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Abstract

Background: Widespread early dementia detection could drastically increase clinical trial candidates and
enable early interventions. Since the Clock Drawing Test (CDT) can be potentially used for diagnosing
dementia related diseases, it can be leveraged to devise a computer-aided screening tool.

Objective: This work aims to develop an online screening tool by leveraging Artificial Intelligence and the
CDT.

Methods: Images of an analog clock drawn by 3, 263 cognitively intact and 160 impaired subjects were
used. First, we processed the images from the CDT by a deep learning algorithm to obtain dementia scores.
Then, individuals were classified as belonging to either category by combining CDT image scores with the
participant’s age.

Results: We have evaluated the performance of the developed models by applying 5-fold cross validation
on 20% of the dataset. The deep learning model generates dementia scores for the CDT images with an
Area Under the ROC Curve (AUC) of 81.3% ± 4.3%. A composite logistic regression model using age and
the generated dementia scores, yielded an average AUC and average weighted F1 score of 92% ± 0.8% and
94.4%± 0.7%, respectively.

Discussion: CDT images were subjected to distortion consistent with an image drawn on paper and pho-
tographed by a cell phone. The model offers a cost-effective and easily deployable mechanism for detecting
cognitive impairment online, without the need to visit a clinic.
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1. Introduction

As the world population ages, cognitive decline is becoming a prevalent condition. Cognitive decline is

present in several neurodegenerative disorders such as Alzheimer’s Disease (AD), vascular dementia, and

Parkinson’s disease [1]. In the U.S., (i) the cost associated with AD and Related Dementias (ADRD) has

been estimated to be $305 billion in 2020, expected to rise to as much as $1.1 trillion by 2050, and (ii) more

than 5 million individuals are living with AD, with AD deaths increasing by 146% between 2000 and 2018 [2].

Worldwide, it is estimated that more than 50 million are living with dementia [3].

The standard approach to evaluate the severity of cognitive decline of an individual includes Neuro-

Psychological (NP) exams, which have traditionally been conducted via in-person interviews to measure

memory, thinking, language, and motor function. However, this approach can be expensive, time-consuming,

and limited in availability to subjects with lower income and/or belonging to a racial or other underrepre-

sented minority. With the ongoing COVID-19 pandemic, access to medical facilities for non life-threatening

conditions has been curtailed and medical care has shifted to virtual, online visits. Such an approach is

highly desirable for dementia screening. In addition to broader and more equitable access to care, it can

lead to earlier diagnosis and drastically increase the pool of candidates for ADRD clinical trials, possibly

accelerating the search for effective treatments.

With this motivation, this work develops an AI-assisted approach capable of detecting cognitive decline

based on the venerable Clock Drawing Test (CDT). In this test, subjects are asked to draw the face of an

analog clock showing ten minutes past eleven. CDT is considered robust against cultural biases and language

and provides insight into the mechanisms underlying cognitive dysfunction, including comprehension memory,

numerical knowledge, and visuoperceptual skills [4, 5]. Given the sensitivity of CDT in cognitive screening,

numerous attempts have been made to exploit the full potential of CDT in identifying dementia. For instance,

the sensitivity of the CDT was investigated in [1] to monitor and distinguish the evolution of cognitive decline

in different cognitive domains. In [6], the authors found CDT useful in cognitive impairment screening using

the fact that the CDT score correlates with the severity of global cognitive impairment, as assessed by the

Mini-Mental State Examination (MMSE) score and the Hasegawa dementia scale. A low CDT score was also

associated with progression to dementia, with the association being independent of the MMSE score [7, 8].

Options such as digital Clock Drawing Test (dCDT) technology, where the drawing is traced by a digital

pen, enable the examination of a detailed neurocognitive behavior as it unfolds in real-time; a capability

that cannot be obtained using a traditional pen and paper [9, 10]. Recently, researchers have been trying

to utilize machine learning methods for early prediction of ADRD. By using a dCDT, a machine learning

approach based on non-interpretable boosted decision trees was able to outperform scoring systems used by
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clinicians [11], reaching an Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 93%

using the entire battery of features provided by dCDT. The AUC drops to 83% for simpler, interpretable

models. [12] introduced a classification task to classify mild cognitive impairment subtypes and AD using 350

dCTD features, with accuracies ranging from 83% to 91%. Others have leveraged medical imaging, which

is expensive and requires an in-person visit to an imaging facility. Deep learning was applied to predict

progression to AD based on hippocampal Magnetic Resonance Imaging (MRI) and other baseline clinical

features [13], achieving an AUC of 86%. Deep learning on brain MRI images was also used in [14], which, when

combined with non-imaging features, produced F1 scores ranging from 63.3% to 96.5%. Furthermore, a robust

deep learning classifier was adopted in [15] to identify the different stages of mild cognitive impairment based

on MRI and Positron Emission Tomography (PET) [16, 17], with accuracies ranging from 57% to 91%. In

general, and as we elaborate on later, accuracies are not the most appropriate metric for assessing performance

since AD/ADRD datasets are heavily imbalanced (only a small fraction of subjects have dementia).

The above studies rely on a large collection of features available through NP tests, dCDT, blood biomarkers

(e.g., apolipoprotein genes), or medical imaging, thus requiring expensive resources and in-person visits.

These technologies, even the digital pen, make the cost prohibitive for low-resourced health care environments

and perpetuate persistent health disparities in global testing. In the context of using features from these tests

for AI-assisted detection, they also embed inherent biases, further exacerbating the widening gap across global

populations in health care knowledge and practice. The proposed approach uses only photos of CDT and the

age of the participant, offering an inexpensive and remote screening technique that can be made available

online. To that end, our method processes CDT images through a deep Convolutional Neural Network

(CNN) [18, 19] classifier and combines the output scores with age in an ensemble, logistic regression-based

classifier.

2. Materials and Methods

2.1. Clinical setting and data sources

The data used in this study were collected by the Framingham Heart Study (FHS), the longest ongoing

longitudinal study of chronic disease [20]. Since 2011, the FHS has adopted digital pen technology to capture

pen and paper NP tests, including the CDT. In the FHS dataset, two different clock images are collected: (i)

one where the subjects are told to draw an analog clock showing ten minutes past eleven (command clock),

and (ii) one where they are asked to copy the image of such a clock shown to them (copy clock). Additional

information available includes sex, age, race, and presence of Apolipoprotein E (ApoE) genes. All subjects

were evaluated by trained examiners. For those subjects identified as showing symptoms of cognitive decline,
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dementia diagnosis was reached by consensus of at least one neurologist and one neuropsychologist; the

dementia surveillance and diagnostic procedures have been previously outlined in [5, 21]. The entire dataset

for all participants was anonymized prior to analysis. All participants have provided written informed consent

and study protocols and consent forms were approved by the Boston University Medical Campus Institutional

Review Board.

2.2. Data preparation

The original dataset contains information about 3, 423 participants. The dataset attributes consist of

participant demographic data, ApoE gene information, command and copy clock drawings, as well as the

dementia diagnosis. The clock drawings are stored in .csk format as they are recorded using the digital

pen [22]. Therefore, a pre-processing pipeline was created to convert the .csk files into the clock images of

size (128, 128, 3), which are three-channel images with 128 × 128 pixels. To normalize the data, the value

of each pixel was divided by 255 to rescale pixel values into the [0, 1] range. Furthermore, we conducted

data augmentation on the original images by randomly applying ±10 degrees rotation, ±15 percent zoom,

±10 percent width and height shift, and ±10 percent shear. Data augmentation enables us to develop a

deep learning model robust against image distortions consistent with someone drawing the clock using pen

and paper and taking a digital photograph (e.g., using a cell phone). By disproportionally augmenting the

non-dominant class of images, we also mitigate class imbalance – 95.3% of participants have no cognitive

impairment – enabling training of the deep learning model in a balanced fashion without under-sampling the

dominant class.

2.3. Statistical analysis

The composition of the dataset along with basic statistics is reported in Table 1. The 2nd column provides

information on participants who were labeled as normal and the 3rd column corresponds to participants

diagnosed as cognitive impaired (Cognitive Impairment, No Dementia – CIND), or with clinical dementia

(mild, moderate, severe). We report self-reported gender, age statistics (mean ± standard deviation for each

cohort), race, dementia diagnosis severity, and the type of ApoE (E2/E3/E4) genes for both copies of the

gene. In the 4th column we report the p-value for each variable associated with the null hypothesis that the

two cohorts have the same distribution of the variable. Hence, a low p-value implies that the distribution

of the feature is different in each cohort, leading us to reject the null hypothesis. For age, we employed the

Kolmogorov-Smirnov (K-S) test [23] whereas we used the Chi-square test for the categorical features [24]. It

can be seen that only age shows significant difference among the two cohorts, leading us to use only age and

CDT images in the proposed ensemble model. As we will see, adding additional variables leads to minimal
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improvement. An additional advantage of using only CDT images and age is that these features are easily

obtained remotely without the need to visit a clinic.

2.4. Development of the model

We formulated the cognitive impairment detection system as a classification task in which the model seeks

to make a binary decision about whether the participant is cognitively impaired – dementia diagnosis score

above zero. Since there exist insufficient data for subjects with either CIND or dementia, a single class is

representing CIND/dementia in our proposed model.

Given that CNN deep learning models, which include many hidden layers and millions of parameters,

require a large number of images to be trained, we adopted a transfer learning approach starting from a

pre-trained CNN. Transfer learning is widely used in medical image analysis and natural language processing

applications [25, 26]. As the backbone network of our proposed method, we selected the lightweight MobileNet

V2, which can be trained fast and is very suitable for embedded devices [27, 28]. We modified the MobileNet

V2 model using the CDT images in the training set. To that end, we detached the fully-connected layer

and attached a global average pooling operation to convert the feature map into a smaller size by taking

the average value from the spatial dimension of the feature map. Global average pooling avoids overfitting

and provides a more robust model against spatial translations [29]. A softmax layer is attached to the deep

learning model to predict the probability distribution of each class. In the training procedure, all the layers

of the MobileNet V2 trained on the ImageNet [30] were frozen, except the softmax layer. Since the MobileNet

V2 is based on a three-channel CNN, we used command CDT images of size (128, 128, 3) to train the modified

deep learning model. 1 The participants tend to make more mistakes in the command clock drawing task

compared with the copying task (cf. Section 4), hence, the command clock images can reveal more types of

image defects associated with cognitive impairments.

Once the training process of the deep learning model is completed, the scores corresponding to test

command and copy images can be generated by feeding them into the model. Finally, image scores and the

age of every participant were used to train a logistic regression model to make predictions; a schematic of

the approach is shown in Figure 1. The entire model was implemented using the python deep-learning Keras

library with a Tensorflow backend.

2.5. Validation and performance metrics

Data were randomly split into 5 folds using stratified k-fold cross validation. Specifically, the models were

trained on the 4 folds and tested on the 5th – test – fold. The process was repeated five times, each time

1The input size of the MobileNet V2 can be adjusted as needed.
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with a different fold retained for testing, and the average and standard deviation (std) of all performance

metrics on the test set over these five runs was obtained.

Performance metrics included the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)

and the weighted F1 score [31]. The ROC plots the True Positive Rate (TPR, a.k.a. recall or sensitivity)

against the False Positive Rate (FPR, equal to 1 minus the specificity). The F1 score is the harmonic mean

of precision and recall. Precision (or positive predictive value) is defined as the ratio of true positives over

true and false positives. The F1 score is calculated by

F1 = 2
precision× recall

precision + recall
,

and the closer it is to 1 the stronger the classification model. In this work we report the weighted F1 score,

which is computed by weighting the F1-score of each class by the number of participants in that class.

3. Results

As detailed in Section 2.5, we trained and validated the proposed classifier using 5-fold cross-validation.

The results are summarized in Table 2. We report ROC AUC, weighted F1 score (W-F1), and accuracy

(Acc), the latter mainly for comparison purposes with results reported in the literature and surveyed in

Section 1. We note however, that accuracy in binary classification with a highly imbalanced dataset is not

an appropriate metric, since predicting all subjects as being normal would lead to a high accuracy.

In the first row of Table 2, we report the performance of the classifier that uses just the command CDT

(Cmnd CDT) image of a subject. The second row reports the performance of our proposed ensemble model

obtained by using logistic regression with features the deep learning scores of command and copy CDT

images and the subject’s age. The third row, corresponds to the full model, which uses command and copy

CDT images, age, gender, ApoE, and race. The fourth row corresponds to a model using all these features,

except ApoE. The fifth column reports the performance of a model using only age and the command CDT

image. Finally, the last row, reports the performance of a model based just on age. In all these models,

gender, ApoE, and race features, were encoded using one-hot encoding, i.e., creating a binary variable for

each category. Figure 2 plots the ROC curves for the two models with the highest average AUC (full and

ensemble), and, for comparison purposes, the corresponding curve for the age-based model.

4. Discussion

The proposed ensemble model can be employed to offer virtual cognitive impairment screening using only

CDT images drawn on pen and paper, and captured via a cell phone, and the age of the subject. The
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out-of-sample AUC and weighted F1 scores we report indicate strong predictive power, at least within the

context of related metrics from other methods we outlined in Section 1.

An important aspect of the method we used for training the deep learning models was transfer learning.

We started from a deep learning image classifier previously trained on a large number of generic images,

which, apparently, has the ability to identify useful features of presented images. Thus, with limited training

using our CDT images, the deep learning model adapted quickly to score CDT images and produced scores

representing the likelihood of the subject being cognitively impaired. Just using command CDT images yields

a classifier of moderate strength (cf. first row of Table 2, AUC of 81.3%, on average). Combining command

and copy CDT images with age using logistic regression yields a strong screening tool with an AUC of 92%,

on average, and a weighted F1 score of 94.4%, on average.

Figure 3 reports the coefficients of the three features used by the logistic regression ensemble model. The

coefficients are comparable as the scores of the CDT images and age were normalized by subtracting the

mean and dividing by the standard deviation. It can be seen that age and the command CDT image are

contributing more to the decision than the copy CDT image.

The ensemble model performs closely to the full model (cf. Table 2) which uses all features. However,

the full model is not amenable to online screening as ApoE genotyping requires laboratory testing (typically,

a blood sample). From Figure 2, it can also be seen that the ROC curves of the full model and the ensemble

model essentially coincide for low values of the FPR (below 15%), that is, within the range one may want

to operate. Interestingly, adding to the ensemble model gender and race (i.e., full model without ApoE),

leads to worse performance (AUC of 91.9% vs. 92%, on average), confirming the low discriminatory power

of these additional features, which was also suggested by their p-values listed in Table 1. Using just age and

command CDT images performs slightly worse than the ensemble model, confirming the findings of Figure 3.

Table 2 also indicates that a model based just on age performs relatively well; average AUC of 89.3%

vs. 92% for the ensemble model, yielding a difference of 2.7%. This is consistent with related findings in

[14] where a model based on age, gender, and MMSE had an average F1-score 1.4% lower on their internal

validation dataset than the fusion model which also used a brain MRI. It is useful to compare the average

TPR (sensitivity) of the ensemble model, the full model, and the age model for low values of the average

FPR (high specificity). This comparison is shown in Table 3. For instance, at 10% FPR, the TPR of the

ensemble model is 11.8% higher compared to the age model. Putting this difference in context, suppose we

were interested in screening for a nationwide clinical trial all 5 million or so individuals in the U.S. estimated

to be suffering from Alzheimer’s [2]. Setting FPR to 10%, about 3.57 million would qualify with the ensemble

model vs. 2.98 million with the age model, missing a non-trivial number of about 600,000 subjects with the

latter. A similar perspective is gained by considering how many individuals one should screen to assemble
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a clinical trial with about 1600 subjects (similar in size to the EMERGE aducanumab trial by Biogen [32]).

Using an FPR of 5%, and assuming the CIND and dementia incidence rate is 4.7% as in our dataset, it

follows that one needs to screen 78,439 people with the age model compared to 62,578 with the ensemble

model, namely, 15,861 less. Clearly, these differences imply significant differences in cost.

In the present study, the clock drawing images were collected from the FHS using a digital pen. The

size of the images used for training was reduced to 128 × 128 pixels. Furthermore, the data augmentation

described in Section 2.2 empowers the deep learning features to become robust to various forms of image

distortion that could be introduced by drawing the images using pen and paper and capturing them using a

cell phone.

A limitation of the study is that we do not have access to actual cell phone-captured images, which would

provide the ultimate test for the proposed screening approach. An additional limitation is that the FHS

does not comprehensively conduct dementia review of all participants; thus, it is possible that some subjects

classified as cognitive normal are in the early CIND stages. We submit that this limitation would lead to a

bias toward the normal class and may reduce the possibility of a false positive diagnosis.

Diagnostic Tool Availability

We have made our code publicly available. 2 Upon acceptance of the paper and before publication, we plan

to make the proposed cognitive impairment assessment tool available to the community online. Specifically,

we will set up a web site where anyone could submit two clock images (command and copy) and age and

receive the corresponding probability of cognitive impairment.
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Figure 1: Online screening for cognitive impairment.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.06.21253047doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.06.21253047
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: ROC curves for three models: the proposed ensemble model, the full model, and the model based only on age. We
plot the average TPR and FPR over the five folds.
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Figure 3: Logistic regression coefficients, indicating the relative predictive importance of the three features.
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Table 1: Summary of the variables in the FHS dataset. Diagnosis scores 0, 0.5, 1–1.5, 2–2.5, and 3 are defined as normal
cognition, CIND, mild dementia, moderate dementia, and severe dementia, respectively.

Variable Assessment p-value

Normal CIND/Dementia
(n=3263) (n=160)

Diagnosis –
0 3263 (100%) 0 (0%)

0.5 0 (0%) 96 (60%)
1–1.5 0 (0%) 38 (24%)
2–2.5 0 (0%) 24 (15%)

3 0 (0%) 2 (1%)

Age 61.8 ± 13.2 82.1 ± 7.3 <0.0001

Gender 0.95
Female 1773 (54.3%) 86 (53.75%)
Male 1490 (45.7%) 74 (46.25%)

ApoE 0.12
22 19 (0.6%) 1 (0.6%)
23 399 (12.2%) 19 (11.9%)
24 63 (1.9%) 6 (3.8%)
33 2011 (61.6%) 87 (54.4%)
34 593 (18.2%) 40 (25%)
44 45 (1.4%) 4 (2.5%)

Race 0.24
Asian 86 (2.6%) 1 (0.6%)
Black 87 (2.7%) 1 (0.6%)

Hispanic 80 (2.5%) 2 (1.2%)
White 2957 (90.6%) 156 (97.5%)
others 53 (1.6%) 0 (0%)
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Table 2: Results on the test set (mean ± std over the five runs).

Methods AUC % W-F1 % Acc %
Cmnd CDT 81.3 ± 4.3 92.8 ± 1.0 87.8 ± 1.2
Ensemble 92.0 ± 0.8 94.4 ± 0.7 95.1 ± 0.3

Full 92.3 ± 0.8 94.4 ± 0.5 95.4 ± 0.5
Full\ApoE 91.9 ± 0.8 94.6 ± 0.7 95.1 ± 0.4

Age, Cmnd CDT 91.8 ± 0.7 94.3 ± 0.7 95.1 ± 0.4
Age 89.3 ± 1.2 93.4 ± 0.6 95.1 ± 0.4
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Table 3: Average True Positive Rate (TPR, or sensitivity) for average False Positive Rates (FPR) at 5%, 10%, and 20%.

% TPR at % TPR at % TPR at
Methods 5% FPR 10% FPR 20% FPR
Ensemble 54.4 71.3 90.0

Full 56.3 71.9 92.5
Age 43.4 59.5 81.9
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