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Abstract 

Background: Inflammation impacts several acute and chronic diseases causing localized stress and 

cell death, releasing tissue-specific lipids into the circulation from inflamed cells and tissues. The 

plasma lipidome may be expected to reflect the type of inflammation and the specific cells and 

tissues involved. However, deep lipid profiles of major chronic inflammatory diseases have not 

been compared.  

Methods: We compare the plasma lipidomes of patients suffering from two etiologically distinct 

chronic inflammatory diseases, atherosclerosis-related cardiovascular disease (CVD) including 

ischemic stroke (IS), and systemic lupus erythematosus (SLE), to each other and to age-matched 

controls. The controls had never suffered from any of these diseases. Blood plasma lipidomes were 

screened by a top-down shotgun MS-based analysis without liquid chromatographic separation. 

Lipid profiling based on MS was performed on a cohort of 427 individuals. The cohort constitutes 

85 controls (control), 217 with cardiovascular disease (further classified into CVD 1-5), 21 

ischemic stroke patients (IS), and 104 patients suffering from systemic lupus erythematosis (SLE). 

596 lipids were profiled which were quality filtered for further evaluation and determination of 

potential biomarkers. Lipidomes were compared by linear regression and evaluated by machine 

learning classifiers.  

Results: Machine learning classifiers based on the plasma lipidomes of patients suffering from CVD 

and SLE allowed clear distinction of these two chronic inflammatory diseases from each other and 

from healthy age-matched controls and body mass index (BMI). We demonstrate convincing 

evidence for the capability of lipidomics to separate the studied chronic and inflammatory diseases 

from controls based on independent validation test set classification performance (CVD vs control - 

Sensitivity: 0.90, Specificity: 0.98; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control – 

Sensitivity: 1, Specificity: 0.88) and from each other (SLE vs CVD � Sensitivity: 0.91, Specificity: 

1). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups 

from each other and from the controls. In addition, CVD severities, as classified into five clinical 

groups, were partially separable by linear discriminant analysis. Notably, significantly dysregulated 

lipids between pathological groups versus control displayed a reverse lipid regulation pattern 

compared to statin treated controls versus non treated controls.  

Conclusion: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory 

diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies 

sub-classes. Dysregulated lipids are partially but not fully counterbalanced by statin treatment.  
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Introduction 

Lipids in the blood plasma reflect diet and metabolic characteristics of an individual but are also 

known to regulate inflammatory responses both positively and negatively. In the case of 

inflammatory processes cell stress and death also release internal cellular lipids into the blood. It 

might, therefore, be expected that chronic inflammatory diseases alter the plasma lipidome in a 

manner that is characteristic of the chemistry of the cells/tissues primarily involved in the disease. 

With this reasoning we examined the lipidomes of patients suffering from cardiovascular diseases 

(CVD), including ischemic stroke (IS), and systemic lupus erythematosus (SLE) and compared 

them with the lipidome of age-matched controls who were not known to suffer, or to have suffered, 

from any of these diseases.  

The role of inflammation and lipids in atherosclerosis is well established [1-3]. There is a 

reasonably large amount of literature [3-25] on the profiling of lipids in blood plasma and 

atherosclerotic plaques in CVD cohorts. The two main variables in these studies have been the 

number of lipids that have been profiled and the size of the cohorts [4, 7]. The emphasis of previous 

studies has been on the association of plasma lipid species with CVD-risk stratification and CVD-

related mortality [5, 6, 8-20], improved classification of stable and unstable CVD states [21], 

correlation with established diagnostic tools for CVD [18, 22], genetic risk factors for CVD   [5, 18, 

23], association of CVD with co-morbidities [13, 16, 24, 25], and association of CVD with changes 

in lipid biochemistry in the blood plasma [26]. In general, the different lipidomic profiling studies 

differ in the methods and definition of clinical outcome subjected to lipidomic based classification. 

This means that the clinical outcome and lipids profiled differ across studies. Consequently, 

consensus targets from multiple studies are still unobtainable. Nevertheless, common to all studies 

are the highly sensitive changes in lipid profiles depending on the clinical outcome evaluated. 

Table S1 summarizes individual lipids associated with CVD or CVD risk factors from past studies. 

SLE is a chronic inflammatory disease. SLE etiology displays multifactorial characteristics and the 

molecular mechanisms of this disorder are largely unknown [27-29]. A notable aspect of this 

disease is the excessive production of reactive oxygen species that oxidize cellular lipids producing 

derivatives that cause dyslipidemia and dyslipoproteinemia  [30, 31]. The dyslipoproteinemia 

signature has been identified in SLE patients with markedly increased age-specific incidence of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.21252659doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252659
http://creativecommons.org/licenses/by-nc-nd/4.0/


cardiovascular disease [31]. Lipidomics of the plasma of SLE patients has been previously reported 

[32, 33].   

In this work we enquired whether it would be possible to characterize the lipidomic profile of 

different manifestations of essentially the same clinical disease (different degrees of CVD, 

including IS) and whether the lipidomic profile of two distinct diseases that only had inflammation 

as a common characteristic could be distinguished from each other and used as a diagnostic 

identifier. Furthermore, the accuracy as a diagnostic identifier was evaluated on an independent test 

data set.  

Despite the preliminary efforts and promising results based on LC-MS lipid profiling, identifying 

individuals at risk for stroke and cardiovascular events from a healthy control population remains a 

challenge. Time invested per sample constitutes a barrier for large scale clinical validation and 

implementation of lipid profiles (e.g. the LC dimension of previous studies is time intensive). In 

this study we evaluated classification performance of lipid profiling based on shotgun MS without 

LC lipid separation prior to MS. A total of 596 lipids were profiled in a total of 427 individuals. 

Remarkable separations between pathological groups and controls were obtained by partial least 

square classifiers evaluated on an independent validation data set. In addition, dysregulated lipids in 

CVD and stroke appear partially opposed by statin treatment.  

 

 

Methods 

Patient samples.  

Plasma samples were obtained from a total of 427 individuals. Baseline characteristics are outlined 

in Table 1. Control (n = 85) were taken from the population of the Coimbra and Lisbon, Portugal, 

regions. They satisfied the criterion that they had never had any CVD- or SLE-related health 

complaints. The CVD patients (n = 238) were divided into 6 groups. CVD1 (n = 61) contains 

individuals who went to the hospital with chest pain but had no indicators for stable angina pectoris, 

unstable angina pectoris or myocardial infarction. CVD2 (n = 82) are patients with stable angina 

pectoris (SAP). CVD1 and CVD2 are defined according to the 

ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guidelines [34]. CVD3 (n = 20) contains patients with 

unstable angina pectoris, CVD4 (n = 34) are patients who suffered an acute myocardial infarction 

with no ST-elevation in ECG, and CVD5 (n = 20) are patients who suffered acute myocardial 

infarction with ST-elevation in ECG [35, 36]. CVD3, CVD4, and CVD5, together, may be classified 

as patients with an acute coronary syndrome (ACS). CVD1 through CVD5 groups were all obtained 
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from Hospital Santa Cruz, Carnaxide, Portugal. Acute ischemic stroke (IS) (n = 21) were patients 

admitted at the emergency room of the Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal, 

who suffered from acute ischemic stroke. The SLE cohort (n = 104) were patients from Hospital Dr. 

Fernando Fonseca, Amadora, Portugal. The inclusion criteria were all patients diagnosed with the 

pathology and above 18 years old. The exclusion criteria were the existence of serious renal and 

hepatic pathologies, cancer or existence of infectious diseases.  

Plasma was obtained from all donors after explaining the purpose and obtaining written informed-

consent from them or their legal representatives. The entire process was approved by the Ethical 

Review Board of the Faculty of Medicine of the New University of Lisbon and the Ethics 

Committee for Health of the Centro Hospitalar de Lisboa Ocidental, that includes the Hospital 

Santa Cruz, the Hospital Egas Moniz and Hospital São Francisco Xavier, and the Ethics Committee 

for Health of the Hospital Fernando Fonseca.  All experiments were performed in accordance with 

the guidelines and regulations. Blood samples were drawn into tubes containing an anti-coagulant 

(heparin or EDTA) immediately after admission into the hospital and signing of the informed 

consent. The samples were kept at 4°C and processed within 24 h from collection. Plasma was 

obtained by centrifugation of the blood at 500 g for 10 min at 4°C, frozen at −80°C and stored at 

this temperature until they were used for the lipidomic analysis.  

 

Definition of age matched controls.  

The total control cohort consisted of people with ages from 22 years to 82 years. Of these only 

those with ages ≥36 years (n = 52) were used for comparison with the CVD and IS cohorts. The 

whole control cohort (n = 85) was used for comparison with SLE patients.  

 

Lipid extraction for mass spectrometry lipidomics.  

Mass spectrometry-based lipid analysis was performed at Lipotype GmbH (Dresden, Germany) as 

described [37]. For lipid extraction an equivalent of 1 μL of undiluted plasma was used. Internal 

standards were pre-mixed with the organic solvents mixture and included: cholesterol D6, 

cholesteryl ester 20:0, ceramide 18:1;2/17:0, diacylglycerol 17:0/17:0, phosphatidylcholine 

17:0/17:0, phosphatidylethanolamine 17:0/17:0, lysophosphatidylcholine 12:0, 

lysophosphatidylethanolamine 17:1, triacylglycerol 17:0/17:0/17:0, and sphingomyelin 18:1;2/12:0. 

All liquid handling steps were performed using Hamilton Robotics STARlet robotic platform with 

the Anti Droplet Control feature for organic solvents pipetting.  
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MS data acquisition.  

Samples were analyzed by direct infusion in a QExactive mass spectrometer (Thermo Scientific) 

equipped with a TriVersa NanoMate ion source (Advion Biosciences). Samples were analyzed in 

both positive and negative ion modes with a resolution of Rm/z=200 = 280000 for MS and 

Rm/z=200 = 17500 for MSMS experiments, in a single acquisition. MSMS was triggered by an 

inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments. Both MS 

and MSMS data were combined to monitor CE, DAG and TAG ions as ammonium adducts; PC, 

PC O-, as acetate adducts; and PE, PE O- and PI as deprotonated anions. MS only was used to 

monitor LPE as deprotonated anion; Cer, SM and LPC as acetate adducts and cholesterol as an 

ammonium adduct. 

 

Lipid nomenclature.  

The following annotations were used: Lipid class-<sum of carbon atoms>:<sum of double 

bonds>;<sum of hydroxyl groups>, i.e. SM-34:1;2 means an SM lipid with 34 carbon atoms, 1 

double bond and 2 hydroxyl groups in the ceramide backbone. Lipid molecular subspecies 

annotation [38] contains additional information on the exact identity of their fatty acids. For 

example PC 18:1;0_16:0;0 denotes a phosphatidylcholine with one acyl chain having 18 carbon 

atoms, 1 double bond, 0 hydroxylation, and a second acyl chain with 16 carbon atoms, o double 

bonds, 0 hydroxylation. The exact position of the fatty acids in relation to the glycerol backbone 

(sn-1 or sn-2) cannot be discriminated. CE 18:1;0 denotes a cholesteryl ester with an 18:1;0 fatty 

acid. Lipid identifiers of the SwissLipids database [38] are provided in the supplemental dataset. 

 

Post-processing. 

 Data were analyzed with in-house developed lipid identification software based on LipidXplorer 

[39, 40]. Data post-processing and normalization were performed using an in-house developed data 

management system. Only lipid identifications with a signal-to-noise ratio >5, and a signal intensity 

5-fold higher than in corresponding blank samples were considered for further data analysis. Using 

8 reference samples per 96-well plate batch, lipid amounts were corrected for batch variations. 

Amounts were also corrected for analytical drift, if the p-value of the slope was below 0.05 with an 

R2 greater than 0.6 and the relative drift was above 5%. Median coefficient of (sub-) species 

variation as accessed by reference samples was 3.1%. The full data set contained quantitative 

information from 623 lipids. Lipids with a concentration less than 0.5 μM were considered “not 

analyzable” (NA) and, for the purposes of the present work were considered to be at half of the 
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minimum detectable value and zero variance lipids were filtered out providing a data set of 596 

lipids which served as the input to subsequent multivariate analyses.  

 

Significant regulated lipids were defined by the R package “limma version 3.42.0”. The data 

obtained by MS were added one and log2 transformed. Next the quantitative values were 

normalized across samples using robust quantile normalization [41]. Both the raw and the quantile 

normalized values were analyzed by the R package “limma version 3.42.0” to determine significant 

regulated lipids between control and patient cohorts. Linear models included terms to correct for 

gender and statin treatment and only age matched controls were included for statistical regulation 

analysis involving IS and CVD cases. All controls were included for comparison with the SLE 

group. SLE group was sub divided into two groups according to the Systemic Lupus International 

Collaborating Clinics (SLICC) group criteria (SLICC >=4 versus SLICC < 4) [42]. Statistical 

differential regulated lipids were determined using the R package “limma version 3.42.0” and p 

values were adjusted for multiple testing by the method of Benjamini and Hochberg [43]. Principal 

component analysis was performed using R base functions on centered quantile normalized 

quantification values. Overlap between significant regulated lipids was performed with the R 

package “VennDiagram”.  

Supervised classification.  

Linear discriminant analysis (LDA) was performed using the R package “caret version 6.0.84” [44] 

as interface to “MASS version 7.3.51.4”. LDA was performed using either all 596 zero variance 

filtered lipids or 206 lipids selected with more than 50% non NAs per clinical group. Additionally, 

the parameters for training and testing of LDA were set to remove lipids with total intensity across 

all samples below 30. The value 30 was obtained by stepwise optimization to establish best possible 

separations. The correlation cut off was set to 1 which means that correlated variables were not 

eliminated (caret parameter pair-wise absolute correlation cutoff). Setting the correlation cut off 

slightly lower, e.g. 0.9-1 had no effect of on the separation in the LDA plots. The results from the 

two approaches resulted in similar classification performance and for simplicity only the results 

from the 596 zero variance filtered lipids is presented.   

Partial least square (PLS) analysis was performed using the R package “caret version 6.0.84” [44]  

as interface to “pls version 2.7.1“. The full data set 427 individuals were split into disease groups 

with age matched controls. By random, 75% of the data from smallest groups were used for training 

the PLS model and balanced age matched samples from the majority group sampled to create 

balanced training sets. The remaining data were left out and used to obtain the final accuracy 

measures (validation set). The caret preprocessing parameters specified were: "zv – exclude zero 
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variance predictors, "center – subtracts the mean from predictor values”, and "scale – divide 

predictor values with the standard deviation”. The model was optimized by 10 fold cross validation 

repeated 10 times using accuracy as the metric for optimization. ROC curves and area under the 

curve were estimated using the R package “pROC” [45] for model performance evaluation on the 

left out validation set. 

 

Results 

Baseline characteristics: Table 1 summarizes the baseline characteristics. The CVD cohort 

analyzed in this study consisted of 217 participants with mean age of 67 years (range 33-92 years). 

A total of 21 IS patients were included with a similar age range as the CVD patients. Statistical 

comparisons were in all cases performed with aged-matched controls. The entire control cohort 

(n = 85) consisted of people with ages between 22 and 82 years. Of this group a sub-group (n = 52) 

with ages ≥36 years served as the control for comparisons with the CVD + IS, while the entire 

control cohort (n = 85) was used for comparison with the SLE patients.   

 

Lipidomic analysis: Based on a single shot MS based lipid analysis of ten microliters of plasma, 

623 lipids spanning 15 lipid classes were identified and quantified. The analysis presented in the 

current study used only 596 of these lipids and demonstrated, as discussed below, that accurate 

classification of SLE, IS, CVD and CVD sub-groups from controls was achievable in spite of the 

fact that there were several shared dysregulated lipids among the different cohorts.  

 

Unsupervised analysis: Principal component analysis based on all 596 selected lipids provided a 

reasonable separation between aged-matched controls versus CVD1, CVD2, CVD3, CVD4, CVD5 

and IS (Figure 1A-F). CVD4 and CVD5 are almost fully separable from controls based on the first 

two principal components. CVD3 versus control resulted in the poorest separation by the first two 

principal components. Depending on the condition either PC1 or PC2 provided the most separation. 

This strongly suggests that the largest or second largest variance component in lipid abundance 

correlate with these disease conditions. Notably, this PCA analysis was performed using 

quantitative values from all lipids without any biased pre-selection of lipids known to associate to 

CVD and IS.  
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Association of lipids with clinical diagnosis. Comparison of SLE sub-groups SLE_SLICC criteria 

≥ 4 vs < 4 resulted in no significant lipids after correction of multiple testing (Table S2). Pairwise 

comparison between age matched controls and the patient groups adjusted for gender and statin use 

revealed the following number of significant dysregulated lipids after correction of multiple testing 

(First value: P adjusted <0.05/second value: P adjusted <0.05 and at least two-fold regulated, Table 

S2): 147/13 CVD1, 158/17 CVD2, 78/16 CVD3, 130/21 CVD4, 105/19 CVD5, 98/11 IS and 

166/108 SLE. Among controls the number of significant regulated lipids after correction of multiple 

testing (P adjusted <0.05/P adjusted <0.05 and at least two-fold regulated) were 26/8 when 

comparing controls with and without statin treatment (Table S2). Only about 10-20% of the 

significant (dys)regulated lipids displayed an effect size bigger or equal to two-fold, prompting the 

question if the lipids with small effect size are diagnostically relevant.  

Therefore, Venn diagrams were used to compare the overlap of significant dysregulated lipids 

(Figure 2A) and significant dysregulated lipids with an effect size more than two-fold (Figure 2B). 

We observed that a considerable number of significant dysregulated lipids with effect size less than 

two-fold were shared across pathological groups (Figure 2AB). Heatmaps were constructed to 

address the direction of the shared dysregulated lipids (Figure 2CD). These heatmaps only depict 

lipids that are regulated in more than one pairwise comparison. The direction of dysregulation of 

lipids displays large similarities for the CVD, IS and SLE groups. In contrast, the lipids found 

regulated between controls and controls treated with statin displayed a reverse pattern in the 

direction of regulation compared to the pathological groups (Figure 2CD). Next, the frequency of 

lipid classes of the significant regulated lipids for pathological groups versus statin regulation were 

compared (Figure 3ABCD). Predominantly the lipid classes PC, CE, SM including cholesterol were 

up-regulated in the pathological conditions (Figure 3A) which to some extent match the statin 

down-regulation of CE, PC and cholesterol (Figure 3D). Similarly, the down regulation of lipid 

classes TAG, PC, PE and DAG in pathological conditions match, to some degree, the observed up-

regulation of TAG, DAG and PE for statin treated patients. In general, pairwise comparison for 

disease groups or disease sub-groups versus control resulted in statistical differences in lipid 

expression (table S2). This was also the case when different disease groups were compared pairwise 

against each other. However, sub-comparisons of CVD (e.g. CVD1 versus CVD5) or SLE (e.g. 

SLICC ≥ 4 versus SLICC < 4) resulted in fewer significant regulated lipids after correcting for 

multiple testing. Especially, SLICC ≥ 4 versus SLICC < 4 comparison resulted in no significant 

regulated lipids after correction for multiple testing.  
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Supervised analysis. Preliminary linear discriminant analysis (LDA) based on the 596 selected 

lipids and all data displayed strong potential for building classifiers for separating the pathological 

groups and control (Figure 4). Even the individual CVD sub-groups were fairly effectively 

separated in the LDA plots (Figure 4AB). Analyzing the CVD groups and controls separately 

further supported the potential of lipids to stratify CVD severity groups (Figure 4B). LDA separates 

SLE from controls with a P value < 2.2e-16 (Figure 4C). Figure 4D depicts the LDA plot for 

controls versus IS. The first LDA component significantly separates IS patients from controls (P 

value < 2.4e-13). The PCA (Figure 1) and LDA (Figure 4) plots encouraged us to build and test 

partial least square models (PLS). As a proof of concept three PLS classifiers with high 

classification performance when tested on an independent data set were established (Figure 5).  

The optimal number of PLS component for separation of CVD and controls was seven (Figure 5A). 

The right panel displays the 20 most important lipids contributing to the PLS components. The 

width of each bar is indicative of the lipid´s importance in the model. The optimal PLS component 

for IS versus control were seven (Figure 5C) and the 20 highest ranked lipids in terms of 

importance are depicted in the right panel. For SLE versus controls four PLS components were 

optimal (Figure 5E). The 20 most important lipids for SLE displayed some similarity to the most 

relevant lipids for CVD versus control and IS versus control (Figure 5BDF). For example, “PC 

15:0;0_17:0;0” were low abundant in controls compare to SLE, IS and CVD (Table S2). The three 

PLS models for separating IS, CVD and SLE from age matched controls was validated by using a 

validation set left out from the training and optimization of the PLS models (Figure 6). The ROC 

curve for classification performance of CVD versus controls is depicted in Figure 6A. The area 

under the curve was 0.99. The confusion matrix is inserted in the lower right side of figure 6A and 

indicates that 72 out of 75 of the left-out data set were correctly classified. The model for CVD1 

versus controls displayed a slightly worse classification performance with five out of 52 

misclassified (Accuracy ≈ 90%, area under the curve was 0.97). Although, linear discriminant 

analysis based on all data displayed partial to complete separation for CVD1 versus CVD2 (Figure 

4AB) the PLS model was not much better than random when tested on the independent data set 

(area under the roc curve=0.53).  

The ROC curve for the PLS model for classification of IS versus controls when tested on the 

independent validation data set is depicted in figure 6B. The IS model misclassified zero patients in 

the independent validation out of total of 26 samples (Accuracy=100%). The ROC curve for the 

PLS model for classification of SLE versus controls displayed an area under the curve of 1 and no 

misclassified subjects. The PLS model for SLE versus control demonstrated similar classification 

performance as CVD versus controls with a total of five misclassified cases out of 61 (Figure 6C).  
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In conclusion, we present the accuracy of separation, via statistical analysis of the lipidomic data, of 

the cohorts studied – namely, control, SLE, IS, and CVD1 through CVD5. The accuracy of 

separating SLE and CVD cases on an independent test data set was above 91%. The accuracy of 

separating IS versus SLE and IS versus CVD was 78%. Figure 7 summarizes pairwise classification 

accuracies for all CVD subgroups versus controls when evaluated on an independent teat data set. 

All CVD cases were separated from the controls with accuracies above 80%. Pairwise 

classifications of CVD1 versus CVD2 and CVD4 versus CVD5 resulted in an accuracy which was 

only slightly better than random. These pairwise classification accuracies are concurrent with the 

number of significantly identified lipids in the pairwise comparisons obtained from the linear 

regression models (Table S2). Overall, these findings suggest that plasma lipidomics profiles have 

the potential to accurately distinguish chronic inflammatory diseases from controls and that the 

lipidomic profiles are characteristics of the pathophysiological states.  

 

Discussion  

Blood plasma is the medium through which the physiological steady state of lipid distribution in the 

body is maintained. These lipids may be of dietary or auto-synthetic origin but are also the result of 

degradative chemical processes (oxidation, lysis, modification in the blood plasma, etc.) and cell 

death due to acute or chronic processes such as inflammation. The exact steady state concentration 

of each lipid in the plasma is therefore a combination of dietary, physiological-chemical, genetic, 

and patho-physiological states. Many lipidic products are known to positively or negatively 

influence inflammatory processes. Lipidomics may therefore hold a promise as a valuable tool for 

identifying and distinguishing between different patho-physiological states. There are perhaps well 

over a thousand different lipids and their derivative products in the blood plasma. Therefore, the 

more lipids are identified and quantified, the better will be our capacity to diagnose the 

physiological state. This view seems to be reinforced by recent developments [46].  

We have, therefore, used lipidomic data on three separate cohorts – a cohort consisting of people 

who suffer from SLE, a cohort of people who suffer from CVD (including IS), and an age-matched 

Control cohort characterized by the fact that they never sought medical help for any of the disease 

states of the other two cohorts. The CVD cohort consisted of five patient groups, CVD-1 through 

CVD-5, as described earlier. The patients of IS, SLE and CVD have a common characteristic – 

chronic inflammation – but distinct primary etiologies. The comparison of these two patho-

physiological states therefore provides an efficient way to evaluate the ability of lipidomics to 

distinguish between them and possibly serve eventually as a diagnostic tool. A total of 596 lipids 

divided into 15 lipid classes were analyzed using shotgun lipidomics and adequate statistical 
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methods were used to analyze the results. We note that our aim has not been to identify the lipids 

characteristic of one pathological state or another, although some conclusions in this regard may 

also be drawn, but rather to use the data to create distinct diagnostic groups that correspond with the 

distinct pathological states.  

The improvement in lipid identification and quantification from plasma samples presented in this 

study led to improved classification performance of SLE, CVD and CVD sub-groups, and IS from 

controls. This reinforces the potential of plasma lipidomic profiles as biomarkers for cardiovascular 

risk stratification proposed in previous studies [16]. We observed clear commonalities between 

dysregulated lipids in CVD and in IS and to a lesser extent in SLE (Figure 2CD). This observation 

supports the idea of a common etiology for CVD and IS which involve atherosclerotic lesions in 

blood vessels in both cases. It further strengthens the link between SLE and CVD as CVD is 

overrepresented in patients with SLE and SLE patients demonstrate accelerated atherosclerosis [47-

50]. The reverse regulation observed for lipids in statin treated versus CVD and IS suggests that 

statin to some extent stabilize the lipid profiles towards lipid profiles of disease-free controls. 

Nevertheless, the most frequent regulated lipid class in CVD and stroke were only moderately 

affected by statin (Figure 4A versus 4D). The large number of dysregulated PCs does not appear 

affected by statin treatment and may constitute attractive pharmaceutical targets for future treatment 

modalities. CVD1 constitutes patients who complain about chest pain but no pathological 

diagnostic indicators for CVD were identified. The trained classifiers on lipid abundance were, 

however, able to distinguish between control and CVD1. However, it must be noted that the 

classification between CVD1 and CVD2 were basically close to random. This suggests that lipid 

profiling is the first clinical indicator that can diagnose CVD1 individuals. This finding may have 

both therapeutic and diagnostic impact and must be further explored in future studies.  

In conclusion, we present the accuracy of separation on independent lipidomics test data, of the 

cohorts studied – namely, control, SLE, IS, and CVD1 through CVD5. The accuracy of separating 

SLE and CVD cases was above 0.91. The accuracy of separating IS versus SLE and IS versus CVD 

was 0.78. Figure 7 summarizes pairwise classification accuracies for all CVD subgroups versus 

controls when evaluated on an independent test data set. All CVD cases were separated from the 

controls with accuracies above 0.80. The high accuracies obtained in our study may result from the 

higher number of lipids profiled. However, the cohorts used were not ideal in terms of sex 

distribution across CVD conditions and controls. Furthermore, the age matched controls had a 

slightly lower average age than the CVD and stroke groups. No statistical differences between the 

controls groups and CVD groups for BMI was identified (Table 1). The samples for each condition 

were also not obtained from multiple centers which may introduce bias. 
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Pairwise classifications of CVD1 versus CVD2 and CVD4 versus CVD5 resulted in an accuracy 

which was only slightly better than random. These pairwise classification accuracies are concurrent 

with the number of significantly identified lipids in the pairwise comparisons obtained from the 

linear regression models (Table S2). Overall, these findings suggest that plasma lipidomics profiles 

have the potential to accurately distinguish chronic inflammatory diseases from controls and that 

the lipidomic profiles are characteristics of the pathophysiological states. The necessary criterion is 

that the lipidomic data contain as many lipids as possible. We suggest that, given the ease of 

shotgun lipidomic quantification of a very large number of lipids in blood plasma and the high 

accuracy of the separation and identification of chronic inflammatory pathologies upon analysis of 

the lipidomic data, the methods described in this work could be a valuable tool in early diagnostic 

methodology.  

Study limitations. The study is limited by the number of samples per group especially when 

subdividing into cardiovascular subgroups. Gender balance is unbalanced across stroke and 

cardiovascular disease (see Table 1). Women were represented higher in the ischemic stroke groups 

whereas men were more represented in subsets of the cardiovascular groups. Age distribution for 

controls was moderately lower than cardiovascular and IS group. The reverse regulation of lipids 

when comparing statin treated controls with CVD and IS is an explorative result and the observed 

regulation might originate due to confounding factors. This observation should preferably be 

validated in a randomized control study.  

We understand the present study as an exploratory preliminary study and clearly more inflammatory 

diseases need to be compared. Recommendations with regard to diagnostics will require much 

larger cohorts with better matching of age, sex, statin use, BMI, etc. But this will be a process that 

will require many more years and preferably collaborative work between many laboratories. 
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Figure legends 

 

Figure 1. Principal component analysis using all 596 selected lipids as input. Plot of the first and 

second principal component for A) IS, B) CVD1, C) CVD2, D) CVD3, E) CVD4, and F) CVD5. 

 

Figure 2. Significant regulated lipids across comparisons. Venn comparison of significant regulated 

lipids after correction of multiple testing (A) and with two fold regulation (B) for CVD groups.  C) 

Heatmap depicting the direction of regulation for significant regulated lipids across comparisons. 

D) Heatmap depicting the direction of regulation for significant regulated lipids with more than two 

fold regulation across comparisons. 

 

Figure 3. Frequency of lipid classes among significant regulated lipids. Significant up (A) and 

down (B) regulated lipid classes for CVD versus control. Significant up (C) and down (D) regulated 

lipid classes for statin treated versus control. Red bars indicate significant regulated lipid class 

frequencies after correction of multiple testing. Blue bars indicate significant regulated lipid class 

frequencies after correction of multiple testing and filtering for at least two fold regulation. 

 

 

Figure 4. Separation of the disease groups by LDA based on selected lipids. A) LDA plots 

demonstrating separation of CVD, SLE, IS and control. B) LDA base separation of CVD groups 
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and control samples. C) First LDA component versus SLE and control. D) First LDA component 

versus IS and control. 

 

Figure 5. Training of PLS models. Left panel: Optimal number of PLS components for model 

based on A) CVD versus control, C) IS versus control, and E) SLE versus control. Right panel 

(BDF): Indicate the 20 most important lipids in the PLS models. Red labels indicate overall higher 

abundance in disease whereas green labels indicate overall higher abundance in controls. 

 

Figure 6. Classification performance illustrated with ROC curves and confusion matrix for A) CVD 

versus control, B) IS versus control, and C) SLE versus control.  

 

Figure 7. Summary of classification performance for all pairwise comparison of control and CVD1 

to CVD5. The heatmap depicts the classification accuracy obtained on an independent test set for 

each of the pairwise comparisons.  

 

Table 1. Baseline characteristics of the analyzed lipid cohort. 

 

Table S1. Significant regulated lipids and trends found in similar studies and discussed in the 

introduction. 

 

Table S2. Quantitative lipid data and statistical outcome based on limma analysis applying linear 

models correcting for gender and statin treatment.  
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Control 
(N=85)

CVD1 
(N=61)

CVD2 
(N=82)

CVD3 
(N=20)

CVD4 
(N=34)

CVD5 
(N=20)

IS     
(N=21)

Sex
Missing 0 1 0 0 0 0 0

F 52 (61.2%) 30 (50.0%) 29 (35.4%) 5 (25.0%) 7 (20.6%) 4 (20.0%) 14 (67%)

M 33 (38.8%) 30 (50.0%) 53 (64.6%) 15 (75.0%) 27 (79.4%) 16 (80.0%) 7 (33%)
Age
Missing 0 1 0 0 0 0 0

Mean (SD)
45.082 

(17.410)
68.490 

(12.017)
68.132 

(11.068)
66.730 

(13.679)
66.288 

(13.525)
63.330 

(12.275)
74.000 

(10)
Range 22 - 82 40 – 90 33-89 36-86 36-92 37-87 49-94

Weight 
Mean (SD) 68 (14) 73 (14) 77 (13) 79 (14) 76 (14) 77 (10) NA
valid (missing) 83 (2) 61 (0) 79 (3) 19 (1) 31 (3) 20 (0) 0 (22)
Height 
quad Mean (SD) 167 (8.9) 165 (8.9) 166 (8.5) 170 (7.8) 166 (9.6) 170 (8.6) NA
quad valid (missing) 80 (5) 61 (0) 79 (3) 19 (1) 31 (3) 20 (0) 0 (22)
BMI 
Mean (SD) 25 (3.9) 27 (4.2) 28 (4) 27 (3.9) 28 (5.2) 27 (3.5) NA
valid (missing) 80 (5) 61 (0) 79 (3) 19 (1) 31 (3) 20 (0) 0 (22)
P value vs control NA 0.03 0.004 0.04 0.02 0.02 NA
Statin Use 
No  79 (93%) 22 (36%) 17 (21%)  7 (35%)  17 (50%)  12 (60%)  15 (71%)
Yes  6 (7.1%)  36 (59%)  56 (68%)  12 (60%) 11 (32%)  5 (25%)  6 (29%)
Missing 0 (0% )  3 (4.9%)  9 (11%)  1 (5%)  6 (18%)  3 (15%)  0 (0%)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.21252659doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252659
http://creativecommons.org/licenses/by-nc-nd/4.0/


SLE 
(N=104)

Total
 (N=427)

0 1

95 (91%) 236 (55.2%)

9 (8.7\%) 190 (44.5%)

9 1
47

 (16) 59 (17)
20-94

104 104
NA 74 (14)
NA 293 (31)
104 104
NA 166 (8.8)
NA 290 (34)
104 104
NA 26.7 (4.3)
NA 290 (34)
NA

104 273
0 132
0 22
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