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Abstract

Background: Chest pain is the second leading reason for emergency department (ED) visits and is
commonly identified as a leading driver of low-value health care. Accurate identification of patients
at low risk of major adverse cardiac events (MACE) is important to improve resource allocation and
reduce over-treatment.

Objectives: We assessed machine learning (ML) methods and electronic health record (EHR)
covariate collection for MACE prediction. We aimed to maximize the pool of low-risk patients that
were accurately predicted to have less than 0.5% MACE risk and could be eligible for reduced testing
(“rule-out” strategy).

Population Studied: 116,764 adult patients presenting with chest pain in the ED between 2013
and 2015 and evaluated for potential acute coronary syndrome (ACS). 60-day MACE rate was 2%.

Setting: Data analysis was performed May 2018 to August 2021.

Methods: We evaluated ML algorithms (lasso, splines, random forest, extreme gradient boosting,
Bayesian additive regression trees) and SuperLearner stacked ensembling. We tuned ML
hyperparameters through nested ensembling, and imputed missing values with generalized low-rank
models (GLRM). Performance was benchmarked against individual biomarkers, validated clinical risk
scores, decision trees, and logistic regression. We assessed clinical utility through net benefit analysis
and explained the models through variable importance ranking and accumulated local effect
visualization.

Results: The SuperLearner ensemble provided the best cross-validated discrimination with areas
under the curve of 0.15 for precision-recall (PR-AUC) and 0.87 for receiver operating characteristic
(ROC-AUC), and the best accuracy with an index of prediction accuracy of 0.07. The ensemble’s risk
estimates were miscalibrated by 0.2 percentage points on average, and dominated the net benefit
analysis at all examined thresholds. At a 0.5% threshold the ensemble model yielded 31
benefit-adjusted workups avoided per 100 patients, compared to 25 for logistic regression and 2-14 for
clinical risk scores. The most important predictors were age, troponin, clinical risk scores, and
electrocardiogram. GLRM achieved a 90% average reduction in reconstruction error compared to
median-mode imputation.

Conclusion: Combining ML algorithms with a broad set of EHR covariates improved MACE risk
prediction and would reduce over-treatment compared to simpler alternatives, while providing
calibrated predictions and interpretability. Patients should receive targeted benefit in their care from
thorough detection of nuanced health patterns via ML.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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The omission of prediction from the major
goals of basic medical science has
impoverished the intellectual content of
clinical work, since a modern clinician’s
main challenge in the care of patients is to
make predictions.

Alvan Feinstein, 1983

1 Introduction

Chest pain is the second leading reason for emergency department visits (Rui et al. ) and is
commonly identified as a leading driver of low-value health care (Sabbatini et al. ). Workup
protocols in patients with chest pain are designed to diagnose the potential for major adverse cardiac
events (MACE) (Kontos et al. ). Missed diagnoses of MACE can be cause for medico-legal action,
which may encourage conservative testing without health benefit. Accurate identification of patients at
low risk of MACE is important to improve resource allocation and reduce overtreatment (Amsterdam
et al. ). Risk scores aim to identify patients eligible for early discharge (i.e. a “rule-out” strategy),
avoiding additional strefss testing and cardiac imaging that is unlikely to be of benefit (Greenslade et al.
). The primary biomarkers used for initial triage are elevated cardiac troponin, a sensitive marker
of cardiac injury measured serially, and repeated electrocardiograms (Scirica ; Smith et al. ).
Previous work has focused on the development and validation of additive risk scores as decision
aids for risk stratification. Such risk scores examine a small number of biomarkers and demographics,
summarize those predictors into qualitative levels, and use a weighted sum to allocate patients into risk
categories. Standard risk scores are HEART (History, ECG, Age, Risk factors and Troponin) and
EDACS (Emergency Department Assessment of Chest Pain Score - Than, Flaws, et al. ). HEART
is most commonly used in North America, although EDACS has similar performance characteristics
(Mark et al. ). Effective risk scores will stratify patients across risk levels such that the qualitative
“low risk” group will have sufficiently low risk of short-term MACE that those patients can be
discharged without additional workup. An ineffective or ill-calibrated risk score would underestimate
the risk in the “low risk” group and lead to an overly optimistic early discharge policy that results in
misidentified future MACE. But given multiple risk scores that are well-calibrated, scores with
improved discrimination could theoretically result in a larger percentage of low-risk patients.

1.1 Background and Objectives

Building on Mark et al. ( ), we sought to assess the performance of machine learning (ML)
methods at predicting MACE among emergency department patients with chest pain. We
hypothesized that ML could improve upon existing validated risk scores through a more complex
integration of predictors that can better estimate MACE risk. Our clinical objective was to maximize
the pool of low-risk patients that are accurately predicted to have less than 0.5% MACE risk and may
be eligible for reduced testing. The primary threshold of 0.5% risk has previously been identified as an
acceptable risk by a majority of emergency physicians for early discharge (Than, Herbert, et al. ).
Using a risk of 0.5% as the test threshold will inherently lead to a negative predictive value of greater
than 99.5%, provided that the risk prediction is well-calibrated in the target population. We also
examined secondary thresholds of 1.0% and 2.0% given varying risk tolerance thresholds among
practicing emergency physicians ( ), as well as presumed variation in patient risk preferences.

A reasonable assessment of ML performance could only be made in comparison to realistic
alternative options. We compared ML performance to simpler indicators of risk: key biomarkers
(troponin, electrocardiogram), validated clinical risk scores (History, ECG, Age, Risk factors and
Troponin [HEART] and Emergency Department Assessment of Chest pain Score [EDACS]), as well as
simpler models: decision trees and logistic regression.

If machine learning can demonstrate improved discriminative performance compared to logistic
regression and related methods, along with appropriate calibration, its next hurdle for adoption is to
provide interpretability. Clinicians may be willing to forgo maximum predictive accuracy for the sake
of understanding how individual predictors influence the output of the algorithm. With analytical
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effort it may be possible to provide sufficient interpretability for clinicians to accept the complication
of machine learning and the benefit of the (potentially) improved predictive accuracy. To facilitate
interpretation, we explained the models through prediction-based variable importance ranking and
accumulated local effect visualization. If simpler algorithms remain preferred, the ML results can at
least approximately the best achievable performance, and so serve as benchmark standards when
considering more restrictive algorithms.

2 Data and Methods

2.1 Source of data

Our study was sourced from the electronic health record (EHR) of 21 emergency departments (EDs)
within Kaiser Permanente Northern California, an integrated health care delivery system with over 1
million annual ED visits.

2.2 Participants

All adult patients were retrospectively included if they had received cardiac troponin testing in the
emergency department between 2013 and 2015 and either presented with a chief complaint of chest
pain or chest discomfort, or whose ED physician had assigned them a primary or secondary ICD-coded
diagnosis of chest pain. The later inclusion criterion is important because patients may complain of
“anginal equivalents” (such as shortness of breath) in lieu of overt chest pain (Amsterdam et al. ).
The initial inclusion pool had a 60-day MACE rate of 8.0%. Patients were excluded if they had a
MACE diagnosis in the ED or within 30 days prior to ED visit, alternative non-ACS diagnoses at
index visit (e.g. pneumonia, pneumothorax, or traumatic injury), could not be tracked due to lack of
active health plan membership during the study (except in cases of death), or had a troponin I > 99th
percentile upper limit of normal given the dominant predictive value of elevated troponin values for
adverse outcomes in both patients with acute coronary syndromes and in the general population
(Bonaca et al. ; De Lemos et al. ). Patients were excluded if their smoking status was
unknown, which was viewed as a key marker of low-quality data. The final study cohort consisted of
116,764 patients with a 60-day MACE incidence of 1.88%. A fourth-generation troponin assay was
used during the study period (AccuTnI+3, Beckman-Couleter, Brea, CA, USA).

2.3 Outcome

Our primary outcome was cumulative MACE incidence within 60 days of the index visit. We defined
MACE as myocardial infarction, cardiogenic shock, cardiac arrest, or death.

2.4 Predictors

We used a total of 74 predictors sourced from the electronic health record, including vitals, labs,
history, qualitative interpretation of ECG imaging, regular expression-based extraction of features from
clinical notes, demographics, and missingness indicators (20). These predictors are detailed in the
supplemental information.

2.5 Missing data

Missingness rates for each predictor are listed in Supplemental Table 1. We created missingness
indicators for each predictor with 1 or more missing values, which marked the observations that were
missing a value. Inclusion of missingness indicators often improves predictive performance (Agor et al.
; Sperrin et al. ), in part because it can reflect the information-seeking behavior of clinicians

stemming from medical diagnosis and evaluation (Agniel et al. ; Groenwold ; Sisk et al. ).
The set of missingness indicators was analyzed for perfect collinearity, and duplicate indicators were
dropped.

Missing predictor values were imputed by factorizing the raw data matrix with generalized low-rank
models (GLRM) (Schuler et al. ; Udell et al. ), a generalization of principal component
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analysis and matrix completion methods designed for mixed type data frames (continuous, categorical,
ordinal, or binary variables). GLRM decomposes the predictor data into a matrix of reduced
components and matrix of archetypes, including possible penalty terms that can induce sparsity (L1)
or simply denoise (L2 or quadratic). Multiplying these two matrices reconstructs the original data
frame, imputing any data entries with missing values; it will also allow imputation of missing values in
future observations, even for predictors with no missingness in the current dataset. Additional details
are provided in the supplemental information. Multiple imputation was not necessary because our
scientific goal was to characterize predictive performance for the unimputed outcome variable, rather
than to estimate statistical parameters for covariates that were imputed, such as linear regression
coefficients (Sisk et al. ; Sperrin et al. ).

GLRM imputation greatly increased the number of unique values (cardinality) for continuous
variables, which would have a negative performance impact on tree-based algorithms that test every
unique value for a potential split. To avoid that performance drop, we using penalized histogram
binning to bin imputed predictors with high cardinality into up to 200 unique values (Rozenholc et al.

).

We evaluated the benefit of the more complex GLRM-based imputation by comparing the imputed
value to the known value, among variables with missingness. The root mean-squared reconstruction
error metric was calculated for each variable, and for both GLRM and median/mode imputation
methods. We could then estimate the percentage improvement in reconstruction error for the GLRM
imputation for each variable, and the average across all predictors with missingness.

2.6 Prediction algorithms

Our prediction algorithm selection strategy focused on well-known algorithms that have shown strong
performance in prior research, including both linear and tree-based estimation. The tree-based
algorithms were random forest (Breiman ), extreme gradient boosting (XGBoost) (Chen et al.

), and Bayesian additive regression trees (Chipman et al. ). The linear prediction algorithms
were generalized additive models (T. J. Hastie et al. ) using thin plate splines (Wood ), and
lasso (Tibshirani ).

Splines have shown competitive performance with tree-based algorithms in prior clinical prediction
work due to their ability to identify non-linear, but smooth patterns (Austin ). The lasso
algorithm (or its generalization the elastic net) is a helpful test of sparsity in the covariates, and a
faster & more nuanced variable selection method than best subset or stepwise selection (T. Hastie et al.

). Better performance for lasso compared to logistic regression would indicate that feature
selection could be helpful for other algorithms, while equal performance could indicate that the
extraction of predictors from the EHR was overly restrictive and should be broadened.

2.7 Benchmarks

When evaluating complex algorithms it is important to contextualize their performance by thoroughly
comparing to simpler alternative approaches or benchmarks. If the benchmark algorithms can achieve
similar performance then the extra complexity of the statistical machine learning algorithms may not
be worthwhile. The improvement of a novel prediction method over standard benchmarks is known as
the skill of the prediction method (Brier ; Murphy et al. ; F. Sanders ). In clinical
prediction the primary alternatives to statistical machine learning are relatively inflexible fits, which
include logistic regression, ordinary least squares, individual decision trees, and stratification on key
clinical covariates. We tested each of these options, where key covariates were defined as peak
troponin, qualitative ECG reading, EDACS score, and HEART score. As a complement to
stratification on different subsets of key covariates, we also evaluated logistic regression and decision
trees when restricted to these key predictors.

2.8 SuperLearner stacked ensembling

When comparing a variety of algorithms an initial choice is to use cross-validation to select the
algorithm with the best out-of-sample performance. This honest evaluation procedure allows
comparing simpler linear models to complex (e.g. tree-based) ones, such that the appropriate amount
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of flexibility is chosen for the given dataset. A more nuanced decision would be to consider a weighted
average of multiple algorithms - creating a team of algorithms whose contribution to the prediction is
based on optimizing out-of-sample performance. That is the nature of stacked ensembles (Breiman

; Wolpert ), sometimes referred to as the Super Learner algorithm (van der Laan, Polley, et al.

). Rather than restrict our prediction machine to a single algorithm, we created a weighted
average across all tested algorithms, and estimated weights based on an optimization goal so that they
minimize a chosen performance statistic on test data. This ensembling procedure has been proven to
perform asymptotically as well or better than the individual estimators ( ). We chose to optimize
the Brier score (i.e. mean-squared error) in our ensemble, using convex weights based on a
non-negative least squares meta-learner. Optimizing on Brier score includes a focus on both
discrimination and calibration for the ensemble (Murphy et al. ). A convex combination of
algorithm weights ensures that predictions fall within the convex hull of the constituent learners, while
also inducing sparsity - i.e. algorithms can have zero weight.

2.9 Hyperparameter tuning

Prediction algorithms often have multiple hyperparameter settings that adjust the estimation
procedure in different ways. Those hyperparameters are not estimated from the data, but rather must
be specified a priori by the analyst. While software implementations will typically provide a default
value for each hyperparameter, there is no reason to believe that the default values are effective for the
current dataset. Customizing the hyperparameter configuration to the current dataset can allow the
algorithms to adapt to the available sample size, number of predictor variables, measurement error in
the predictors, sparsity in predictor relevance, and correlation structure of the predictors.
Hyperparameters are often chosen by fitting the algorithm with different configurations and selecting
the configuration that maximizes accuracy on held-out data, such as through cross-validation. The
benefit of hyperparameter tuning is believed to vary by algorithm, which is referred to as the tunability
of the algorithm (Probst, Boulesteix, et al. ). Random forest, for example, is believed to work well
with default hyperparameters but also can benefit from hyperparameter tuning, particularly to reduce
overfitting (Probst, Wright, et al. ; Segal et al. ).

Hyperparameter tuning is inherently a computationally intensive process, as it involves fitting the
algorithms many different times, and varies based on the number of hyperparameters (dimensionality)
as well as number of the unique values tested for each hyperparameter (resolution). Further complexity
is involved if one considers that some hyperparameters may be more important than others for a given
algorithm. Given the role of hyperparameters in modifying the performance of prediction algorithms,
caution is warranted when generalizing algorithm performance characteristics from individual studies
(e.g. algorithm X outperforms algorithm Y), particularly when hyperparameters are left at their
default values and therefore are not customized to the given dataset.

We adopted nested ensembling as our hyperparameter tuning strategy. Much as using a weighted
ensemble of different algorithms may be preferable to selecting the single best-performing algorithm,
using a weighted ensemble of hyperparameter settings for a given algorithm may yield improved
performance compared to selecting a single set of hyperparameters. With that concept in mind we
created small grids of hyperparameter configurations and estimated a SuperLearner ensemble for a
given algorithm in which the ensemble weights selected the hyperparameter settings that maximized
out-of-sample performance. This ensemble of hyperparameter settings could potentially rely on a
single configuration due to the sparsity induced by the convex combination, or the optimization could
distribute the weighting across multiple configurations if such a weighting improved performance over
a single selected configuration. Another benefit of the nested ensembling is that it limits the number of
learners that are analyzed in the outer SuperLearner ensemble, which can increase stability in the
meta-learning process (i.e. allocation of weights in the convex combination). We used the ensemble
hyperparameter tuning approach for random forests, xgboost, and individual decision trees. Details
are provided in the supplemental information.

2.10 Evaluation

We evaluated risk prediction models based on their discrimination, calibration, and clinical utility.
Nested cross-validation with 5 folds was used to conduct the discrimination and calibration analyses.
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While bootstrap estimation has been promoted for evaluation of clinical prediction models (Austin and

Tu ; Steyerberg, Harrell Jr, et al. ), recent work has shown that the bootstrap can be biased
for evaluating the performance of highly adaptive ML algorithms estimators such as random forests
(Benkeser et al. ).

2.10.1 Discrimination

We chose area under the precision-recall curve (PR-AUC, also known as average precision [AP]) as our
primary performance metric for evaluating discrimination, because it highlights performance
differences that may be obscured by ROC-AUC with imbalanced data (Cook ; Saito et al. ).
The PR-AUC compares positive predictive value to sensitivity across thresholds, focusing on model
performance for the rare positive MACE cases (Davis et al. ). We included area under the receiver
operating characteristic curve (ROC-AUC or the concordance statistic) as our secondary performance
metric, which remains highly popular and interpretable (Janssens et al. ). The downside of
ROC-AUC is that its reliance on the false positive rate gives the model “credit” for predicting negative
cases correctly (true negatives), which is not challenging due to the rarity of MACE. As an exploratory
metric we also estimated the adjusted Brier score (index of prediction accuracy) which integrates
discrimination and calibration into a single metric (Kattan et al. ). We visualized improvements in
discriminative performance using density plots of the calibration slope (Steyerberg, Vickers, et al.

). We did not conduct a reclassification analysis due to recognized limitations (Hilden et al. ;
Kerr et al. ; Leening et al. ; Pepe et al. ).

2.10.2 Calibration

Our clinical use case was centered on a risk threshold of 0.5% to classify patients as “low risk” in order
to qualify for early discharge. Because of that scientific goal, it was especially important to compare
the model’s predicted risks to the observed risks, i.e. its calibration (Lichtenstein et al. ) - also
known as reliability (Brier ; Murphy et al. ) or external correspondence (Yates ). We
assessed the calibration of predicted probabilities in four ways: 1) analysis of the calibration slope of
the predicted risk (Cox ; Steyerberg, Harrell Jr, et al. ), 2) calibration curve visualization
with lowess-smoothing and decile groups, 3) calculating the average absolute value between the
predicted risk and the lowess-smoothed observed risk, known as the integrated calibration index
(Austin and Steyerberg ) and mean absolute prediction error (van Smeden et al. ), 4)
calculation of the index of prediction accuracy (IPA), a transformation of the Brier score (Kattan et al.
). We did not conduct a Hosmer-Lemeshow group-based calibration test due to its recognized
limitations and recommendations against its use (Kramer et al. ; Van Calster et al. ).

As a statistical complement to the visual examination, we also calculated mean absolute prediction
error (MAPE). MAPE is the sample mean of the absolute difference between the smoothed observed
risk and the predicted risk. This statistic depends on the span of data used to smooth the observed
risk, therefore the span used should be reported and multiple span hyperparameter values should be
considered, if not a continuous curve across reasonable span values.

1 n
- Z |Observed Risk(i) — Predicted Risk(i)| (1)

i=1

2.10.3 Clinical utility

Discrimination and calibration are important characteristics of model performance, but they do not
directly capture the impact of the model on patient care when used for clinical decision support
(Vickers, Van Calster, et al. ). The planned clinical use of the prediction model was first to assess
eligibility for early discharge among low-risk patients. Accurately estimating the risk of MACE for
patients would allow those low-risk patients to be discharged and avoid additional unnecessary workup
(overtreatment) and would free up resources (clinical attention, testing capacity, etc.) for higher risk
patients. Low risk was generally defined as being below a 0.5% well-calibrated probability of MACE
within 60 days, with less conservative thresholds of 1% and 2% as additional options.

Our model needed to balance two trade-offs: 1) false negatives in which a patient was identified as
low-risk but whose true risk was above the clinical threshold, and 2) false positives in which patients
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were believed to be above the given threshold but whose true risk was less than the threshold. Errors
in the first category have a greater cost than those in the second category, because there is a greater
potential detriment to those patients who were discharged early but whose true risk exceeded the
threshold. Patients incorrectly estimated to be above the risk threshold, but who are truly low risk,
have comparatively minor costs of additional workup, use of clinical resources, and potential to be

overtreated.
This balancing of trade-offs based on a clinical decision threshold can be evaluated using net
benefit analysis of decision curves (Vickers and Elkin ; Vickers, Van Calster, et al. ). The net

benefit of a model or strategy at a given threshold is (Vickers and Elkin ):

threshold 5

1-— threshold) 2)

The net benefit formula reflects a relative weighting of true positives versus false positives, which is
the threshold / (1 - threshold) term that scales the percentage of false positives. As has been described
previously ( ), a particular decision threshold inherently embeds a relative weighting. In our case a
threshold of 0.5% corresponds to a weight of 0.5% / 99.5% = 0.00503; if we take the inverse that
means that a false negative (missed MACE) is 199 times as bad as a false positive (overtreatment). In
contrast, a threshold of 2% implies that a missed MACE is only 49 times as bad as further workup for
a patient who will not go on to have a MACE.

In a “rule out” scenario where a threshold is applied to a patient’s estimated risk to determine
eligibility for early discharge, one can compare benefit-adjusted net reduction in unnecessary
interventions curves across clinically relevant decision thresholds, scaled to 100 patients for ease of use

(ibid.):

Net benefit = True positives/N — False positives/N x (

threshold 3
1-— threshold) (3)
This form of net benefit analysis answers the question: relative to a naive strategy of treating all
patients, how many patients can the risk model remove from treatment at a given cutoff threshold,
after adjusting for the harm caused by some of those removed patients going on to have a MACE event
(false negatives)?

100 x (net benefit of the model — net benefit of treat all)/ (

2.11 Interpretability

Beyond the statistical performance of a clinical prediction, it can be important to provide an
explanation or overview of how a model generates its predictions. Interpretation is desirable first
because it can provide evidence that the model is working as expected, which can improve the
trustworthiness of its predictions for clinicians, patients, or collaborators. Interpretation may also lead
to scientific insights about how predictors are related to the outcome, which could be conceptualized as
causal pathways, data generating processes, or biological mechanisms. Interpretation can further
inform the data export and cleaning processes, such as identifying extreme values, data entry errors, or
outliers, or suggesting additional predictor variables to incorporate into the model.

Methods of interpretation can be model-specific or model-agnostic. For models within the family of
linear regression, one might provide the estimated beta coefficients for each predictor, along with their
associated confidence intervals and p-values. Interpretation becomes less straightforward as models
become more complex, such as with interaction or polynomial terms in a regression, random forest or
boosted tree models with hundreds or thousands of non-linear decision trees, or splines in which ranges
of a given predictor might have different coefficients.

In this work we focus on two complementary forms of model interpretability: variable predictive
importance ranking and accumulated local effect plots, as described below.

2.11.1 Variable predictive importance ranking

Prediction-oriented variable importance rankings order the predictor variables by their contribution to
a model’s prediction, providing evidence as to which predictors were relied upon the most by the
algorithm. Such rankings could be used as a form of confirmatory analysis if a hypothesized ranking
were created prior to data analysis, which could formally identify predictors that differed from their
expected importance.
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2.11.2 Accumulated local effects

It may also be helpful to understand how a model’s prediction varies over the values of individual
predictors, particularly continuous predictors with a wide range or large number of unique values.
Partial dependence plots (PDPs) as proposed by Friedman ( ) are commonly used to provide this
type of interpretability, but they can yield flawed results because they make a key unrealistic
assumption that features are statistically independent of each other (Molnar , p- 5.1.3).
Accumulated local effect (ALE) plots are a recently developed method that avoids that limitation of
PDPs, by counterfactually modifying observations that lie within a nearby kernel neighborhood of the
current predictor’s value of interest (Apley et al. ). Following the variable importance ranking, we
visualize the contribution of high-importance continuous variables using accumulated local effect plots.

3 Results

3.1 Model performance

3.1.1 Discrimination

Figure la displays the estimated precision-recall area under the curve (PR-AUC) PR-AUCs and 95%
confidence intervals for each combination of features and estimation algorithm. The MACE mean on
the training sample represents the baseline PR-AUC, which was 1.88%. The SuperLearner ensemble

achieved the highest estimated PR-AUC (0.148, 95% CI [0.126, 0.170]), followed by the random forest
with hyperparameter tuning (0.144, [0.125, 0.164]), the default random forest (0.143, [0.122, 0.165]),

and the tuned XGBoost (0.138, [0.116, 0.160]). By comparison the PR-AUC for logistic regression was
0.120 [0.103, 0.137], noticeably lower than the ensemble. Point estimates and confidence intervals are
listed in eTable 3.

For our secondary discrimination metric, cross-validated ROC-AUC was calculated and is displayed
in Figure 1b (LeDell et al. ). The SuperLearner ensemble again achieved the highest performance
(ROC-AUC = 0.866, 95% CI [0.859, 0.873]), followed by tuned random forest (0.860, [0.853, 0.867]),
BART (0.859, [0.852, 0.866]), and tuned XGBoost (0.859, [0.852, 0.866]). The ROC-AUC for logistic
regression (0.842, [0.834, 0.850]) was significantly lower than the ensemble. Point estimates and
confidence intervals are listed in eTable 4.

Figure 1. Comparison of cross-validated discriminative performance using a) PR-AUC metric and b)
ROC-AUC, with 95% confidence intervals.
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We reviewed the distribution of learner weights in the SuperLearner ensemble to examine which
algorithms were used most heavily (eTable 2). Four algorithms were always incorporated into the
ensemble: default random forest (average weight = 0.25), tuned random forest (average weight = 0.25),
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default XGBoost (average weight = 0.20), and BART (average weight = 0.18). The remaining 3
learners were sometimes incorporated into the ensemble, with average weights ranging from 0.08 to
0.004 and a maximum individual weight of 0.18.

3.1.2 Calibration

We visually compared the predicted risk of the SuperLearner ensemble to the lowess-smoothed
observed risk in Figure 2. The red line is the target calibration in which predicted risk is equal to
observed risk. The blue line shows the lowess-smoothed observed risk for each value of the predicted
risk. The median predicted risk was 0.64%, with a first quartile of 0.2% and third quartile of 2%. Our
primary threshold of scientific interest was 0.5% for possible early discharge. Given those low risk
levels, it would be best to “zoom in” our visual calibration review to that region. We show a zoomed
calibration plot as Figure 2a.

We further include a exponential-scale calibration plot (Figure 2b) with calibration confidence
intervals after grouping patients into 10 groups based on predicted risk, consistent with TRIPOD
guideline recommendations (Collins et al. ). Due to the low rate of MACE the exponential scaling
of axes allows easier comparison across the probability range, although it may be less visually intuitive
due to the shifting of scales.

Figure 2. Calibration plot comparing predicted risk to observed risk for the ensemble model. Clinical
thresholds of 0.5%, 1%, or 2% risk are noted by blue vertical lines. A) linear scale, b) log scale.
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We found a mean absolute prediction error (MAPE) of 0.19% with a lowess smoothing span of 0.05
(low smoothing), and an MAPE of 0.14% with a smoothing span of 0.20 (moderate smoothing). These
statistics indicate that the ensemble risk prediction was typically miscalibrated by about 0.17
percentage points.

Observation
count

3.1.3 Clinical utility

The ensemble model dominated the net reduction in interventions curves across all clinically relevant
decision thresholds between 0% and 4% (Figure 3). This finding provides conclusive, direct evidence
that the ensemble model would lead to the best patient care among the evaluated options, and is
therefore an ethical imperative to bring into clinical practice. The relative improvement for the
ensemble model, as well as random forest and logistic regression, was particularly high at conservative
decision thresholds between 0.6% and 0%, when compared to the risk scores or a single decision tree.
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Figure 3. Clinical utility evaluation via benefit-adjusted net reduction in unnecessary interventions
per 100 patients.
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3.1.4 Missing data imputation

Compared to median/mode imputation, GLRM-based imputation yielded an average reduction in
reconstruction error of 90% (eTable 5), suggesting a beneficial ability to capture missingness patterns.

3.2 Interpretation
3.2.1 Variable importance ranking

As discussed earlier, our objective for the variable importance analysis was to understand which
variables were most influential on the prediction of our final model. Providing that ranking could
improve the interpretability of the risk prediction, allowing for confirmation that the results are
reasonable and possibly yielding additional scientific insights. However, our final model is quite
complex: it is a weighted average of multiple versions of random forests, xgboost models, bayesian
additive regression trees, etc. In this work we provide rankings for the top two estimation algorithms:
random forest and xgboost (Table 1). We used the optimal hyperparameter settings from
cross-validated analysis.

Interestingly we see rather different results between the two algorithms, which supports the
hypothesis than an ensemble of multiple algorithms could achieve better performance than selecting a
single estimation algorithm. Both algorithms place high emphasis on the EDACS and HEART risk
scores, demonstrating the benefit of including those scores along with the underlying predictors.
Different versions of the cardiac troponin predictor are emphasized by the two algorithms: random
forest focuses on 3-hour troponin whereas xghoost focuses on peak troponin. ECG reading is
emphasized by xgboost but not random forest. Both algorithms make use of lipid profile predictors
(LDL, HDL) and vital signs (pulse, respiration) that are not included in the existing risk scores. The
random forest makes use of missingness indicators from the elements of a lipid panel, while xgboost
does not. Also noteworthy is the lack of pain-related characteristics sourced from clinical notes in the
top predictors, a difference from prior MACE prediction work (Amsterdam et al. ).

3.2.2 Accumulated local effects

Based on the rankings from the variable importance analyses, we generated accumulated local effect
plots (Figure 4) to visualize the conditional relationship of top predictors to the ensemble’s prediction,
across their range of values.

9/16


https://doi.org/10.1101/2021.03.08.21252615
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.03.08.21252615; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Table 1. Variable importance rankings

A. Random Forest importance ranking B. XGBoost importance ranking
Mean
Variable Decrease Variable Gain

Accuracy (%)

1. Age 0.262 1. Peak troponin 0.3288
2. EDACS 0.188 2. HEART 0.1591
3. HEART 0.117 3. High EDACS 0.0712
4. CAD 0.117 4. EDACS 0.0457
5. Troponin 3HV 0.111 5. High HEART 0.0444
6. LDL 0.104 6. ECG 0.0415
7. Total Cholesterol 0.102 7. Peak pulse 0.0320
8. Missing Triglcyerides 0.083 8. Age 0.0282
9. Missing Total Cholesterol 0.080 9. BMI 0.0234
10. Missing LDL 0.076 10. SBP 0.0217
11. Missing HDL 0.073 11. Myocardial infarction 0.0210
12. Pulse 0.071 12. CAD 0.0198
13. Peak pulse 0.070 13. Aortic athero. 0.0175
14. BMI 0.051 14. Troponin 3HV 0.0165
15. Diabetes 0.047 15. HDL 0.0159
16. Hypertension 0.045 16. Respiration 0.0135
17. HDL 0.044 17. O2 saturation 0.0131
18. HbAlc 0.043 18. GFR 0.0130
19. Peak troponin 0.041 19. Exertion 0.0127
20. Triglycerides 0.039 20. Lowest SBP 0.0091

4 Discussion

It remains debated whether machine learning methods can exhibit statistically and substantively
significant benefits for risk prediction compared to logistic regression, decision trees, or additive risk
scores (Goldstein, Navar, and Carter ; Goldstein, Navar, Pencina, et al. ; R. Khera et al.

). A recent meta-analysis, for example, did not find systematic benefit from machine learning in
comparison to logistic regression (Christodouloua et al. ). Yet there is also optimism about the
potential for artificial intelligence methods in medicine (He et al. ) in general, as well as cardiology
specifically (Johnson et al. ). As long as cross-validation is used as a neutral evaluation procedure,
the debate is unnecessary because we can test and select the algorithm(s) with the appropriate amount
of flexibility (bias-variance trade-off) for the signal in the current dataset (van der Laan and Dudoit

).

Certain analytical characteristics would be important to arrange in order for ML to potentially
improve upon simpler options. First, it was important to extract a broader set of granular predictor
variables than were used by existing scores. Extensive predictor sets give ML the potential to capture
multi-variable interactions and nonlinear relationships that are missed by linear or additive approaches,
perhaps relevant only to certain subgroups of patients. Further, ML may statistically identify novel
predictors that have been missed by existing scores or the broader literature, or whose predictive
impact was too small, in too complex a form, or underrepresented in terms of sample size to be
detected by non-ML methods. The expansion of electronic health records (EHRs) also makes broader
covariate collection more feasible and relevant than was possible prior to EHRs, while also facilitating
more granular measurement of variables (E. H. Kennedy et al. )

It is also helpful for variables be measured on a fine-grained scale, which gives ML the opportunity
to detect novel cut-points or thresholds that improve performance. Variables should be kept as their
original continuous measurements rather than dichotomized or discretized into qualitative levels (Senn
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Figure 4. Accumulated local effect plots of key continuous predictors.

0.08 008 008 0.08
0.06 0.06 0.06 0.06

004

ALE of .y

002 002 002 0.02

2 0 7 100 10 0 10 20 30 0 4 8 6 9 2 1
Age EDACS HEART HbAlc
] e EE Y SO~ 5= S SN | | A AMDAA o EE A
a8 a8 a8 &8
0.08 0.08 0.08 0.08
0.06 0.06 0.06 0.06
> > > >
5 004 5 004 5 004 5 004
w w w w
Y Y =] 4
< < < <
0.02 0.02 0.02 0.02
0.00 0.00 0.00 \/’/ 0.00
o 0 100 15( 200 250 100 0 0.00 0.01 0.02 0.03 0.04 0.00 0.02 0.04 0.06 0.08
Pulse Pulse peak Trop. peak Trop. 3HV

ity
ty

A e - A A A A

008 008 008 0.08

sample
Densil

006 006 0.06 0.06

004

ALE of .y
ALE of y

002 002 002 0.02

20 40 60 80 0 200 400 0 300 600 900 0 50 100 150 200
Body mass index LDL Total cholesterol HDL

sample

Sample
D

o

). For example, a predictor such as body mass index (BMI) loses substantial information when it
is dichotomized into an indicator of high-BMI or the absence of high-BMI. A single threshold chosen
for for that dichotomization may not be optimal for certain subgroups or regions of risk; for example,
low BMI is often a stronger risk factor of disease than obesity. One of the benefits of ML is that it can
identify thresholds in a data-adaptive way, allowing it to better approximate unknown or
ill-understood physiological processes. That said, very high cardinality variables can result in
overfitting and slow down the training of certain machine learning algorithms, such as decision trees,
that test each unique value as a possible subgroup splitting threshold. It may be beneficial to reduce
the cardinality of granular continuous variables through histogram binning that scales with the dataset
size, e.g. log(sample size) x 5.

4.1 Limitations and future work

The next step in model evaluation is to conduct one or more external validations of the discrimination,
calibration, and net benefit of the ensemble model (Moouns et al. ). This validation might include
future retrospective or prospective cohorts at the current study location (temporal validation),
although preferably cohorts sourced from other regions or EHRs (geographical or institutional
validation) ( ). We hope to collaborate with groups interested in such validations.

We aim to expand the machine learning in several ways in future work. Cross-validation could be
conducted using temporal splitting to incorporate loss in performance due to distribution changes over
time (Roberts et al. ). Additional machine learning algorithms could be tested for benefit, such as
LightGBM, CatBoost, extremely randomized trees, multivariate adaptive regression splines, and deep
learning for tabular data. The ensemble weighting (metalearner) could directly optimize net benefit.
Incorporating feature ranking and selection may benefit the simpler algorithms by removing unhelpful
predictors, such as through ensemble methods (Effrosynidis et al. ). Feature engineering might be
beneficial as well, such as creation of interaction terms or even incorporation of the principal
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components from the GLRM imputation. Due to computational limitations we were not able to
conduct hyperparameter tuning on the BART learner, which likely would provide some performance
benefit. We are optimistic that random search or model-based search (e.g. Hyperband) rather than
grid search could provide even stronger tuning of algorithm hyperparameters across a higher number of
dimensions (Li et al. ). Imputation model training and data standardization could be restricted to
the training fold, avoiding even unsupervised use of test set data (Jaeger et al. ). Evaluation of
the GLRM imputation could be further contextualized through cross-validated comparisons to
additional imputation methods, especially principal component analysis, k-nearest neighbors, and deep
autoencoders, or even stacked ensemble imputation strategies. The variable importance ranking could
be extended through a random forest-style permutation importance analysis of the ensemble model,
conditional importance measures (Strobl et al. ), and through targeted learning methods such as
vimp (Williamson et al. ) or varimpact (Hubbard et al. ). Calibration might be improved
through targeted learning-based adjustment (Brooks et al. ) or isotonic regression on validation
data. Cross-validated estimation of discrimination performance could be improved through
cross-validated targeted maximum likelihood estimation (Benkeser et al. ).

Beyond those technical considerations, bringing this technology to the bedside is a remaining task.
Implementing this work as a clinical decision support tool for real-time usage would require extracting
and preparing the predictor variables for a given patient (including possible in-clinic data entry for
recently acquired predictors), running the model to generate the prediction, and then visualizing or

otherwise returning the prediction for usage by medical providers (Sendak et al. ). Stakeholder
engagement, including user testing, training, and feedback, would be necessary to ensure widespread
adoption of the tool (Scheinker et al. ).

5 Conclusion

In this work we explored the benefit of complex machine learning algorithms for predicting major
adverse cardiac events in patients with chest pain. We found that the ML algorithms were able to
achieve improved discrimination compared to simpler baselines such as logistic regression, decision
trees, or stratification on individual predictors. Combining multiple algorithms into an ensemble
estimator yielded the best performance, and rather than select optimal hyperparameters we created an
ensemble of algorithms across different hyperparameters. We showed the surprising effectiveness of
generalized low-rank models for imputation of missingness in EHR-sourced patient data. The result
was a well-calibrated ensemble model that dominated patient net benefit analysis at all examined risk
thresholds, demonstrating the utility for patient care as a clinical decision support system. Finally, we
provided interpretation of how the ensemble’s prediction is generated through two methods: ranking
the predictors by their contribution to predictive performance, and visualizing the dose-response effect
of continuous predictors with accumulated local effect plots.
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