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Abstract 26 

Molecular epidemiology of SARS-CoV-2 aims to monitor the appearance of new variants with 27 

the potential to change the virulence or transmissibility of the virus. During the first year of 28 

SARS-CoV-2 evolution, numerous variants with possible public health impact have emerged. We 29 

have detected two mutations in the Spike protein at amino acid positions 1163 and 1167 that 30 

have appeared independently multiple times in different genetic backgrounds, indicating they 31 

may increase viral fitness. Interestingly, the majority of these sequences appear in transmission 32 

clusters, with the genotype encoding mutations at both positions increasing in frequency more 33 

than single-site mutants. This genetic outcome that we denote as Lineage B.1.177.637, belongs 34 

to clade 20E and includes 12 additional single nucleotide polymorphisms but no deletions with 35 

respect to the reference genome (first sequence in Wuhan). B.1.177.637 appeared after the first 36 

wave of the epidemic in Spain, and subsequently spread to eight additional countries, increasing 37 

in frequency among sequences in public databases.  Positions 1163 and 1167 of the Spike protein 38 

are situated in the HR2 domain, which is implicated in the fusion of the host and viral 39 

membranes. To better understand the effect of these mutations on the virus, we examined 40 

whether B.1.177.637 altered infectivity, thermal stability, or antibody sensitivity. Unexpectedly, 41 

we observed reduced infectivity of this variant relative to the ancestral 20E variant in vitro while 42 

the levels of viral RNA in nasopharyngeal swabs did not vary significantly. In addition, we found 43 

the mutations do not impact thermal stability or antibody susceptibility in vaccinated individuals 44 

but display a moderate reduction in sensitivity to neutralization by convalescent sera from early 45 
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stages of the pandemic. Altogether, this lineage could be considered a Variant of Interest (VOI), 46 

we denote VOI1163.7. Finally, we detected a sub-cluster of sequences within VOI1163.7 that 47 

have acquired two additional changes previously associated with antibody escape and it could 48 

be identified as VOI1163.7.V2. Overall, we have detected the spread of a new Spike variant that 49 

may be advantageous to the virus and whose continuous transmission poses risks by the 50 

acquisition of additional mutations that could affect pre-existing immunity.  51 

Introduction 52 

Genomic surveillance of viral mutations is the first step in detecting viral changes that could 53 

impact public health by interfering with diagnostics, modifying pathogenicity, or altering 54 

susceptibility to existing immunity or treatments. In many countries, the challenge of detecting 55 

new mutations of interest in SARS-CoV-2 is approached by sequencing representative genomes 56 

from circulating viruses, sharing sequence information on public databases (e.g. GISAID1), and 57 

analysing them in real-time using platforms, such as Nextstrain2. While mutations appear 58 

randomly, their fate in the population depends on a combination of the conferred fitness 59 

advantage as well as stochastic and demographic processes. A first step in assessing the 60 

potential public health impact of mutations is to decipher if their increase in frequency is due to 61 

chance or adaptation. If found to be adaptive, it is important to evaluate whether their 62 

adaptation is linked to an improved ability to replicate, colonize, transmit, or evade antiviral 63 

hosts defences3. An important challenge in the field is to decipher which of all the variants that 64 

appear should be monitored to implement measures to mitigate their risk to public health.  65 

Genotypes that are phenotypically different from a reference isolate or have mutations that lead 66 

to changes associated with either established or suspected phenotypes could be considered 67 

Variants of Interest (VOI) if they also fit one of the following criteria: i) cause community 68 

transmission/multiple COVID-19 clusters or ii) have been detected in multiple countries4. Among 69 

VOI, only those genotypes that are associated with higher transmissibility, with detrimental 70 
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changes in COVID-19 epidemiology, with increased virulence, with changes to clinical 71 

presentation, or with decrease effectiveness of public health measures, diagnostics, vaccines or 72 

therapeutics are further categorized as variants of concern4. 73 

Mutations in SARS-CoV-2 have been reported since the early stages of the epidemic5-7. While no 74 

signs of recombination have been detected so far among SARS-CoV-2 variants8, the most 75 

common mutations described are single nucleotide polymorphisms (SNPs) and small deletions9-76 

11.  Genomic surveillance of mutations has been mostly focused on the Spike (S) protein because 77 

of its key roles in viral entry and immunity12, as well as the fact that this protein constitutes the 78 

basis of numerous SARS-CoV-2 vaccines13. S is a homotrimeric protein, whose heavily 79 

glycosylated ectodomain protrudes from the viral membrane, showing a bat-like shape with a 80 

N-terminal globular head portion connected to the membrane by an elongated stalk14. The S 81 

protein is proteolytically processed by the cellular furin protease into the S1 and S2 subunits15,16.  82 

Additional proteolytic cleavage occurs following S protein binding to the host receptors, 83 

facilitating S1 subunit release. The C-terminal S2 subunit remains trimeric in the viral membrane 84 

but undergoes conformational changes that promote viral membrane fusion with the host cell17.  85 

A key role in these conformational changes is played by two heptad repeat motifs, HR1 and HR2 86 

that, starting from the head and stalk regions in the pre-fusion state of S protein, form a HR1-87 

HR2 six-helix bundle in the post-fusion state that is critical for viral entry18.  88 

The first mutation that was identified as of potential concern was an aspartic acid to a glycine 89 

mutation in the S1 subunit of the S protein at position 614 (D614G). D614G emerged early in the 90 

epidemic, became predominant in most countries within 2 months, and completely dominated 91 

the epidemic by August 202019. As with any mutant, the initial spread of this mutation could 92 

have resulted from stochastic events, the dynamics of epidemic, or an intrinsically higher viral 93 

fitness. More than six months after the initial report of this mutation, several studies have found 94 

evidence in favour of higher transmission efficacy in animal models and human populations5,20-95 
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22. This variant replicates better in some cell culture and animal models20,21,23, and is associated 96 

with higher viral loads in infected individuals19; importantly, however, it does not impact 97 

diagnostics or vaccine efficacy. 98 

Following the first wave of the pandemic, additional variants have been reported from many 99 

countries. Among the first of these was the A222V mutation at the N-terminal domain (NTD) of 100 

the S1 subunit, which occurred in the background of the D614G S protein mutation. This variant, 101 

termed 20E, was first sequenced in Spain and expanded throughout Europe6. Other variants 102 

have been reported since, such as the so-called “cluster 5”, which harbours a combination of 3 103 

SNPs and single deletion related to mink farms in Denmark24. One of the SNPs is in the S protein 104 

of this variant, Y453F, occurs in the receptor binding domain (RBD) and may increase binding to 105 

cell receptors in mink25. Transmission of this variant between humans and minks has been 106 

reported7, highlighting a possible risk of expansion in the human population, which resulted in 107 

proposals for large scale culling of mink populations in Denmark. Studies to assess the biological 108 

impact of this mutant have not been reported but there is no evidence for its wide spread over 109 

the course of >6 months since its description26. By December 2020, three variants of concern 110 

(VOCs) were described, all of which share the N501Y amino acid replacement in the RBD of the 111 

S protein: 20I/501Y.V1 (also called Lineage B.1.1.7) was originally described in the UK11, 112 

20H/501Y.V2 (B.1.351) in South Africa, and 20J/501Y.V3 (P1) in Brazil. These variants are of 113 

particular concern because they are more transmissible27-29 and, although data on antigenicity 114 

and disease severity is not conclusive, could result in reduced susceptibility to neutralization by 115 

existing immunity and affect vaccine efficacy30-33. Importantly, all of these variants have spread 116 

outside of the country where they were initially identified and are estimated to spread faster 117 

than other co-circulating genotypes27,34,35.  118 

In this work, we have performed a detailed phylogenomic analysis of the appearance, spread 119 

and evolution of two mutations involving amino acid positions 1163 and 1167 of the HR2 120 
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functional motif of S protein. Our results provide evidence of repeated, independent 121 

emergence, suggesting these mutations contribute to increased viral fitness. In addition, we 122 

have evaluated the biological relevance of these mutations to viral infectivity, virion stability, 123 

and neutralization by sera from convalescent and vaccinated individuals.  124 

Results 125 

Multiple and independent mutations in amino acid positions 1163 and 1167 of the Spike 126 

protein. 127 

SARS-CoV-2 genetic variation has been monitored by the Spanish sequencing consortium 128 

SeqCOVID to follow the expansion of mutations that could potentially result in a change of the 129 

biological properties of the virus. We focused on mutations in the S protein because of its 130 

relevance for infection and immunity12. We detected two mutations in the spike gene: G25049T 131 

(D1163Y) and G25062T (G1167V), which appeared in Spain as early as March and April 2020, 132 

respectively (Supplementary Fig.1). These mutations continued arising independently of each 133 

other and, by the end of June, when the predominant circulating genotypes from the first wave 134 

in Spain had already been replaced by other variants36, were also observed together 135 

(Supplementary Fig.1). Both positions have mutated multiple times independently and to 136 

different amino acids at a lower frequency. On the one hand, D1163 appears mutated at least 137 

99 times (D1163Y: 84, D1163V: 4, D1163G: 3, D1163A: 2, D1163E: 2, D1163H: 2, D1163N: 1, and 138 

D1163H/Y: 1) in 47 lineages according to the PANGO scheme37. On the other hand, G1167 139 

appears mutated at least 54 times (G1167V: 39, G1167D: 4, G1167C: 3, G1167R: 3, G1167S: 3, 140 

G1167F: 1, and G1167A: 1) in 20 PANGO lineages including B.1 (Supplementary Fig.2e) and its 141 

derivatives B.26, B.40 (Supplementary Fig.2c), and D.2 (Supplementary Fig.2f).  142 
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Clusters of transmission with amino acid changes in positions 1163 and 1167 of Spike 143 

Positions 1163 and 1167 in the S protein have mutated independently multiple times in SARS-144 

CoV-2. The majority of mutated sequences (94.43%) were found in transmission clusters (see 145 

methods for definition of clusters; Figure 1a,b), with a small minority not belonging to a 146 

transmission cluster due to either incomplete sampling or failure to spread. While different 147 

amino acids changes have been detected at both positions, only one change at each position 148 

appeared in most clusters: D1163Y in 83.33% and G1167V in 69.23% clusters. D1163Y appeared 149 

in 22 transmission clusters (Figure 1a) and G1167V in 8 clusters (Figure 1b).  Interestingly, the 150 

biggest cluster included both the D1163Y and G1167V mutations together. We denote this 151 

cluster as B.1.177.637, which was detected in 65 sequences from Spain until December 2020, 152 

representing 1.17% of the Spanish sequences. Globally, this cluster, which is within lineage 20E 153 

(also described as 20A.EU16, and B.1.17737), includes 1,627 sequences (Figure 1c). B.1.177.637 154 

is characterized by nine nonsynonymous and six synonymous mutations with respect to the 155 

reference sequence from Wuhan (Supplementary table 2), but no deletions were shared among 156 

B.1.177.637 sequences. Amino acid changes were found in A222V, D614G, D1163Y, and G1167V 157 

in the S protein, A220V and P365S in the N protein, V30L in ORF10, L67F in ORF14, and P4715L 158 

in ORF1ab (Supplementary Fig.3 and Supplementary table 2). Synonymous mutations were also 159 

observed in the orf1ab, n and m genes (Supplementary Fig.3 and Supplementary table 2). All 160 

evidence support we consider this cluster a new Lineage, and we requested to be under the 161 

name B.1.177.637 (https://github.com/cov-lineages/pango-designation/issues/22). 162 
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 163 

Figure 1. Sequences mutated at positions 1163 and 1167 of the S protein. a. The number of 164 

mutation events for amino acid replacement D1163Y (light orange) or another D1163 amino acid 165 

replacements (dark orange). b. The number of mutation events for amino acid replacement 166 

G1167V (light turquoise) or another G1167 amino acid replacements (dark turquoise). Bars 167 

coloured in magenta indicate the appearance of both the D1163Y and G1167V amino acid 168 

replacements in the same sequences. c.  Maximum-likelihood phylogeny of 10,450 SARS-CoV-2 169 

genomes. The inner circle of the rings represents sequences with amino acid changes in position 170 

D1163 of the S protein. The external circle represents sequences with amino acid changes in 171 

position G1167 of the S protein. Branches are coloured in magenta for B.1.177.637, green for 172 

clade 20E, and orange for cluster 1163.654. The scale bar indicates the number of nucleotide 173 

substitutions per site. d. Temporal distribution and frequency of sequences with variant 174 

B.1.177.637 coloured by geographical origin. 175 

Within 20E, the second largest cluster including any of these mutations was observed in 34 176 

sequences with E654Q and D1163Y in S protein plus 7 nonsynonymous and 6 synonymous 177 

mutations (Supplementary table 2 and Supplementary Fig.3). We denote this second cluster, 178 

which is also embedded within lineage 20E, cluster 1163.654 (Figures 1c and S3). Cluster 179 

1163.654 appeared first in Ireland on 2020-07-23 and subsequently appeared in Spain and 180 



9 
 

England. However, after three months, cluster 1163.654 is no longer being detected. A large 181 

cluster within Lineage 20E is formed by 37 sequences with the mutation G1167F. Sequences for 182 

this cluster were obtained in Wales between the end of October and the beginning of November 183 

2020 (dark pink in the external circle in Supplementary Fig.2g). 184 

 185 

We found additional clusters involving mutations in position 1163 of the S protein; the largest 186 

cluster is composed of 64 sequences within Lineage B.1. The majority of which are from 187 

Denmark but also includes sequences from England and Sweden (orange in external ring in 188 

Supplementary Fig.2e).  Among other smaller clusters, a cluster of 10 sequences with G1167V 189 

(within Lineage B.1) appeared in Spain in March (indicated in cyan within the external circle of 190 

Supplementary Fig.2e). The cluster was detected in two regions in Spain (Valencia, and Galicia), 191 

but was controlled with lockdown measures imposed in Spain from March to May and was not 192 

detected after May 2020. The same mutation was found in a cluster of 28 sequences within 20E 193 

from England and Wales between October and November 2020 (indicated in cyan within the 194 

external circle of Supplementary Fig.2g). Similarly, another cluster of 11 sequences in Lineage 195 

B.1.1 and with the mutation G1167A was detected in early January 2021, encompassing 196 

sequences from Ecuador, Colombia, and Peru (Supplementary Fig.2f). Within Lineage B.53, we 197 

found a cluster of 12 sequences from Lithuania with mutation D1163Y. Finally, we found small 198 

clusters with mutations in 1163 or 1167 within Lineage B.40 and Lineage A (Supplementary 199 

Fig.2b, c).   200 

Because of the risk posed by VOC11,26,35, we examined whether mutations in 1163 and 1167 of 201 

the S protein were observed in the three VOC described to date. Indeed, mutations in these two 202 

positions were observed in two VOC, 20I/501Y.V1 and 20H/501Y.V2. Mutations involving amino 203 

acid positions 1163 and 1167 appeared independently in the background of 20I/501Y.V1 204 

multiple times. Specifically, mutations in D1163 have occurred at least 13 times in 24 sequences, 205 
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including four transmission clusters and nine unique sequences (Supplementary Fig.4), while 206 

mutations at G1167 were observed in at least five independent sequences. Interestingly, 207 

D1163Y and G1167V were observed together in only one individual within 20I/501Y.V1, 208 

although they were not fixed (relative frequency of 27% and 17% of the reads with D1163Y and 209 

G1167V, respectively; Supplementary table 3). Finally, only two sequences that harbour the 210 

amino acid replacement G1167V in the S protein were observed in the genomic background 211 

20H/501Y.V2 (Supplementary table 3).  212 

Evolution of B.1.177.637 213 

We explored the emergence and evolution of B.1.177.637, the largest and most successful 214 

cluster involving amino acid changes in positions 1163 and 1167 of the S protein. Lineage 215 

B.1.177.637 appeared in Spain in June 2020 in sequences from the Basque Country (Figure 1d, 216 

and Supplementary Video 1) and subsequently appeared in individuals from other countries, 217 

comprising a total of 1,627 sequences in GISAID (0.60% of 270,869 analysed sequences by 23rd 218 

of December 2020) (Figure 1d and Supplementary Video 1). The majority of the B.1.177.637 219 

sequences were obtained from the United Kingdom, including England (1,058), Scotland (419), 220 

Wales (34) and Northern Ireland (5), but were also observed in Gibraltar (24 sequences), 221 

indicating successful migration and transmission (Supplementary Video 1). Although 222 

B.1.177.637 is not well represented in sequences from other countries, it has been found in 223 

multiple sequences from Denmark (9), Switzerland (8), Norway (2), and single sequences from 224 

Italy, France, Singapore, and Ireland. By the end of 2020, B.1.177.637 was still circulating in 225 

Europe (Figure 1d and Supplementary Video 1), and by the end of February 2021 it was 226 

represented by 1,923 sequences in GISAID (0.33% of submitted sequences).  227 

Within B.1.177.637, we detected additional SNPs in individual sequences or small groups of 228 

sequences. One of these changes is E484K in the RDB of the S protein, a mutation present in 229 

three VOCs (20I/501Y.V1, 20H/501Y.V2 and 20J/501Y.V3) that is implicated in increased ACE2 230 
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binding38 and reduced neutralization by antibodies39.  In addition, we found another change 231 

associated with evasion of antibody immunity: a deletion of positions 141-144 in the S protein, 232 

which partially overlaps with a smaller deletion at 144 reported in VOC 20I/501Y.V140. This sub-233 

cluster included five sequences along January 2021 from England and Wales (Supplementary 234 

table 2). The five sequences formed a monophyletic group embedded in B.1.177.637 235 

(Supplementary Fig.5), identified as cluster B.1.177.637.V2, which displays other 236 

nonsynonymous and synonymous mutations (Supplementary table 2) and only two sites are 237 

polymorphic within B.1.177.637.V2.  238 

Positions 1163 and 1167 of the S protein are located in the heptad repeat 2 motif 239 

The S protein mediates both the binding to cellular receptors and entry into the host cells12. For 240 

the former, the RBD motif in the S1 subunit interacts with the cellular receptor in the pre-fusion 241 

state. In the post-fusion state, two heptads repeat sequences (HR1 and HR2) in the S2 subunit 242 

must form a six-helix bundle in order to bring the viral and cellular membrane into close 243 

proximity41,42 (Figure 2). S protein positions 1163 and 1167 are both located within the HR2 244 

domain.  Specifically, 1167 is present at the beginning of the HR2 motif and 1163 in its upstream 245 

linker region (Figure 2a). Interestingly, this motif is highly invariable, showing 100% conservation 246 

across 14 related sarbecoviruses to which SARS-CoV-2 belongs to (Supplementary table 1)43,44. 247 

Structural characterization of full-length ectodomain of S protein has shown that the stalk 248 

portion encompassing positions 1163 and 1167 presents intrinsic flexibility in the pre-fusion 249 

state18, precluding its atomic visualization. This has been recently confirmed by high-resolution 250 

cryo-electron tomographic reconstitution of SARS-CoV-214, where this region was observed to 251 

constitute a flexible hinge that acts as a “knee”, connecting two helical coiled-coil regions  of the 252 

stalk (upper and lower legs; Figure 2b). Within this structure, the conformational freedom 253 

provided by the glycine residue at position 1163 should play a key role in the flexibility of the 254 

knee. In contrast, in the post-fusion state, this region shows high rigidity due to a strong 255 
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structural rearrangement of the HR2 motif, which adopts an extended conformation and tightly 256 

packs along the central 3-helix bundle stem formed by the HR1 motif (Figure 2c).  The resulting 257 

HR1-HR2 bundle plays a key role in the mechanism of viral-host membrane fusion18,45 and 258 

mutations in this region could have significant impact on the function of the S protein. In 259 

addition, the HR2 region is highly glycosylated, which is observed to be regularly spaced in both 260 

the pre- and post-fusion states and to mostly align to the side of the helix bundle14,18,45. Of note, 261 

two of these branched sugars are placed at positions N1158 and N1173, hiding positions 1163 262 

and 1167 (Figure 2b). Therefore, changes in stalk flexibility might have relevance in immunity by 263 

influencing both the intrinsic degree of exposure of this region and its sugar shielding.  264 

Using the available structural information of the S protein in the pre- and post-fusion 265 

conformations18, we examined the possible implications of these mutations to viral infectivity. 266 

Based on these structures, G1167V mutation is predicted to confer significant rigidity to the 267 

structure in two ways. First, the introduction of a side chain strongly reduces the conformational 268 

freedom provided by the glycine residue. Second, the presence of the new aliphatic side chain 269 

provided by the valine residue strongly increases hydrophobicity, likely promoting the burial of 270 

this side chain in the HR1 helix 3-bundle stem in the post-fusion state or favouring its integration 271 

in the neighbour helical coiled-coil in the pre-fusion state (Figure 2b,c). Unlike position 1163, 272 

position 1167 is fully exposed to the solvent in both the pre- and post-fusion states (Figure 2b,c). 273 

Hence, the effect of D1163Y is likely to stem a change in nature of the side chain, switching from 274 

a charged aspartic acid residue at physiological pH to a polar group with hydrophobic properties 275 

in the tyrosine.   276 
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 277 

Figure 2. The structure of 1163 and 1167 in the pre and post-fusion states of S protein. a. 278 

Schematic representation of the S protein. SP. Signal peptide; NTD, N-terminal domain; RBD, 279 

receptor-binding domain; SD1-2, subdomains 1 and 2; L-UH, Linker-Upstream helix; FP, fusion 280 

peptide; CR, connecting region; HR1, heptad repeat 1; CH-SD3, central helix subdomain 3; BH, 281 

β-hairpin; HR2, heptad repeat 2; TM, transmembrane; CD, cytoplasmic domain. Mutations 282 

D1163Y and G1167V are indicated in purple and other mutations described in the text in green. 283 

b. Cartoon representation (left) of a structural model of pre-fusion membrane-bound trimeric S 284 

protein46. In each subunit the RBD, HR1 and HR2 domains are coloured in different tones (light 285 

to dark) of blue, yellow, and green. The N-glycosylation of N1155 and N1176 are shown in stick 286 

representation and coloured as the corresponding subunit. Functional and structural regions are 287 

marked. A close-view (right) of the N-terminal portion of HR2 where D1163Y and G1167V 288 

mutations are found. The side-chains of mutated and hydrophobic residues in the HR2 region 289 

are shown in stick representation and coloured as corresponding subunit (mutated residues in 290 

lighter tone). c. Cartoon representation (left) of S2 subunit in post-fusion conformation with HR1 291 
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and HR2 regions coloured as in b and N-glycosylation around mutation position shown as sticks. 292 

A close-view of the region encompassing the mutations (right), showing in stick representation 293 

the mutated and hydrophobic residues from the HR2 region shown in panel b. Dotted lines 294 

highlight HR2 disordered regions in the Cryo-EM structure.  295 

Spike aminoacid changes D1163Y and G1167V do not increase viral infectivity 296 

Previous reports have indicated that mutations in the S protein can increase infectivity5,21,47-49. 297 

Because the highest transmission success for mutations in S positions 1163 and 1167 298 

corresponds to the double mutant D1163Y and G1167V (characteristic of B.1.177.637), we 299 

explored whether these mutations in combination have an influence on infectivity. For this, we 300 

pseudotyped vesicular stomatitis virus lacking its glycoprotein and encoding GFP50 (VSVΔG-GFP) 301 

with different S genotypes: Wuhan (D614), D614G, 20E (A222V and D614G), or B.1.177.637 302 

(A222V, D614G, D1163Y and G1167V). Infectious virus production was then assessed by limiting 303 

dilution and counting of GFP-positive cells in both Vero cells and A549 human alveolar basal 304 

epithelial cells expressing human ACE2 and TMPRSS2 (A549-hACE2-TMPRSS2). As previously 305 

reported19,21,51, the 20E S genotype enhanced infectivity relative to the Wuhan S genotype by 306 

70% in both Vero (p-value = 0.005 by unpaired t-test; Figure 3a) and A549-hACE2-TMPRSS2 cells 307 

(p-value = 0.016 by unpaired t-test; Figure 3b). The 20E S genotype also showed a trend towards 308 

increased infectivity versus the D614G mutation alone (35% increase in both cell lines), as has 309 

been previously reported49, yet the difference was not statistically significant (p-value > 0.05 by 310 

unpaired t-test; Figure 3a,b). In contrast, B.1.177.637 S genotype significantly diminished virus 311 

infectivity versus the 20E genotype, reducing virus titers by 20% in Vero cells (p-value = 0.009 by 312 

unpaired t-test; Figure 3a) and 29% in A549-hACE2-TMPRSS2 (p-value = 0.03 by unpaired t-test; 313 

Figure 3b).  This is in agreement with a potential stabilization of the HR2 helix (Figure 2), which 314 

should limit the ability of the S protein to sample different structural conformations that could 315 
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be required for binding host-cell receptors. Hence, B.1.177.637 S genotype does not increase 316 

infectivity in vitro.  317 

 318 
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a b
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Figure 3. Comparison of the infectivity and stability of different S genotypes. a, b. The 319 

infectivity of VSV particles pseudotyped with each S protein genotype in either Vero (a) or 320 

human A549 cells expressing ACE2 and TMPRSS2 (b). The mean and standard deviation of three 321 

replicates is plotted. c. Comparison of cycle threshold (Ct) values for the n gene from patients 322 

infected with viruses encoding different S protein variants. Data is derived from 2,534 sequences 323 

from SeqCOVID consortium. The number of observations (N) analysed for each genotype is 324 

indicated. d. The thermal sensitivity of VSV pseudotyped with different S genotypes following 325 

incubation at 15 minutes. Data are standardized to the surviving fraction following incubation 326 

at 30°C, and the three-parameter log-logistic equation is plotted.  FFU: focus forming units.  327 

To examine whether reduced infectivity could also be observed in vivo, we tested if individuals 328 

infected with B.1.177.637 have different viral loads. For this, we used the cycle threshold (Ct) of 329 

real-time PCR used for diagnosis as a surrogate. As previously reported19, we detected higher Ct 330 

values for D614 wild-type variant (Ct mean = 27.00) compared to genotypes encoding the D614G 331 

S protein mutation (Ct mean = 25.32; p-value < 0.01 by unpaired Wilcoxon test, Figure 3c). 332 

However, we did not find significant differences in viral loads between individuals infected with 333 

B.1.177.637 genotype and other genotypes within 20E (Ct mean = 21.14 vs Ct mean = 20.63, p-334 

value = 0.72 by unpaired Wilcoxon test, Figure 3c). Interestingly, higher viral loads were 335 

observed in individuals infected with B.1.177.637 and others 20E (D614G and A222V) compared 336 

to the D614G alone (D614G Ct mean = 25.32, 20E Ct mean = 21.14, B.1.177.637 Ct mean = 20.63, 337 

p-value < 0.01 for both comparisons by unpaired Wilcoxon test, Figure 3c). This data suggests 338 

that, unlike the results of the in vitro studies, B.1.177.637 replicates as efficiently as other 20E 339 

genotypes in vivo, although mutations outside of the S protein could contribute to this result.  340 

Amino acid changes D1163Y and G1167V do not alter S protein stability 341 

As increased S protein stability could impact transmissibility by maintaining virion infectivity 342 

during the intra-host transmission period, we assessed the temperature sensitivity of the 343 
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different S variants. For this, we subjected VSV particles pseudotyped with different S genotypes 344 

to a range of temperatures for 15 minutes, after which we evaluated the surviving fraction. 345 

Overall, no major differences in the degree to which the different S proteins lost infectivity upon 346 

heat exposure were observed, with all S proteins showing a 50% reduction in infectivity at a 347 

similar temperature range (39.8-42.2°C; p-value > 0.05 for all except Wuhan S genotype (D614) 348 

versus 20E S genotype (A222V and D614G), where p-value = 0.01; Figure 3d). Hence, the D1163Y 349 

and G1167V mutations do not seem to have a major impact in the thermal stability of the S 350 

protein.  351 

Spike D1163Y and G1167V modestly reduce sensitivity to neutralization by existing antibody 352 

immunity 353 

Positions 1163 and 1167 of the S protein have been reported to occur in both T and B cell SARS-354 

CoV-2 epitopes52-54. Moreover, numerous studies have shown that mutations in the S protein 355 

can affect antibody neutralization30,31. We therefore examined if the presence of D1163Y and 356 

G1167V alters the neutralization capacity of convalescent sera using VSV pseudotyped with 357 

either the 20E or B.1.177.637 S genotypes. In order to capture the potential influence of 358 

different infecting variants on antibody neutralization, we tested the sensitivity of these 359 

pseudotyped viruses to neutralization by sera from early (April 2020; First wave in Spain) or later 360 

(October 2020; Second wave in Spain) in the pandemic, when newer variants were dominant6,36. 361 

Overall, B.1.177.637 genotype conferred a modest but statistically significant reduction in 362 

sensitivity to neutralization by six serum samples tested from the early stage of the pandemic, 363 

as measured by the titers required to inhibit viral entry by 80% (ID80; mean = 6.75, range: 1.30-364 

17.68; p-value = 0.008 by paired t-test; Figure 4a). A statistically significant but smaller effect 365 

was observed when the titers required to inhibit viral entry by 50% were examined (ID50; mean 366 

= 2.27, range: 1.61-3.54; p-value < 0.001 by paired t-test; Supplementary Fig.6). In contrast, both 367 

20E and B.1.177.637 were equally susceptible to sera from patients infected during the second 368 
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wave (ID80; mean = 1.03, range: 0.87-1.23; p-value = 0.83 by paired t-test; Figure 4b). These 369 

results indicate that the D1163Y and G1167V mutations can provide some degree of escape from 370 

pre-existing antibody-based immunity relative to the 20E S genotype depending on the genomic 371 

background of the infecting genotype. As a modest reduction in titers was observed with sera 372 

from early in the pandemic (Figure 4a), which is more closely related to the current S genotype 373 

present in approved vaccines55,56, we examined if B.1.177.637 S genotype resulted in reduced 374 

neutralization by sera from donors vaccinated with the BNT162b2 vaccine. No significant 375 

differences in susceptibility to antibody neutralization from vaccinated donors were observed 376 

between the two genotypes, indicating that VOI1163.7 is unlikely to alter the efficacy of vaccines 377 

based on the Wuhan S genotype (Figure 4c).  378 
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Figure 5. Antibody neutralization of 20E and B.1.177.637 variants. The reciprocal titer at which 380 

infection with the 20E S genotype (A222V and D614G) or B.1.177.637 S genotype (20E plus 381 

D1163Y and G1167V) is reduced by 80% (ID80) by sera from individuals infected during the early 382 

stage of the pandemic in (a) or during a later stage of the pandemic (b) or from donors 383 

vaccinated with the BNT162b2 vaccine (c). The mean and standard error of three replicates is 384 

plotted. 385 

Discussion   386 

SARS-CoV-2 success is linked to its ability to infect and be transmitted. Mutations that emerge 387 

independently several times and increase in frequency are likely to confer enhanced viral 388 

infectivity, transmission, or immune evasion. The identification of such mutants is of great 389 

importance, as they can significantly impact public health. In this work, we have identified two 390 

mutations in the S protein that are likely to be beneficial for the virus based on several lines of 391 

evidence. First, these mutations are highly variable within SARS-CoV-2 but conserved across the 392 

closely related coronaviruses. Second, the vast majority of sequences harbouring these 393 

mutations appear in clusters (Figure 1a and 1b). Third, the largest cluster, and therefore the 394 

most successful in terms of transmission, includes both mutations together (Figure 1a and 1b). 395 

Additionally, both positions have been reported as positively selected multiple times throughout 396 

the SARS-CoV-2 phylogeny indicating a fitness advantage57.  Although either mutation in 397 

isolation could be advantageous, their co-occurrence in a large cluster that has been sustained 398 

for more than six months across Europe is suggestive of increased fitness when both mutations 399 

are present together.  400 

Positions 1163 and 1167 are found in the HR2 domain of the S protein, adjacent to the 401 

transmembrane domain. Examination of available structural data suggests that G1167V might 402 

alter the flexibility of the S protein stalk by both restricting the conformational freedom normally 403 

conferred by the glycine residue and by introducing a hydrophobic side chain that will favour 404 
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burial in the HR2 coiled-coil leucine zipper of the pre-fusion state (Figure 2). This extensive 405 

flexibility of S prefusion stalk seems to be unique to the SARS-CoV-2 S protein and has not been 406 

reported for other class I fusion proteins18. The stalk flexibility has been suggested to increase 407 

avidity for the host receptors by allowing the engagement of multiple S proteins18. Therefore, 408 

stalk stabilization is likely to result in a reduced ability of S to bind receptors in the target cell. 409 

Indeed, we find the B.1.177.637 genotype to have reduced infectivity compared to the 20E 410 

genotype in both Vero and A549-hACE2-TMPRSS2 cells (Figure 3a, b). In contrast, viral load in 411 

individuals infected with different S genotypes indicated that 20E and B.1.177.637 reach similar 412 

degrees of viral replication in vivo (Figure 3c). This apparent discrepancy in the effect of the two 413 

mutations on infectivity may stem from the differences of SARS-CoV-2 infection in vivo and in 414 

the in vitro assay. A recent publication has suggested that the tyrosine-protein kinase receptor 415 

UFO (AXL) is an important mediator of SARS-CoV-2 entry and may be of higher relevance for 416 

infection of the lung than ACE258. The effect of entry via AXL in the two cell lines used may be 417 

overshadowed by high levels of ACE2 expression. Alternatively, additional factors could underlie 418 

this difference, including the presence of additional mutations outside of the S protein or 419 

differences of viral loads across sampling times in vivo during the infection.  420 

Increased temperature stability can potentially confer a fitness advantage to the virus by 421 

reducing losses to infectivity during environmental transition between hosts. Hence, we also 422 

examined whether these mutations altered the temperature stability of the virions. Overall, no 423 

major difference in stability was observed between VSV pseudoparticles bearing the D614, 424 

D614G, 20E, or B.1.177.637 S protein genotypes (Figure 3d). Hence, changes in protein stability 425 

are unlikely to underlie the increased transmission of these variants. 426 

Finally, as the S protein is a major target of the immune response12, immune evasion represents 427 

one possible consequence of mutations in this protein. Both S positions 1163 and 1167 are 428 

embedded in experimentally confirmed T cell and B cell epitopes. For T cell epitopes, a predicted 429 
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HLA-II epitopes including position 1163 and 1167 has been experimentally verified to bind to 430 

HLA DRB1*01:01, the prototype molecule for the DR supertype (epitope identifier in Immune 431 

Epitope Data Base: 900659). Additionally, D1163 is included in a SARS-CoV-2 T cell epitope 432 

eliciting T-cell responses in convalescent COVID-19 cases60 as well as in SARS-CoV-2-naïve 433 

individuals53, indicating cross-reactivity in epitopes involving these regions. B cell linear epitopes 434 

that span D1163 and G1167 have also been reported52, with D1163 belonging to a dominant 435 

linear B cell epitope recognized by more than 40% COVID-19 patients used in the assay54.   D1163 436 

is fully solvent exposed in available structure18,45, making its side-chain easily accessible to 437 

antibodies, providing a potential mechanism for altering antibody binding. To directly examine 438 

whether the mutated S positions 1163 and 1167 influence susceptibility to pre-existing humoral 439 

immunity, we examined the neutralization capacity of convalescent sera against the 20E variant 440 

or B.1.177.637. For this, we used sera from both the first (April 2020) and second (October 2020) 441 

waves of the infection in Spain, because an almost complete replacement of SARS-CoV-2 S 442 

variants occurred between these two times of the pandemic in Spain36. When utilizing sera from 443 

donors infected during the first wave of the pandemic in Spain, we found a modest but 444 

statistically significant reduction in susceptibility to neutralization of the B.1.177.637 S genotype 445 

compared to the 20E S genotype of approximately 6-fold (Figure 4a). However, no difference in 446 

neutralization was observed between the two variants when sera from patients infected during 447 

the second wave was used (Figure 4b), highlighting variant-specific differences in antibody 448 

responses. Overall, the magnitude of the observed reduction in neutralization susceptibility to 449 

sera from individuals infected during the first wave was much less pronounced than that 450 

observed for other genotypes implicated in immune evasion31. Nevertheless, the degree of 451 

reduced neutralization required to confer a biologically relevant fitness advantage in vivo has 452 

not been established, and even relatively small reductions in susceptibility to antibody 453 

neutralizations could potentially confer a significant advantage to replication. Indeed, this has 454 

been suggested to be the case in an immunosuppressed individual treated with convalescent 455 
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serum, where mutations selected during the course of treatment conferred a similar reduction 456 

to that observed in the current study61. Finally, no evidence was found for reduced neutralization 457 

by sera from donors immunized with the BNT162b2 vaccine (Figure 4c), which is based on the 458 

Wuhan S genotype, indicating antibody immunity elicited by Pfizer-BioNTech COVID-19 vaccine 459 

(BNT162b2; February 2021) would not be affected by amino acid replacements in 1163 and 1167 460 

sites in S protein.  461 

Although further experiments are needed to decipher the mechanisms by which the two S 462 

mutations identified could confer a selective advantage to the virus, the evidence presented 463 

supports B.1.177.637 as a VOI (VOI1163.7.V1) according to recently published criteria4. First, 464 

amino acid replacements in S protein: D1163Y and G1167V lead to changes associated with 465 

suspected phenotypic change because of the rigidity it poses to the S protein. Second, the 466 

genotype showed moderate but significantly lower antibody susceptibility compared to 20E S 467 

genotype. And third, it has been identified to cause community transmission, appearing in 468 

multiple COVID-19 cases, and detected in multiple countries.  Additionally, a subgroup within 469 

B.1.177.637 (denoted as VOI1163.7.V2)  includes two additional mutations leading to amino acid 470 

changes in S with established phenotypic impact on humoral immunity: E484K62 and 141-471 

144Del40,63. 472 

Whether VOI1163.7.V1 and VOI1163.7.V2 will continue to increase in frequency and accumulate 473 

additional mutations that could improve its fitness and/or present challenges to vaccines or 474 

diagnostics remains to be seen. However, their characterization as VOI would help to discover if 475 

enough evidence holds to consider them VOC and therefore required monitoring. 476 
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Methods 477 

Whole-genome sequencing and genome assembly of SeqCOVID consortium sequences 478 

A total of 5,017 clinical samples were received, sequenced, and analysed by the SeqCOVID 479 

consortium from all autonomous communities of Spain. These samples were confirmed as SARS-480 

CoV-2 positive by RT-PCR carried out by Clinical Microbiology Services from each hospital. 481 

Sequencing of the samples has been approved by the ethics committee: Comité Ético de 482 

Investigación de Salud Pública y Centro Superior de Investigación en Salud Pública (CEI DGSP-483 

CSISP) Nº 20200414/05. All sequences are available at GISAID under the accession numbers 484 

detailed in Supplementary table 4.   485 

For sequencing, RNA samples were retro-transcribed into cDNA. SARS-CoV-2 complete genome 486 

amplification was performed in two multiplex PCR, according to the protocol developed by the 487 

ARTIC network64, using the V3 multiplex primers scheme65. From this step, two amplicon pools 488 

were prepared, combined, and used for library preparation. The genomic libraries were 489 

constructed with the Nextera DNA Flex Sample Preparation kit (Illumina Inc., San Diego, CA) 490 

according to the manufacturer’s protocol, with 5 cycles for indexing PCR. Whole-genome 491 

sequencing was performed in the MiSeq platform (2×200 cycles paired-end run; Illumina). 492 

Reads obtained were processed through a bioinformatic pipeline based on iVar66, available at 493 

https://gitlab.com/fisabio-ngs/sars-cov2-mapping. The first step in the pipeline removed human 494 

reads with Kraken67; then fastq files were filtered using fastp68 v 0.20.1  (arguments employed: 495 

--cut tail, --cut-window-size, --cut-mean-quality, -max_len1, -max_len2). Finally, mapping and 496 

variant calling were performed with iVar v 1.2, and quality control assessment was carried out 497 

with MultiQC69. 498 

https://gitlab.com/fisabio-ngs/sars-cov2-mapping
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Analysis of the spike gene of sarbecoviruses related to SARS-CoV-2 499 

14 sequences including SARS-COV-2 belonging to sarbecoviruses, sequences were annotated 500 

with annotation files available at NCBI database in order to locate the spike gene coordinates 501 

(accession numbers are available at supplemental table 1). For each sequence, nucleotide 502 

coordinates belonging to this gene were extracted with EMBOSS70. The 14 sequences harbouring 503 

the spike gene were concatenated and aligned with MEGA-X71 using amino acids with ClustalW 504 

algorithm with default options (alignment is available at 505 

https://github.com/PathoGenOmics/B.1.177.637_SARS-CoV-2) 506 

Sampling SARS-CoV-2 from non-Spanish consortium sequences 507 

To build the global alignment, sequences were downloaded from GISAID1 including all the 508 

pandemic periods since the first known case sequenced (from 24 December 2019) until the last 509 

sample on 22 December 2020.  We used two filters to select the dataset: sequences with more 510 

than 29,000 bp, and sequences with known dates of sampling. Sequences downloaded from 511 

GISAID were aligned against the SARS-CoV-2 reference genome72 using MAFFT73, omitting all 512 

insertions and getting an alignment length of 29,903 bp. The final alignment constructed 513 

included 270,869 sequences, all sequences with GISAID ID used for this study are available in 514 

Supplementary Table 5. 515 

Frequency and detection of mutated positions 516 

Single nucleotide variants were detected using the global dataset alignment, generating a VCF 517 

file with SNP-sites74 v 2.5.1 (argument employed: -v), using the reference genome as the 518 

reference bases for detecting mutations. This VCF file was processed with a Python script 519 

(available at https://github.com/PathoGenOmics/B.1.177.637_SARS-CoV-2) to assess all 520 

mutated samples by position, calculating the frequencies of the global dataset and annotating 521 

sequences with the detected mutations. After that, the mutated positions were annotated with 522 
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snpEff75 v 5.0 using SARS-CoV-2 reference (Wuhan first sequenced) database annotation 523 

(arguments employed: -c, -noStats, -no-downstream, -no-upstream, NC_045512.2). 524 

Genotypes detected that involved mutations in 1163 and 1167 such as B.1.177.637 and cluster 525 

163.654 were represented in a circos plot with the R package circlize76 v 0.4.12.1004. Nucleotide 526 

coordinates of SARS-CoV-2 are plotted in a non-closed circle, circle is annotated and coloured 527 

with genes of the virus, and mutated nucleotide positions of each genotype are connected 528 

between them through lines.  529 

Alignments 530 

For the phylogenetic analysis, a reduced dataset was selected from the 270,869 sequences. 531 

Duplicated sequences were removed with seqkit v 0.13.2 (arguments employed: rmdup -s).  532 

8,397 sequences were selected at random with the same temporal distribution by month as the 533 

initial dataset by Python scripting (available at https://github.com/PathoGenOmics/ 534 

B.1.177.637_SARS-CoV-2). The 8,397 sequences were concatenated with 2,053 sequences 535 

selected as indicate above because harboured amino acid replacements in D1163 and G1167 of 536 

the S protein and resulted in an alignment of 10,450 sequences (Supplementary Table 6).  537 

The dataset to represent 20I/501Y.V1 phylogenetic relationships include 3,067 randomly 538 

selected samples identified by Pangolin typing system (https://github.com/cov-539 

lineages/pangolin) as lineage B.1.1.7 plus the 33 sequences with amino acid replacements in 540 

D1163 and/or G1167 (Supplementary Table 7). 541 

For all the alignments, problematic positions reported by Lanfear, R.77 were masked for the 542 

phylogenetic reconstruction using masked_alignment.sh script.  543 

https://github.com/cov-lineages/pangolin
https://github.com/cov-lineages/pangolin
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Phylogenetic analysis 544 

Maximum-likelihood phylogenies in Figure 1 and supplementary Supplementary Fig.2, S4 and S5 545 

were reconstructed from the masked alignment using IQ-TREE78 v 1.6.12 with GTR model and 546 

collapsing near-zero branches (arguments employed: -czb, -m GTR). The phylogenies were 547 

rooted in the reference sequence from Wuhan72 on 2019-12-24. The phylogenies were 548 

annotated and visualized with iTOL79 v 4. 549 

The phylogeny in Supplementary Video S1, composed by 10,450 sequences, was build up with 550 

Nextstrain pipeline (available at https://github.com/nextstrain/augur) in order to monitor and 551 

visualize temporal and geographical transmission of B.1.177.637. This dataset file is available at 552 

https://github.com/PathoGenOmics/B.1.177.637_SARS-CoV-2. 553 

Clusters of transmission involving 1163 and 1167 S amino acid replacements. 554 

We used the phylogeny of 10,450 sequences enriched with all sequences mutated in 1163 and 555 

1167 to quantify the minimum number of mutational events involving positions 1163 and 1167 556 

in S protein. We first defined which mutations characterize internal nodes using R packages: 557 

tidytree v 0.3.3 and treeio v 1.14.380. We then depicted monophyletic clusters sharing at least 558 

one of the two mutations. Transmission clusters were defined as all sequences that: i) are 559 

derived from an internal node characterized by the same nucleotide mutation involving 1163 or 560 

1167 amino acid replacements, ii) include more than one sequence, and iii) at least 95% of 561 

sequences share the nucleotide mutation. Additionally, redundant nodes were eliminated, 562 

keeping the ancestral node of the cluster (harbouring the largest number of leaves). Sequences 563 

with at least one mutation but not in clusters were counted as single events of mutation in the 564 

phylogeny.  565 

Structural analysis of 1163 and 1167 S amino acid replacements. 566 

https://github.com/nextstrain/augur
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The atomic coordinates for S protein in pre-fusion state was retrieved from the CHARMM-GUI 567 

COVID-19 Archive (http://www.charmm-gui.org/docs/archive/covid19). The atomic coordinates 568 

for S protein in post-fusion sate were retrieved from Protein Data Bank (PDB: 6XRA18 and PDB: 569 

6LXT81). Mutations were introduced using single mutation tool embedded in COOT82and figures 570 

were generated with PyMOL (www.pymol.org).     571 

SARS-CoV-2 pseudotyped vesicular stomatitis virus production, titration, and thermal stability 572 

evaluation 573 

Mutations were introduced into a plasmid encoding a codon-optimized S protein16 by site 574 

directed mutagenesis (see Supplementary table8 for primers). All mutations were verified by 575 

Sanger sequencing (see Supplementary table 9 for primers). To evaluate the efficiency of virus 576 

production, three transfections in HEK293 cells (CRL-1573 from ATCC) were performed for each 577 

plasmid to generate pseudotyped VSV harbouring the indicated S protein83. The titers of the 578 

virus produced were then assayed by serial dilution, followed by infection of either Vero cells 579 

(CCL-81 from ATCC) or A549 cells expressing ACE2 and TMPRSS2 (InvivoGen catalog code a549-580 

hace2tpsa), and counting of GFP positive cells (focus forming units; FFU) at 16 hours post 581 

infection. Statistical comparisons were performed by unpaired t-test (R package: stats v 3.6.1) 582 

with normalized logarithmic data. For assessing thermal stability, 1000 FFU (as measured on 583 

Vero cells) were incubated for 15 minutes at 30.4, 31.4, 33, 35.2, 38.2, 44.8, 47, 48.6 or 49.6°C 584 

before addition to Vero cells previously seeded in a 96 well plate (10,000 cells/well). GFP signal 585 

in each well was determined 16 hours post-infection using an Incucyte S3 (Essen Biosciences). 586 

The mean GFP signal observed in several mock-infected wells was subtracted from all infected 587 

wells, followed by standardization of the GFP signal to the mean GFP signal from wells incubated 588 

at 30.4°C. Finally, a three parameter log-logistic function was fitted to the data using the drc 589 

package v 3.0-1 in R (LL.3 function) and the temperature resulting in 50% inhibition calculated 590 

using the drc ED function. Statistical differences in the temperature resulting in 50% reduction 591 

http://www.pymol.org/
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of infection was evaluated using the drc EDcomp function. The data and scripts for analysing the 592 

temperature resistance of the different mutants is available at 593 

https://github.com/PathoGenOmics/B.1.177.637_SARS-CoV-2.  594 

Evaluation of neutralization by convalescent sera and efficacy of virus particle production.  595 

Pseudotyped VSV bearing 20E or B.1.177.637 S variants were evaluated for sensitivity to 596 

neutralization by convalescent sera as previously described83 with slight modifications. Briefly, 597 

16-hours post-infection, GFP signal in each well was determined using an Incucyte S3 (Essen 598 

Biosciences). The mean GFP signal observed in several mock-infected wells was subtracted from 599 

all infected wells, followed by standardization of the GFP signal in each well infected with 600 

antibody-treated virus to that of the mean GFP signal from wells infected with mock-treated 601 

virus. Any negative values resulting from background subtraction were arbitrarily assigned a low, 602 

non-zero value (10-5). The serum dilutions were then converted to their reciprocal, their 603 

logarithm (Log10) was taken, and the dose resulting in 50% (ID50) or 80% (ID80) reduction in GFP 604 

signal was calculated in R using the drc package v 3.0-1. A two-parameter log-logistic regression 605 

(LL2 function) was used for all samples except when a three-parameter logistic regression 606 

provided a significant improvement to fit, as judged by the ANOVA function in the drc package 607 

(e.g. p < 0.05 following multiple testing correction using the Bonferroni method). The script for 608 

calculating the ID50 and ID80 as well as the standardized GFP signal for each condition is 609 

available at https://github.com/PathoGenOmics/B.1.177.637_SARS-CoV-2. For the first wave, 610 

serum samples and data from patients included in this study were provided by the Consorcio 611 

Hospital General de Valencia Biobank, integrated in the Valencian Biobanking Network, and they 612 

were processed following standard operating procedures with the appropriate approval of the 613 

Ethics and Scientific Committees. All first wave samples were obtained from donors that were 614 

admitted to the intensive care unit and were collected during April 2020. For the second wave 615 

donors, sera were obtained (October 2020) from severe COVID-19 patients requiring inpatient 616 
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treatment at Hospital Universitario y Politécnico La Fe de Valencia. Similarly, samples from 617 

immunized donors were collected at Hospital Universitario y Politécnico La Fe de Valencia from 618 

hospital health-workers, with no previous history of SARS-COV-2 infection, and after receiving a 619 

second dose of Pfizer-BioNTech COVID-19 vaccine (BNT162b2; February 2021). All samples from 620 

Hospital Universitario y Politécnico La Fe de Valencia were collected after informed written 621 

consent and the project has been approved by the ethical committee and institutional review 622 

board (registration number 2020-123-1).   623 
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