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ABSTRACT 

Objective: While there exist numerous methods to predict binary phenotypes using electronic health 

record (EHR) data, few exist for prediction of phenotype event times, or equivalently phenotype state 

progression. Estimating such quantities could enable more powerful use of EHR data for temporal 

analyses such as survival and disease progression. We propose Semi-supervised Adaptive Markov 

Gaussian Embedding Process (SAMGEP), a semi-supervised machine learning algorithm to predict 

phenotype event times using EHR data. 

Methods: SAMGEP broadly consists of four steps: (i) assemble time-evolving EHR features predictive 

of the target phenotype event, (ii) optimize weights for combining raw features and feature embeddings 

into dense patient-timepoint embeddings, (iii) fit supervised and semi-supervised Markov Gaussian 

Process models to this embedding progression to predict marginal phenotype probabilities at each 

timepoint, and (iv) take a weighted average of these supervised and semi-supervised predictions. 

SAMGEP models latent phenotype states as a binary Markov process, conditional on which patient-

timepoint embeddings are assumed to follow a Gaussian Process. 

Results: SAMGEP achieves significantly improved AUCs and F1 scores relative to common machine 

learning approaches in both simulations and a real-world task using EHR data to predict multiple sclerosis 

relapse. It is particularly adept at predicting a patient’s longitudinal phenotype course, which can be used 

to estimate population-level cumulative probability and count process estimators. Reassuringly, it is 

robust to a variety of generative model parameters. 

Discussion: SAMGEP’s event time predictions can be used to estimate accurate phenotype progression 

curves for use in downstream temporal analyses, such as a survival study for comparative effectiveness 

research. 
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INTRODUCTION 

 Electronic Health Record (EHR) data collected during the routine delivery of care have in recent 

years enabled countless opportunities for translational and clinical research.[1–3] Comprising freeform 

clinical notes, lab results, prescriptions, and various codified features including International 

Classification of Diseases (ICD) and Current Procedural Terminology (CPT) billing codes, EHR data 

encode rich information for research. However, a major limitation of EHR data is the lack of precise 

information on disease phenotypes. Phenotype surrogate features such as ICD diagnosis codes often 

exhibit dismal specificity that can bias or de-power the downstream study.[4,5] Meanwhile, manual 

annotation of phenotypes via chart review is laborious and unscalable. These limitations become even 

more pronounced when the object of interest is the timing of clinical events – or equivalently, how 

clinical status changes over time – which is important for evaluating disease progression. Surrogates of 

event time derived from EHR codes often exhibit systematic biases, and multiple features may be needed 

to accurately predict how a phenotype progresses over time.[6-8] 

  For binary phenotypes, researchers have proposed a variety of unsupervised and semi-supervised 

methods requiring few-to-no manually-annotated “gold-standard” labels.[9-20] However, very few such 

methods exist to predict phenotype event times. Chubak et al. developed a rule-based algorithm for breast 

cancer recurrence that 1) classifies a patient’s overall recurrence status, and 2) for recurrence-positive 

patients, takes the earliest encounter time of one or more expert-specified codes as the predicted 

recurrence time.[8] Hassett et al. proposed a similar algorithm averaging the peak times of the pre-

specified codes rather than taking the first observed instance.[7] Uno et al. expanded on this by using 

points of maximal increase in lieu of peak values, and adjusting for systematic temporal biases between 

the timings of codes and the target phenotype.[6] While these approaches achieve notable performance, 

they are limited by their 1) reliance on domain expertise to identify predictive codes, 2) inability to utilize 

more than a handful of codes, and 3) sensitivity to sparsity, a common characteristic of EHR data.    

 Using more sophisticated machine learning methods to predict phenotype event times can 

potentially address these limitations. Traditional supervised learning methods such as logistic regression, 
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random forest, and naive Bayes are suboptimal for modeling longitudinal processes as they cannot 

account for intertemporal associations in both outcomes and features. Recurrent neural networks (RNNs), 

which are designed for sequence data and well-conditioned to high feature dimensions, have enjoyed 

particularly widespread application to prediction using EHR data.[21-25] However, these models require 

large numbers of training labels to achieve stable performance, which is not feasible for phenotypes 

necessitating manual labeling. Consequently, existing applications of RNNs to EHR-based prediction all 

use readily available outcome measures such as discharge billing codes, limiting application to 

phenotypes with reliable codified proxies.  In addition, these models are not intuitively interpretable. 

On the other end of the spectrum, researchers have developed unsupervised computational 

models of chronic disease progression that do not require any gold-standard labels. Many of these 

approaches employ Hidden Markov Models (HMMs) in which latent states represent progressive stages 

of disease. For instance, Jackson et al. apply a multistage discrete HMM to aneurysm screening, Sukkar et 

al. apply one to Alzheimer’s disease, and Wang et al. apply a continuous HMM to progression of chronic 

obstructive pulmonary disease (COPD).[26-29] While these unsupervised models produce promising 

computational models of disease progression, they may learn latent disease stages that are not clinically 

relevant. 

 Using machine learning to predict pre-defined (i.e. not computational) phenotype state 

progression from EHR data remains a relatively untrodden problem. We draw inspiration from a handful 

of studies outside the EHR community that use longitudinal physiological measurements to predict sleep 

state – a binary time series outcome akin to clinical events such as relapse or flare.[30-33] Of particular 

note, Gao et al. fit a mixed effects logistic regression model to predict sleep state, achieving significantly 

higher accuracy than naive logistic regression, random forest, or other time-agnostic methods at the 

expense of requiring a large number of sleep state labels.[30] To efficiently leverage a small number 

(~50-100) of labeled and large number of unlabeled longitudinal EHR data to predict the progression of a 

binary phenotype state, we propose in this paper the Semi-supervised Adaptive Markov Gaussian 

Embedding Process (SAMGEP) method. Unlike existing event time prediction algorithms, SAMGEP can 
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leverage hundreds of features rather than a handful of surrogates by combining sparse EHR features and 

their embeddings into dense patient-timepoint embeddings via a novel weighting procedure. It then 

models the target phenotype state using a Hidden Markov Model with the patient-timepoint embedding 

progression as a Gaussian Process emission, combining aspects of existing methods to jointly model the 

evolution of a patient’s phenotype state and EHR feature set over time. SAMGEP enables more powerful 

application of EHR data to temporal analyses such as survival or disease progression.  

 

 

METHODS 

 The SAMGEP algorithm broadly consists of four steps: (i) assemble time-evolving EHR features 

predictive of the target phenotype event, (ii) optimize weights for combining raw features and feature 

embeddings into dense patient-timepoint embeddings, (iii) fit supervised and semi-supervised Markov 

Gaussian Process (MGP) models to this embedding progression to predict marginal phenotype 

probabilities at each timepoint, and (iv) take a weighted average of these semi-supervised and supervised 

predictions with weights determined adaptively to optimize prediction performance. Figure 1 illustrates 

the overarching SAMGEP procedure. 

 

Assembling Predictive Features 

Candidate features include log-transformed counts of ICD diagnosis codes or coarser 

“phenotype” codes (PheCodes), RxNorm drug codes, CPT procedure codes, lab tests, and NLP-curated 

mentions of relevant concept unique identifiers (CUIs) in a patient’s chart during a given time period. 

Features can be selected manually or identified automatically via label-free methods such as the 

surrogate-assisted feature extraction (SAFE) method.[34] In this study, time periods are defined as 

consecutive non-overlapping 1-month periods starting at the patient’s first PheCode for the target 
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phenotype. Figure 2 depicts the form of raw EHR feature data. Since SAMGEP employs sparse feature 

weighting to select informative features, it is preferable to aim for inclusivity when assembling features. 

Henceforth we let 𝑽!×# denote the matrix of m-dimensional embedding vectors of p features. We 

use 𝑖, 𝑗, and 𝑡 to index patients, raw features, and timepoints respectively, and we assume there are a total 

of 𝑁 patients, and 𝑇(𝑖) timepoints in our dataset. Let 𝑪𝒊,𝒕 denote the 𝑝-dimensional feature vector for 

patient 𝑖 at timepoint 𝑡, and 𝑌',( ∈ {0,1} denote the phenotype state for patient 𝑖 at timepoint 𝑡. Moreover, 

let 𝐻',(
)*+ denote patient 𝑖’s log mean visit count during time period 𝑡 – a measure of healthcare utilization. 

Finally, we once again assume that we have a limited set of 𝑛 phenotype-labeled patients and a much 

larger set of 𝑁 − 𝑛 unlabeled ones. 

 

 

Producing Patient-Timepoint Embeddings 

 We compute patient-timepoint embeddings, denoted by 𝑿𝒊,𝒕, as a weighted sum over feature 

embedding vectors: 

𝑿𝒊,𝒕 = 𝑪𝒊,𝒕𝑾𝑽,  for 𝑖 = 1,… ,𝑁	and	𝑡 = 1,… , 𝑇' 

where 𝑪𝒊,𝒕 represents the feature log count vector for patient 𝑖 at timepoint 𝑡, 𝑾 is the 𝑝 × 𝑝 diagonal 

matrix with feature weights on the diagonal, 𝑇' is the total number of timepoints for patient 𝑖, 𝑁 is the 

total sample size, and 𝑽!×# is the matrix of p m-dimensional embedding vectors.  See the Supplementary 

Materials for details on how feature embeddings are generated. We choose 𝑾 via L1-regularized linear 

discriminant analysis minimizing:  

𝑫(𝑾) = (𝝁𝟏 − 𝝁𝟎)𝑻𝚺/𝟏(𝝁𝟏 − 𝝁𝟎) − 𝝀B|𝑾|B𝟏
𝟏	 

where  

𝝁𝒚 =
∑ ∑ 𝑿𝒊,𝒕𝐼(𝑌',( = 𝑦)1!

(23
4
'23

∑ ∑ 𝐼(𝑌',( = 𝑦)1!
(23

4
'23

	 , and		𝚺 =
1
𝑁𝑇

GG(𝑿𝒊,𝒕 − 𝝁𝒀𝒊,𝒕)H𝑿𝒊,𝒕 − 𝝁𝒀𝒊,𝒕I
6

1!

(23

, 𝑦 = 0,1.
4
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The L1-term imposes sparsity, driving the weights for empirically uninformative features to zero. We 

optimize 𝑾 using projected gradient ascent with the constraint 𝑾3,3 = 𝟏 to enable identifiability, where 

without loss of generality we assume that the first feature is a known highly predictive feature. The step-

size at each iteration of ascent is chosen by line search. We optimize the regularization hyperparameter 𝜆 

using 10-fold cross-validation within the labeled set. 

 

Fitting Markov Gaussian Process 

 Markov Gaussian Process (MGP) is a generative mixture-like model that combines two key 

assumptions: 1) 𝑌',3, … , 𝑌',1(') follows a discrete time markov process, and 2) the patient embedding 

vectors over time 𝑿𝒊,𝟏, … , 𝑿𝒊,𝑻(𝒊) | 𝑌',3, … , 𝑌',1(')	follow a Gaussian Process. This generative framework 

primes SAMGEP for the semi-supervised setting in which we have a large amount of EHR data of which 

only a limited subset has the longitudinal outcome {𝑌',3, … , 𝑌',1(')} labeled. 

 

Discrete Time Markov Process Assumption 

 We assume a markov process model for 𝑌',3, … , 𝑌',1(') conditional on healthcare utilization 𝐻' 

such that 𝑃(𝑌',( = 𝑦B𝑌',3, … , 𝑌',(/3, 𝐻'I = 𝑃(𝑌',( = 𝑦B𝑌',(/3, 𝐻'I, where 𝐻' is obtained as the log-count of 

all encounters throughout a patient’s record. This model can be alternatively specified by two rules: 

𝑃(𝑌',3 = 1|𝐻') = 𝜋'9'((𝐻'),			𝑃(𝑌',( = 𝑦B𝑌',(/3 = 𝑦(/3, 𝐻'I ≡ 𝜋((𝑦(/3|𝐻'), for	𝑡 > 1 

where {𝜋'9'( , 𝜋((𝑦(/3), 𝑡 > 1} are unknown transition probabilities that fully specify the markov model. 

We further assume that for some 𝝀:;<=>? = {𝜆'9'( , 𝜆@, 𝜆3, 𝜆A, 𝜆B, 𝜆C@, 𝜆C}, 

𝜋'9'((𝐻') = 𝑒𝑥𝑝𝑖𝑡(𝜆'9'( + 𝜆C@𝐻') 

𝜋((𝑦(/3|𝐻') = 𝑒𝑥𝑝𝑖𝑡(𝜆@(1 − 𝑦(/3) + 𝜆3𝑦(/3 + 𝜆A𝑡 + 𝜆B log 𝑡 + 	𝜆C𝐻'), 

Here we include both linear and log-linear effects for time on 𝜋((𝑦(/3|𝐻') to better capture how event 

risk may change over time without overfitting. 
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Gaussian Process Assumption 

 A Gaussian process is a stochastic process wherein any finite collection of observations follows a 

multivariate normal distribution. Here, we assume that the patient embeddings over time follow a 

Gaussian process: 

𝑿𝒊,𝟏, … , 𝑿𝒊,𝑻(𝒊) | 𝑌',3, … , 𝑌',1! 	~	𝐺𝑃(𝝁(𝒕), 𝚺(𝒕)) 

We further specify the mean and covariance functions 𝝁(𝒕) and 𝚺(𝒕) respectively. For some 𝜽DE =

{𝝁𝟎, 𝝁𝟏, 𝝁𝑯, 𝝁𝒀𝑯, 𝝁𝟐, 𝝁𝟑, 𝜎I , 𝛼I , 𝜏I , 𝜌I) , 𝑘 = 1,… , 𝑝; 𝑙 = 1,… , 𝑝}, we assume that: 

𝝁𝒊(𝒕) = 𝐸(𝑿𝒊,𝒕) = 𝝁𝟎H1 − 𝑌',(I + 𝝁𝟏𝑌',( + 𝝁𝑯𝐻' + 𝝁𝒀𝑯𝐻'𝑌',( + 𝝁𝟐𝑡 + 𝝁𝟑 log 𝑡 + 𝝁𝟒𝑌',(𝑡 + 𝝁𝟓𝑌',( log 𝑡 

VarH𝑋',(,II = 𝜎IA exp(2𝛼I𝐻') , CovH𝑋',(,I , 𝑋',(,)I = 𝜌I)𝜎I𝜎)exp	{(𝛼I+𝛼))𝐻'} 

In summary, we assume that patient 𝑖’s expected embedding at timepoint 𝑡, 𝝁𝒊(𝒕), is a function of his/her 

contemporaneous phenotype state 𝑌'(, overall healthcare utilization 𝐻', and time 𝑡. We assume that the 

marginal variance of embedding component 𝑘 can be represented by some baseline 𝜎IA scaled by the 

effect of healthcare utilization. We denote the correlation between embedding components 𝑘 and 𝑙 as 𝜌I), 

which we assume to be constant over time. Between timepoints, we employ a first-order univariate 

autoregressive (AR(1)) kernel structure such that the residual at timepoint 𝑡, 𝜖',(,I = 𝑋',(,I −

𝐸(𝑋',(,I|𝒀𝒊, 𝐻'), is a linear function of its temporally previous value 𝜖',(/3,I with autocorrelation 

coefficient 𝜏I: 

𝐸o𝜖',(,IB𝜖',(/3,Ip = 𝑟𝜏I𝜖',(/3,I 

𝑟 ∈ [0,1] is an autoregression regularization hyperparameter separately trained by 10-fold cross-

validation: 𝑟 = 0 ignores intertemporal correlation while 𝑟 = 1 results in undampened autoregression. 

We chose first-degree autoregression over higher-degree models due to computational ease and mitigation 

of overfitting. 

 

Implementation and Inference 
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 MGP is fit via one iteration of an approximating expectation-maximization (EM) algorithm. An 

EM algorithm iteratively derives an expression for the expected log-likelihood given the current 

parameter estimates (E-step), and re-computes parameter estimates that maximizes this expected log-

likelihood (M-step). Our implementation approximates the expected log-likelihood in the E-step by 

deriving the marginal posteriors of each latent phenotype state, 𝑌t',(|𝑿𝒊, rather than the more complex joint 

posterior 𝒀u𝒊|𝑿𝒊. Before we fit MGP, we optimize the 𝑟 hyperparameter using 10-fold cross-validation on 

the labeled set. We then initialize the EM by optimizing the model parameters {𝝀:;<=>?, 𝜽DE} on the 

labeled set only and using this model to impute labels for the unlabeled set. We refer to predictions made 

using this initial model as MGP’s supervised estimator 𝒑w𝒔𝒖𝒑. Finally, we re-optimize {𝝀:;<=>?, 𝜽DE} 

using both observed and imputed phenotype labels. We refer to predictions made using this re-trained 

model as MGP’s semi-supervised estimator 𝒑w𝒔𝒖𝒑. In this study we evaluated the supervised and semi-

supervised models on the unlabeled set itself (for which we masked the gold-standard labels), though the 

models can also be applied to a separate dataset. Specific details of our fitting procedure are supplied in 

the Supplementary Materials. 

 

Combining Semi-supervised and Supervised Predictions 

 Theoretically, semi-supervised generative models such as markov gaussian process should benefit 

from the additional information in the unlabeled set if the model is correctly specified. However, semi-

supervised predictors have been shown to be more sensitive to model misspecification than their 

supervised counterparts. To mitigate this effect, SAMGEP returns a weighted average of 𝒑w𝒔𝒖𝒑 and 

𝒑w𝒔𝒆𝒎𝒊𝒔𝒖𝒑, with mixture weight 𝛼 optimized by 10-fold cross-validation maximizing the area under the 

receiver operating curve (AUC) of held-out 𝑌',( predictions: 

𝒑w𝒇𝒊𝒏𝒂𝒍 = 𝛼𝒑w𝒔𝒆𝒎𝒊𝒔𝒖𝒑 + (1 − 𝛼)𝒑w𝒔𝒖𝒑 

Our results on a real world EHR-based event prediction task demonstrate that this weighted average 

outperforms both 𝒑w𝒔𝒖𝒑 and 𝒑w𝒔𝒆𝒎𝒊𝒔𝒖𝒑 (Figure S1). 
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Data and Metrics for Evaluation 

Simulation Study 

 To evaluate the SAMGEP algorithm with simulated data, we generated datasets of 𝑝 = 150 count 

features along with 𝐻 for a variable number of patients, each with a mean of 25 timepoints. To assess our 

method’s robustness to various model specifications, we varied the following generative parameters: (i) 

𝑌|𝑇 where ‘independent’ indicates  𝑌 ⊥ 𝑇, ‘correct’ follows SAMGEP’s generative model, and ‘complex’ 

denotes over-parametrization of 𝑌(𝑇); and (ii) 𝑪|𝑌 (marginally lognormal vs. logt with 5 df) with intra-

temporal correlation matrix fixed at the observed correlation of our real-world dataset and inter-temporal 

correlation parameter 𝜌 varied from 0 to 0.8. We considered 𝑛 = {50,100} and 𝑁 =

{1000,5000,20000}. Moreover, we let the number of informative features vary from 5 to 100. Details of 

our simulation generative mechanisms are supplied in the Supplementary Materials. 

 

Real EHR Data Analysis 

We collected longitudinal EHR data between January 1, 2006 and December 31, 2016 for 4,706 

patients with at least one ICD-9 code for multiple sclerosis (340) from the Partners HealthCare system, 

which includes Brigham and Women’s Hospital and Massachusetts General Hospital in Boston, MA. We 

derived neurologist-confirmed multiple sclerosis relapse events and dates for 1,435 patients from the 

Comprehensive Longitudinal Investigation of Multiple Sclerosis at Brigham and Women’s Hospital 

(CLIMB) research registry. CLIMB participants have at least one annual clinic visit during the study 

period. The Partners HealthCare IRB approved the use of both research registry and EHR data. 

We defined a relapse event as a clinical and/or radiological relapse. Clinical relapse was defined 

as having new or recurrent neurological symptoms lasting at least 24 hours without concurrent fever or 

infection. Radiological relapse was defined as having a new T1-enhancing lesion and/or a new or 

enlarging T2-FLAIR hyperintense lesion on brain, orbit, or spinal cord MRI.  
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From the EHR dataset we extracted pertinent demographic information, including age, sex, and 

race/ethnicity. We also extracted patient-level occurrences of billing codes, including International 

Classification of Disease 9th/10th edition (ICD-9/10) and Current Procedural Terminology (CPT) codes. 

We mapped ICD codes to PheCodes using the established PheWAS mapping.[35] To mitigate sparsity, 

we consolidated CPT codes according to groupings defined by the American Medical Association. 

Finally, from free-text clinical narratives (i.e. discharge summaries) we extracted patient-level 

occurrences of clinical terms, which we mapped to CUIs using the Natural Language Processing (NLP)-

based Narrative Information Linear Extraction (NILE) method.[36]  

 

Benchmark Methods for Comparison 

 We considered as benchmarks five supervised methods using the labeled set alone: (i) LASSO-

penalized logistic regression [16,17,34,37–39], (ii) random forest (RF) [40,41], (iii) linear discriminant 

analysis (LDA) [42], and (iv) LSTM-gated recurrent neural network (RNN) [24,39,43,44] trained with 

raw feature counts 𝑪𝒊,𝒕, as well as (v) LDA trained with patient-timepoint embeddings generated without 

weights (𝑿𝒊,𝒕𝟎 = 𝑪𝒊,𝒕𝑽), which we refer to as LDAembed. In addition, we considered a semi-supervised 

benchmark: hidden markov model (HMM) [26–29,45,46] with a multivariate gaussian emission trained 

with the weight-free embeddings 𝑿𝒊,𝒕𝟎 . Only HMM and RNN leverage the longitudinal nature of the data, 

while all other comparator methods train models for predicting 𝑌( based only on concurrent features (𝑪𝒊,𝒕 

or 𝑿𝒊,𝒕𝟎 ) without considering the time sequence. Hyperparameters for LASSO, random forest, and RNN 

were optimized by 10-fold cross-validation maximizing AUC. As a baseline we also included predictions 

based only on the multiple sclerosis PheCode (355). While not as meaningful for multiple sclerosis 

relapse, the closest PheCode is meaningful in situations where the target phenotype is reasonably well 

coded in the EHR, such as congestive heart failure. 

 

Evaluation Metrics 
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 To quantify the accuracy of SAMGEP and its comparators’ predictions for the binary phenotype  

𝑌',(, we computed (i) AUC, and (ii) F1 score choosing a cutoff value that achieves 95% specificity. 

Whereas AUC reflects tradeoff of sensitivity and specificity, F1 score reflects that of sensitivity and 

positive predictive value. Neither AUC not F1 score consider the sequence of 𝑌t',( predictions over time 

for a given patient. 

 Since the ultimate objective of SAMGEP is to predict the precise timings of phenotype events 

over the course of a patient’s observed record, as well as the time to first event for survival analysis, we 

also evaluated the methods’ longitudinal phenotype curve predictions. To this end, we defined the 

observed all-event counting process (i.e. a patient’s relapse count so far) as 𝑁'(𝑡) = ∑ 𝑌',I(1 − 𝑌',I/3IU( ), 

where 𝑌',@ = 0, and the first-event process (i.e. whether a patient has had a relapse yet) as 𝐹'(𝑡) = 1 −

ΠIU((1 − 𝑌',I), We defined the all-event counting process this way rather than as 𝑁'(𝑡) = ∑ 𝑌',IIU(  since 

for an appropriately chosen time window, two consecutive event-positive timepoints {𝑌',I = 1, 𝑌',IV3 =

1} should correspond to the same event. We evaluated each method’s ability to predict longitudinal 

phenotype counts by computing the area between 𝑁'(𝑡) and the predicted counting process 𝑁u'(𝑡) =

∑ 𝐼(𝜋|',I ≥ 𝑐)IU( , denoted as ABCcount, where 𝜋|',I denotes a method’s predicted probability that 𝑌',I = 1 

and 𝑐 is chosen such that in labeled set 

∑ ∑ 𝐼(𝜋|',I ≥ 𝑐)1(')
I23

9
'23

∑ 𝑇(𝑖)9
'23

=
∑ ∑ 𝑌',I

1(')
I23

9
'23
∑ 𝑇(𝑖)9
'23

 

For time to first event, we computed the area between 𝐹'(𝑡) and the predicted cumulative probability 

𝐹t',( = 1 −∏ (1 −IU( 𝜆�',I), denoted by ABCcdf, where 𝜆',I denotes patient 𝑖’s true hazard at time 𝑘 and 

𝜆�',I denotes a predictor thereof. Since SAMGEP and HMM jointly model the longitudinal outcome 

sequence {𝑌',3, … , 𝑌',1(')}, we could use these methods to directly estimate 𝜆�',(. Other methods only 

predict marginal probabilities 𝜋|',( , so we assumed that 𝜆�',( = 𝜋|',(, or equivalently that event status labels 

are independent over time. Rather than report the raw ABC quantities – which don’t have a meaningful 
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scale – we report methods’ percent decrease in the two below those of the null model that sets 𝜋|'I to the 

prevalence at time k: 

ABCWXY
D;Z[ =	

(ABCWXY,[\]] − ABCWXY,:^_`>X)
ABCWXY,[\]]

, and	ABCW>\[_D;Z[ =	
(ABCW>\[_,[\]] − ABCW>\[_,:^_`>X)

ABCW>\[_,[\]]
 

 

 

RESULTS 

Robustness to Data Generative Characteristics 

Figure 3 explores SAMGEP and its comparators’ robustness to various generative model 

specifications. Note that only relative performance between methods, not absolute performance, is 

meaningful as different generative settings may portend disparate inherent levels of information. Panels A 

and B reassuringly indicate that SAMGEP, like its comparators, is robust to (A) variations in how 

phenotype risk changes over time and (B) wide-tailed feature distributions – both realistic 

misspecifications. Panel C suggests that the benefit of explictly modeling the inter-temporal correlation 𝜌 

counter-intuitively breaks down at a very high 𝜌 of 0.8. At the more realistic 𝜌 = 0.4, however, SAMGEP 

appears more robust than HMM, which assumes that all intertemporal feature correlation is captured by 

the Markov chain on 𝒀. Panel D suggests that SAMGEP’s use of sparse weights in mapping feature 

counts 𝑪 to patient-timepoint embeddings 𝑿 makes the method robust to sparse distribution of 

information (i.e. 5 or 20 informative features out of 150) at the expense of increased bias in the case of 

dense information distribution (i.e. 100 informative features), similarly to LASSO. Given that information 

sparsity is the norm for EHR data, this attribute is well conditioned to EHR modeling. Panel E 

unsurprisingly demonstrates that larger labeled sets improve predictive AUC, though SAMGEP improves 

disproportionately between 𝑛 = 50 and 𝑛 = 100. This suggests that while SAMGEP is robust to very 

low 𝑛, its true value is unlocked at a labeled set size of ~100 patients. Finally, panel F shows that 

SAMGEP singularly benefits from increasing the unlabeled set from 𝑁 = 1000 to 𝑁 = 5000 but not to 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.07.21253096doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.07.21253096
http://creativecommons.org/licenses/by-nc/4.0/


𝑁 = 20000. This suggests that SAMGEP is able to effectively extract information from unlabeled 

patients, though having too many such patients may paradoxically attenuate this benefit. 

  

Prediction of MS Relapse using Real-World EHR Data 

Figure 4 depicts mean AUCs, F1 scores, ABCcdf gains, and ABCcount gains for SAMGEP and 

various comparator methods predicting MS relapse using real-world EHR data. SAMGEP achieved 

significantly higher mean AUCs and F1 scores than all other methods for both 𝑛 = 50 and 𝑛 = 100 

observed labels. RNN on the other hand achieved lackluster AUCs and F1 scores with relatively wide 

confidence intervals, an unsurprising observation given that such complex neural networks typically 

require far more than 100 observations to achieve sufficient variance mitigation. SAMGEP also achieved 

the highest ABCcdf gains, though not significantly so relative to LDA and HMM for 𝑛 = 50, or relative to 

LDA, HMM, and RNN for 𝑛 = 100. Finally, SAMGEP achieved the highest ABCcount gains, though 

statistically equivalent to RNN and only marginally superior to HMM for both 𝑛 = 50 and 𝑛 = 100. The 

fact that SAMGEP, HMM, and RNN were among the top performers by both ABC metrics, despite HMM 

and RNN’s unremarkable AUCs and F1 scores, suggests that jointly modeling {𝑌',3, … , 𝑌',1(')} is 

singularly beneficial for longitudinal phenotype process prediction. On the other hand, LASSO, random 

forest, LDA, and LDAembed do not even significantly improve upon the null model counting process 

estimator, showing that accurately predicting phenotype states at individual timepoints does not 

necessarily translate into accurate phenotype process prediction. 

While SAMGEP does not achieve signficant improvement over all comparator methods per all 

four accuracy metrics, its consistency across metrics is notable. Indeed, while HMM and RNN perform 

dismally per AUC and F1 score but well per ABCcdf and ABCcount, and other methods perform better per 

AUC and F1 score but poorly per ABCcount, SAMGEP consistently achieves the highest mean accuracy 

across metrics. It thus demonstrates proficiency at predicting both phenotype states at individual 

timepoints and phenotype processes across a patient’s record. 
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Finally, Figure S1 demonstrates that SAMGEP’s mechanism for adaptively weighting MGP’s 

supervised and semi-supervised predictors improves upon both individual predictors, albeit not 

significantly. Whereas the supervised predictor tends to achieve higher AUCs and F1 scores, the semi-

supervised one tends to perform better per ABCcdf and ABCcount. Taking a weighted average of the two 

appears to achieve the best of both worlds. 

 

Estimation of CDF and Count Process Curves 

 Figure 5 depicts the estimated population-wide first-relapse CDF, obtained as 𝐹t(𝑡) =

𝑁/3∑'234 𝐹t',(, and all-relapse count process, obtained as 𝑁u(𝑡) = 𝑁/3∑'234 𝑁u',(, based on the predictions of 

SAMGEP and comparator methods. Notably, CDF estimation using SAMGEP’s predictions is relatively 

unbiased, whereas comparator methods all markedly over-estimate the relapse rate. Not shown is the fact 

that SAMGEP’s confidence intervals are wider than those of LASSO, random forest, LDA, and 

embedded LDA, explaining why our method does not outperform comparators per the ABCcdf gain metric 

as significantly as Figure 5 might suggest. The precision of all methods markedly improves from 𝑛 = 50 

to 𝑛 = 100, explaining the significant increases we observe in ABCcdf gain despite no apparent 

improvement in CDF estimation bias. 

 Counting process estimation using SAMGEP’s predictions appears to systematically but slightly 

underestimate the truth. SAMGEP significantly improves upon comparators later in patients’ disease 

courses, where all other methods except HMM (which systematically underestimates the true function) 

exponentially overestimate the mean relapse count. Thus, SAMGEP’s predictions appear to once again 

improve bias at the expense of increased variance, on the whole significantly improving ABCcount gain. 

 

 

DISCUSSION 
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While prediction of binary phenotypes using EHR data is pervasive in the literature, prediction of 

longitudinal phenotype state progression, or equivalently phenotype event times, remains 

underdeveloped. As our results demonstrate in concordance with prior studies, accurate prediction of a 

patient’s overall phenotype status – or even phenotype state at a given timepoint – does not necessarily 

translate into accurate prediction of phenotype progression. SAMGEP accurately predicts phenotype 

process functions by effectively leveraging a variety of EHR features with relatively limited expert 

intervention. 

SAMGEP is singularly adept at estimating the cumulative event probability and counting process 

curves of a binary relapsing-and-remitting phenotype. It thus appears well suited for a study involving 

survival analysis or estimation of disease progression. For instance, researchers aiming to compare the 

efficacy of two multiple sclerosis treatments using EHR data could 1) annotate the relapse histories of 50-

100 patients via chart review, 2) use SAMGEP to predict relapse probability and count curves for all 

remaining patients, and 3) use these predictions as features in a survival model such as Cox Proportional 

Hazards to estimate a population survival function. Further research is warranted to ascertain whether 

such a workflow affords increased power relative to traditional survival methods using the limited labeled 

set alone. 

 The main shortcoming of SAMGEP and other supervised/semi-supervised learning methods is its 

reliance on gold-standard phenotype event labels. Manually annotating these labels via chart review is 

particularly labor intensive, requiring an expert to review a patient’s entire chart rather than snapshots 

thereof. Modifying SAMGEP to handle current status labels – indicators of phenotype status at censor 

time only – would greatly diminish the manual labor required to utilize SAMGEP for a survival study. 

Further work is warranted to explore this possibility. 

 

 

CONCLUSION 
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 In this study we introduce SAMGEP, a semi-supervised machine learning method that predicts 

phenotype event times using EHR data and a limited set of gold-standard labels. Singularly adept at 

estimating event CDF and counting process curves, SAMGEP promises to enable more powerful use of 

EHR data for epidemological research involving event outcomes, such as survival analysis. 

 

 

FIGURE LEGENDS 

Figure 1: Schematic of the overall SAMGEP algorithm. 

 

Figure 2: Depiction of the sparsity and temporal irregularity of EHR data. In this study we aim to predict 

MS relapse timings (red bands) using EHR feature observations (black diamonds). 

 

Figure 3: Robustness of SAMGEP and comparator methods’ AUCs, F scores, ABCcdf gains, and ABCcount 

gains to various generative parameters, including the (A) specification of 𝑌|𝑇, (B) specification of 𝑿|𝑌, 

(C) inter-temporal correlation parameter 𝜌, (D) number of informative (i.e. non-sparse) features, (E) 

number of labeled patients 𝑛, and (F) total number of patients	𝑁. Details of the experiment are delineated 

in the Simulation Study subsection of the Methods. 

 

Figure 4: AUCs, F1 scores, ABCcdf gains, and ABCcount gains for SAMGEP and various comparator 

methods predicting MS relapse using real-world EHR data. 95% confidence intervals were empirically 

estimated by bootstrapping with 100 replicates. See the Evaluation Metrics subsection of the Methods for 

details about the evaluation metrics. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.07.21253096doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.07.21253096
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Estimation of population-level MS relapse CDF (top) and count process (bottom) curves as a 

function of MS disease duration using the predictions of SAMGEP and comparators trained with 50 (left) 

and 100 (right) labeled patients. 
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Figure 1: Schematic of the overall SAMGEP algorithm. 
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Figure 2: Depiction of the sparsity and temporal irregularity of EHR data. In this study we aim to predict 
MS relapse event times (red bands) using timestamped EHR feature observations (black diamonds). 
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Figure 3: Robustness of SAMGEP and comparator methods’ AUCs, F scores, ABCcdf gains, and ABCcount 
gains to various generative parameters, including the (A) specification of 𝑌|𝑇, (B) specification of 𝑿|𝑌, 
(C) inter-temporal correlation parameter 𝜌, (D) number of informative (i.e. non-sparse) features, (E) 
number of labeled patients 𝑛, and (F) total number of patients	𝑁. Details of the experiment are delineated 
in the Simulation Study subsection of the Methods. 
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Figure 4: AUCs, F1 scores, ABCcdf gains, and ABCcount gains for SAMGEP and various comparator 
methods predicting MS relapse using real-world EHR data. 95% confidence intervals were empirically 
estimated by bootstrapping with 100 replicates. See the Evaluation Metrics subsection of the Methods for 
details about the evaluation metrics. 
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Figure 5: Estimation of population-level MS relapse cumulative probability (top) and count process 
(bottom) curves as a function of MS disease duration using the predictions of SAMGEP and comparators 
trained with 50 (left) and 100 (right) labeled patients. 
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