence no connections eliminated; ii) using the real 

mobility data from Google that comprises all the period of time of the first pandemic wave 

in Portugal assuming that a certain decrease of mobility corresponds to the same decrease 

of the number of connections; and assuming constant reductions of connection between 

individuals of iii) 40% and iv) 60%. 

According to Google data, mobility fluctuated over time, ending with a mobility of the 

individuals nearly 90%, consistent with the end of the first pandemic COVID-19 wave and 

summer holidays (Fig. 2). Also, according to Google, mobility was, in average, 75% of the 

maximum during this period of time. 

Our simulations of a 180-days period generated the distributions of the diversity of 

resistance genes in the population shown in Fig. 3. The modes of the four distributions are: 

90 gene types for the case of no restrictions to connections, 83 assuming that google data 

corresponds to connections relative to the normal situation, 75 if the population only has 

60% of contacts, and 59 if the population only has 40% of contacts. 
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Figure 3. Diversity of resistance genes in four different scenarios of confinement after a 180-day 

period. Simulation (i) without confinement (100% of connections); (ii) using the real mobility data 

from Google assuming that a certain reduction of mobility corresponds to a similar reduction of 

connections; and with a fixed proportion of connections of (iii) 60% and (iv) 40%. A: Distribution of 

the predicted number of antibiotic resistance genes types among individuals at the end of 

simulation. B: Each boxplot represents the distribution of values: the bottom and top of the box are 

the first and third quartiles, the horizontal line is the median, the vertical lines are the 1.5 

interquartile range. Black circles represent outliers. After a Kruskal-Wallis analysis (see main text), 

post hoc comparisons using the Dunn test indicated that the effect of confinement is significantly 

different in the four confinement types as indicated by the four different letters a,b, c and d (p-

value<.000). 

 

 

A Kruskal-Wallis test provided evidence of a difference (p < .000) between the mean ranks 

of at least one pair of groups. Dunn’s pairwise tests were carried out for the six pairs of 

groups. There was very strong evidence (p < .000, adjusted using the Bonferroni correction) 

of a difference between the four confinement regimes. The proportion of variability in the 

ranked dependent variable accounted for by the confinement variable was η
2
 = .148, 

indicating a large effect of confinement on the diversity of antibiotic resistance genes. 

 

Less contact between humans reduces the need for antibiotic use  

According to our algorithm, the use of antibiotics is triggered by exposure to bacterial 

pathogens during social interactions. When running the simulation, we assume that when 

an individual is more exposed to bacteria from other individuals, as part of a larger network 

of contacts, there is an increased likelihood of being infected by a pathogen and taking 

antibiotics. Thus, we counted the number of antibiotic administrations that occurred during 

the simulation. Compared with the unconfined condition, the number of antibiotic 

administrations fell 7, 11 and 16% in the other three conditions: google data (assuming that 

mobility loss corresponds to the same connectivity loss), 60% of connections, and 40% of 

connections. Therefore, the daily use of antibiotics seems to follow a similar trend pattern 

of confinement. This trend may explain, at least partially, why, according to data from 

Infarmed (Portuguese drug agency), the amount of antibiotics used in Portugal in the period 

between January and September 2020 was lower than the corresponding months of 2019 
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(11). In community pharmacies, the dispensing of these drugs decreased by 20%. However, 

the reduction in prescription and use of antibiotics may reflect a lower need for these drugs, 

but also a decrease in the number of medical appointments and access to primary health 

care due to the pandemic. 

 

4.3 Conclusions 

In the work, we have shown that a reduction of contacts between people leads to a general 

lower diversity of antibiotic-resistance genes among individuals' metagenomes.  

In our simulations, we assume that interpersonal contact enriches the human microbiome 

with genes, namely those that confer resistance to antibiotics, but also leverages the risk 

acquisition of pathogens which, in turn, triggers the taking of antibiotics. Thus, it seems easy 

to understand that the reduction in mobility that occurred during a period of confinement, 

in our simulations, led to a decrease in bacterial infections in humans, and concomitantly to 

a decrease in the prescription of antibiotics, as well as to a decrease in the accumulation of 

antibiotic resistance genes in the microbiome. This result is concordant with the 20% drop in 

the prescription of antibiotics in the first three quarters of 2020 reported by the Portuguese 

National Health Authorities (14). This conclusion reinforces the general recommendations to 

improve hygiene in disease control and antibiotic resistance in human populations. 

For the parameterization of the model developed in this work, we have used data from a 

mixed origin: close-to-real data of the population of a geographical area, data that was 

estimated from the bibliography, for example the network of contacts, or theoretical data, 

such as the probability of an individual taking antibiotics. However, during the development 

of this work, we only varied one of the parameters, namely the changes in the human 

contact network as an indicator of the spread of pathogens among different individuals. 

Thus, we consider that the conclusion that the breakdown of human contacts leads to 

decrease in the enrichment of the human microbiome in antibiotic genes is significant and is 

also supported by reality. 
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