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Abstract 

Objectives: Specifying analytic models to assess relationships among metal mixtures and 

cardiometabolic outcomes requires evidence-based models of the causal structures; however, 

such models have not been previously published. The objective of this study was to develop and 

evaluate a directed acyclic graph diagraming metal mixture exposure and cardiometabolic 

outcomes. 

Methods: We conducted a systematic literature search to develop the directed acyclic graph 

(DAG) of metal mixtures and cardiometabolic outcomes. To evaluate consistency of the DAG, 

we tested the suggested conditional independence statements using linear and logistic regression 

analyses with data from the San Luis Valley Diabetes Study (SLVDS; n=1795). We compared 

the proportion of statements supported by the data to the proportion of conditional independence 

statements supported by 100 DAGs with the same structure but randomly permuted nodes. Next, 

we used our DAG to identify minimally sufficient adjustment sets needed to estimate the 

association between metal mixtures and cardiometabolic outcomes in the SLVDS and applied 

them using Bayesian kernel machine regression models.  

Results: From the 42 articles included in the review, we developed an evidence-based DAG with 

163 testable conditional independence statements (64% supported by SLVDS data). Only 5% of 

DAGs with randomly permuted nodes indicated more agreement with the data than our 

evidence-based DAG. We did not observe evidence for an association between metal mixtures 

and cardiometabolic outcomes in the pilot analysis.  

Conclusions: We developed, tested, and applied an evidence-based approach to analyze 

associations between metal mixtures and cardiometabolic health.   
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Introduction 

Extensive epidemiologic and toxicologic evidence indicates that metals and metalloids 

[e.g., arsenic (As), cadmium (Cd), manganese (Mn), and tungsten (W); hereafter simplified as 

‘metals’] are associated with cardiometabolic outcomes (Kuo et al. 2013; Tyrrell et al. 2013; 

Tellez-Plaza et al. 2013; Wang et al. 2014; Edwards and Ackerman 2016; Nigra et al. 2016; Shan 

Zhilei et al. 2016; Wu et al. 2016; K. A. Moon et al. 2017; Tinkov et al. 2018; Long et al. 2019; 

Riseberg et al. 2021). Whereas most of the published studies considered exposure to only one 

metal, numerous calls exist to examine the associations between metal mixtures and 

cardiometabolic outcomes (Tyrrell et al. 2013; Corlin et al. 2016; Li and Yang 2018). Examining 

the health outcomes associated with metal mixtures would more realistically reflect 

environmental exposure conditions (Cui et al. 2005; Pang et al. 2016). Yet even analyses that 

include multiple metals typically only adjust for concentrations of non-target metals (not 

accounting for interactions among metal mixtures) or use stratified analyses. These stratified 

analyses, often in the form of associations with low exposure to metal A/low exposure to metal B 

versus high exposure to metal A/high exposure to metal B, do not capture complex non-linear 

relationships (Tyrrell et al. 2013; Rajpathak et al. 2004; Mendy, Gasana, and Vieira 2012; Bobb 

et al. 2015; Tsai et al. 2017). 

 Development of analytic models probing the complex relationships among metal 

mixtures and cardiometabolic outcomes requires an understanding of the putative underlying 

causal structure. An evidence-based directed acyclic graph (DAG) is one way to represent such a 

causal structure. DAGs clarify causal contrasts and explicitly show assumptions about common 

causes of exposures and outcomes (e.g., sources of metal (co)exposure that also affect 

cardiometabolic health) that we need to account for in our study design and/or analysis (Pearl 
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1995; Tennant et al. 2020; Pearce and Lawlor 2016). They can additionally reveal sources of 

selection bias or collider bias (Arah 2019). DAGs are also useful for identifying minimally 

sufficient adjustment sets of variables; when DAGs are used in this way, articles should report 

the assumed DAG (Tennant et al. 2020). Few evidence-based DAGs exist in the environmental 

epidemiology context due to the need to conduct literature reviews and to empirically test the 

applicability of the DAG for the study context (as one example, see Corlin et al., 2016). No 

evidence-based DAGs have been previously published describing the structure underlying 

potential metal mixture-cardiometabolic outcome relationships. Such a DAG could help 

researchers assess how specific environmentally relevant metal mixtures mechanistically affect 

the development of cardiometabolic outcomes. Therefore, our primary objective was to conduct 

a systematic literature search to support the development of an evidence-based DAG diagraming 

the relationships among exposure to metal mixtures, the development of cardiometabolic 

outcomes, and potential common causes of exposures and outcomes. Our secondary objective 

was to evaluate this DAG and apply it to a real environmental health context using data from a 

cohort of adults residing in the rural San Luis Valley of Colorado.  

 

Materials and Methods 

Literature review and directed acyclic graph development 

 We conducted a systematic search in PubMed using the following text:  

((tungsten[MeSH Terms]) OR (uranium[MeSH Terms]) OR (cadmium[MeSH Terms]) OR 

(arsenic[MeSH Terms]) OR (manganese[MeSH Terms])) AND ((cardiovascular disease[MeSH 

Terms]) OR (type 2 diabetes mellitus[MeSH Terms]) OR (hypertension[MeSH Terms])) AND 

(("review"[Publication Type]) OR ("systematic review"[Publication Type]) OR ("meta 
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analysis"[Publication Type])) AND ("2011/01/01"[Date - Publication] : "3000"[Date - 

Publication]). 

The search strategy is detailed in Figure 1. We specified our search to reviews, 

systematic reviews, and meta-analyses published between the beginning of 2011 to the time of 

the search (2021) in English. Articles had to review human epidemiological studies and have one 

of the metals (As, Cd, Mn, W, and U) as an exposure and either cardiovascular disease, diabetes, 

or hypertension as an outcome. We additionally added five articles from the authors’ prior 

knowledge that fit the criteria of the search. 

From each article included in the review, we collected the following information: authors, 

year, journal, publication type, study population, exposure, exposure sources, outcome, and main 

results. Based on the extracted data, we created DAGs using the software DAGitty (Textor et al. 

2016). Each arrow from an exposure to an outcome represented a relationship mentioned in at 

least one articles from the literature review (Figure 2) (Xu, Mondal, and Polya 2020; Leng et al. 

2019; da Cunha Martins et al. 2018; Chowdhury et al. 2018; Kuo et al. 2017; Beck, Styblo, and 

Sethupathy 2017; Khan et al. 2017; Phung et al. 2017; K. A. Moon et al. 2017; Alamolhodaei, 

Shirani, and Karimi 2015; Abdul et al. 2015; Ellinsworth 2015; Tsuji et al. 2014; Solenkova et 

al. 2014; Wang et al. 2014; Stea et al. 2014; K. Moon, Guallar, and Navas–Acien 2012; Kuo et 

al. 2013; Andra et al. 2013; Boekelheide et al. 2012; Abhyankar et al. 2012; Jomova et al. 2011; 

Diaz et al. 2021; Martins et al. 2021; Little et al. 2020; Tinkov et al. 2018; Satarug, Vesey, and 

Gobe 2017; Edwards and Ackerman 2016; Kukongviriyapan, Apaijit, and Kukongviriyapan 

2016; Larsson and Wolk 2016; Hecht et al. 2013; Tellez-Plaza et al. 2013; Caciari et al. 2013; 

Thévenod and Lee 2013; Satarug and Moore 2012; Li and Yang 2018; Sanjeevi et al. 2018; Kaur 

and Henry 2014; Siddiqui, Bawazeer, and Scaria Joy 2014; Corlin et al. 2016; Nigra et al. 2016; 
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Zhivin, Laurier, and Canu 2014). For the other variables in the DAG, we followed the following 

steps: (1) identified sources of exposure from the literature (i.e., diet, ambient air, smoking, soil, 

and drinking water), (2) identified risk factors for the outcomes using consensus statements (i.e., 

sex, age, obesity, education, ethnicity, income, physical activity, and alcohol intake), (Alberti, 

Zimmet, and Shaw 2007; Havranek et al. 2015; Whelton et al. 2018; Wood 2001) (3) conducted 

a search on PubMed for risk factors and outcomes if a risk factor for one outcome was not 

identified as a risk factor for another outcome (e.g., “smoking diabetes”), (4) identified risk 

factor—risk factor and source of exposure—risk factor associations through a PubMed search 

containing the two words (e.g., “education ethnicity” or “soil ethnicity”). The sources for each 

arrow are provided in Appendix A, and the DAG is shown in Figure 2 (code provided in 

Appendix B). 

 

Evaluation and application data 

 To evaluate and apply the evidence-based DAG, we used data from the San Luis Valley 

Diabetes Study (SLVDS), a prospective cohort study assessing the risk factors for chronic 

disease among Hispanic and non-Hispanic white adults in Alamosa or Conejos counties, 

Colorado. Data collection methods have been detailed elsewhere (Hamman et al. 1989). Briefly, 

the study population was recruited in two phases (Phase 1: 1984-1985; Phase 2: 1986-1987). 

People with diabetes were recruited through medical record reviews and local advertisements. 

People without diabetes were recruited using a stratified random sampling scheme based on 

residential location in these counties. All participants (with or without diabetes) met three 

additional eligibility criteria: (1) aged 20-74 years old, (2) able to provide informed consent, and 

(3) proficient in English or Spanish. Overall, 1823 individuals participated in the SLVDS, of 
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whom 1795 had viable urine samples and were eligible for this analysis. Having a metal 

measurement was defined as having viable urine sample measured for metals (n = 1609). 

 Samples of urinary metals (approximately 120 mL) were collected and stored in trace 

metal free tubes in a freezer at -80°C until the laboratory analysis was conducted in 2008 and 

2015 by the Colorado Department of Public Health and Environment chemistry laboratory. An 

inductively coupled argon plasma instrument with a mass spectrometer was used to detect the 

metal concentrations with a detection limit of 1 part in 10. Values below limit of detection were 

defined as the square root of detection limit divided by 2. All laboratory methods met the 

standards of the Clinical Laboratory Improvement Amendment and Environmental Protection 

Agency (Rivera-Núñez et al. 2012). Urinary creatinine (g/L) was quantified using a colorimetric 

assay by the Jaffe reaction (Delanghe and Speeckaert 2011). 

The three outcome variables (i.e., cardiovascular disease, type 2 diabetes mellitus 

(hereafter ‘diabetes’), and hypertension) were assessed at baseline and dichotomized for this 

analysis. A participant was defined as having cardiovascular disease if they reported having had 

coronary bypass surgery or myocardial infarction. A participant was defined as having diabetes if 

they had a fasting venous plasma glucose ≥ 140 mg/dL (following a ≥8 hour fast), 2-hour venous 

plasma glucose ≥ 200 mg/dL (following consumption of a flavored drink), or were taking oral 

hypoglycemic medication (World Health Organization 1985). Measurements of fasting glucose 

used the glucose oxidase method with venous plasma (Hamman et al. 1989; Beckman 

Instruments 1988). A participant was defined as having hypertension if they had average systolic 

blood pressure ≥ 130 mmHg or average diastolic blood pressure ≥ 80 mmHg based on the 

average of the second and third blood pressure measurements (Whelton et al. 2018).  
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Other health and demographic data were collected at baseline. Researchers measured 

participants height and weight, and these measurements were used to calculate body mass index 

(BMI; obesity defined as BMI >30 kg/m2). Participants self-reported sex, age, educational 

attainment (<12 years/12 years/>12 years), ethnicity (Hispanic/non-Hispanic), annual gross 

household income (0-$14,999/$15,000-$34,999/≥$35,000), smoking status (never smoker [< 100 

lifetime cigarettes]/former smoker [≥ 100 lifetime cigarettes but not currently smoking]/current 

smoker [≥ 100 lifetime cigarettes and currently smoking]), physical activity, and diet. 

Participants’ combined overall physical activity level accounting for activity during work 

(ranging from “sedentary” to “heavy physical work”) and non-work time (ranging from 

“practically none” to “great amount” of physical activity) was categorized as sedentary, 

somewhat active, moderately active, or most active (Swenson et al. 2005). Diet was based on 24-

hour recall and food frequency questionnaire data (Marshall, Hamman, and Baxter 1991; 

Marshall, Weiss, and Hamman 1993). Micro and macronutrient intake was measured as g/day, 

and alcohol intake was measured as g/week. Since the macro and micronutrient variables (total 

kcals, vitamin C, zinc, selenium, vitamin A, beta carotene, folic acid, protein, total fats, saturated 

fats, monounsaturated fats, polyunsaturated fats, cholesterol, carbohydrates, total sugar, plant-

based foods, insoluble, soluble, and total fiber, legumes, and omega-3) were highly correlated, 

we summarized them by conducting a principal component analysis. To do so, we first 

normalized the diet variables by centering and variance-standardizing them. Then, we used 

singular value decomposition implemented with the numpy linear algebra solver on the 

covariance of the normalized dietary data to identify the top two eigenvectors, which together 

accounted for 53% of the variance. We transformed the participants’ dietary data by matrix 
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multiplication with the top two eigenvectors to project the dietary data onto the first two 

principal components.  

 

Statistical analysis 

 Our analysis was split into two parts: (1) evaluation of the DAG, and (2) application of 

the DAG in a pilot analysis. For both parts, we mapped each node in the evidence-based DAG to 

the corresponding variables in the SLVDS data. There were some exceptions; ambient air 

quality, drinking water quality, and soil exposure were unmeasured in the SLVDS. Selection was 

not evaluated in this analysis because selection into the study was an inclusion requirement. 

 In part one of our analysis (evaluation of the DAG), we first tested each conditional 

independence statement implied by the evidence-based DAG using linear (continuous 

outcomes), logistic (dichotomous outcomes), and ordered factor response logistic (ordinal 

outcomes). If the resulting p value for the coefficient from the model of the exposure and 

outcome conditional on the covariates was ≥ 0.05, we did not reject the null hypothesis that the 

conditional independence statement held. Because the hypothesis being tested is not that each 

individual conditional independence statement is true but that our DAG explains the associations 

observed in the data, we did not adjust for multiple testing. In fact, such adjustment would 

increase the p values and thus the fraction of conditional independence statements that are 

supported by the data. We assessed the proportion of the total testable conditional independence 

statements that were supported by the data. We then repeated this same process 100 more times, 

using DAGs with the same structure but randomly permuted nodes. If our DAG represents the 

real-world influences, then a lower proportion of the conditional independence statements 

generated by the DAGs with randomly permuted nodes should be supported by the data than the 
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conditional independence statements generated by the evidence-based DAG. We assessed the 

fraction of the 100 DAGs with randomly permuted nodes for which this expectation held. 

 In part two of our analysis (pilot application of the DAG), we used DAGitty to identify 

the two minimally sufficient adjustment sets from the evidence-based DAG using the single door 

criterion (Pearl 2009). The exposure was combined As, Cd, Mn, W, and U. A minimal 

adjustment set was determined for each outcome separately. The sets were the same for all three 

outcomes and included: (1) ambient air, diet, drinking water, and smoking; and (2) ambient air, 

diet, ethnicity, income, and smoking (Appendix B). Minimal adjustment sets for each individual 

metal—outcome pair were also identified and reported in Appendix B. Since ambient air and 

drinking water exposures were not measured in this population, the sets used in the analysis 

were: (1) smoking and diet; and (2) ethnicity, income, smoking, and diet. We estimated BKMR 

models for the associations between urinary metals concentrations (natural log transformed total 

As, Cd, Mn, U, and W; comparing the 75th to the 25th percentile) and the likelihood of having 

each outcome (one outcome per model). Because we were interested in assessing applicability of 

adjustment sets, we conducted complete-case analyses based on variables included in the models. 

Additional information on the number of participants missing data is provided in Appendix C. 

To try to mitigate potential bias due to unmeasured variables, we conducted a sensitivity analysis 

additionally adjusting for other variables in the DAG (i.e., sex, age, obesity, and urinary 

creatinine). Analyses were conducted in R (R Core Team, Vienna, Austria) using the package 

BKMR (Bobb et al. 2015; 2018). Figures were developed using DAGitty and ggplot2 in R 

(Textor et al. 2016; Wickham 2009). 
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Results 

DAG development 

We identified 42 articles that met the criteria for inclusion in the literature review (Figure 

1). These articles included six meta-analyses, 21 reviews, nine systematic reviews, and six 

combined systematic review and meta-analyses. The most commonly included metals were As (n 

= 22) and Cd (n = 17; Table 1). The evidence-based DAG illustrating the putative causal 

structure relating metal mixture exposures to cardiometabolic outcomes is presented in Figure 2. 

The DAG illustrating the putative causal structure relating individual metals and cardiometabolic 

outcomes excluding variables excluded from this analysis is presented in Supplemental Figure 

1.  

 

SLVDS sample description 

In the analytic sample, there were 1795 participants; however, the sample size for each 

analysis varied by the availability of data for the variables included in the specific model. Of all 

participants with metals measurements (n = 1609), 53% were female and 48% were Hispanic 

(Table 2). The mean age was 54 years (standard deviation = 12 years), and 58% had one of the 

three cardiometabolic outcomes at baseline. As shown in Table 3, the urinary metal 

concentrations in the SLVDS participants were higher than those reported in the 1988-1994 and 

2015-2016 National Health and Nutrition Examination Surveys (NHANES) (“Fourth National 

Report on Human Exposure to Environmental Chemicals Update” 2019; Paschal et al. 1998). 
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DAG assessment 

 Our evidence-based DAG was largely consistent with the SLVDS data. The evidence-

based DAG indicated 449 conditional independence statements, of which 163 were testable 

based on our available data. Of these, 64% of these were supported by the SLVDS data (p ≥ 

0.05). The sample sizes for these tests varied from 1461 to 1780 participants. Of the 30 

conditional independence statements implying a single metal exposure and single outcome (e.g., 

diabetes is conditionally independent of Cd given ethnicity, income, smoking, and diet), 90% 

were supported by the data. To test whether support for 64% of conditional independencies 

represents an elevated number, we compared the result against 100 DAGs with randomly 

permutated nodes. Only five of the random DAGs had more than 64% of conditional 

independence statements supported by the data (Supplemental Figure 2). 

 Testing our DAG with the SLVDS data, clear patterns emerged regarding the 

dependencies of specific variables on other variables. Several nodes were frequently found to be 

conditionally dependent on other nodes identified in the evidence-based DAG. For example, 

statements including having a metal measurement (i.e., having viable urine) all had a p ≥ 0.05, 

indicating that the dependencies specified in the DAG were supported by the data. Similarly, 

age, as expected according to the DAG, was conditionally dependent on all related nodes. Every 

metal was found to be conditionally independent from urinary creatinine (p < 0.05), but urinary 

creatinine was consistently conditionally dependent on other nodes (e.g., alcohol intake and diet). 

A detailed list of all conditional independence statements and the corresponding p values can be 

found in Appendix D.  
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DAG application – pilot analysis 

Using either minimally sufficient adjustment set identified by the evidence-based DAG, 

we did not observe strong evidence of an association between metal mixture exposures and the 

likelihood of having any of the three adverse cardiometabolic outcomes (Figures 3A-C; 

Supplemental Figures 3A-C). Several metals exhibited U-shaped associations, such as Mn with 

diabetes and Cd with hypertension. There was no indication of interaction among any metals 

within the mixture for any of the outcomes (Supplemental Figure 4A-C). Associations between 

metals and cardiometabolic outcomes remained null when additionally adjusting for sex, age, 

obesity, and urinary creatinine (Supplemental Figure 5A-C). 

 

Discussion and Conclusions 

 We developed, tested, and applied an evidence-based DAG illustrating the putative 

causal structure underlying associations between exposure to metal mixtures and cardiometabolic 

health. Our approach to developing the DAG using a systematic literature search was consistent 

with many of the tenants of DAG development discussed elsewhere (Corlin et al. 2018; Ferguson 

et al. 2020; Tennant et al. 2020). Our quantitative assessment of the DAG structure suggested 

that the evidence-based DAG was a reasonable representation of relationships among variables 

in a real data set. Furthermore, as demonstrated through our pilot analysis, environmental 

epidemiologists can apply our evidence-based DAG to transparently, reproducibly, and 

efficiently investigate associations among complex environmental exposures and 

cardiometabolic health outcomes using one of the proposed adjustment sets. 

Through the literature review process, we identified several critical knowledge gaps that 

could be more effectively and efficiently addressed using our evidence-based DAG and analytic 
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approach (e.g., assessing metal mixtures in relation to incident cardiometabolic health 

outcomes). Additional prospective studies of individual metals or metal mixtures and 

cardiometabolic outcomes are warranted, and evidence-based DAGs can guide the specification 

and interpretation of longitudinal models – even in complex metal mixture exposure scenarios 

(Corlin et al. 2016; Li and Yang 2018; Tyrrell et al. 2013). Insights into potential biological 

mechanisms can be derived from evidence-based DAGs, and these DAGs can be used to develop 

quantitative assessments of mechanistic hypotheses within observational studies (Corlin 2018). 

Additionally, further investigation into the mechanisms behind observed associations between 

metals and cardiometabolic outcomes could inform refinements of our evidence-based DAG 

(Beck, Styblo, and Sethupathy 2017; Edwards and Ackerman 2016; Khan et al. 2017). Future 

work could also investigate dose-response relationships between metal mixtures and health 

outcomes using the BKMR analytic approach we applied. 

Beyond these challenges of multipollutant epidemiology that can be partially addressed 

through the development and application of evidence-based DAGs, we also identified several 

issues through our literature review that are unlikely to be handled by DAGs. DAGs can inform 

study design, exposure assessment priorities, and analytic model specification, but DAGs alone 

cannot fix fundamental problems with data collection (e.g., measurement error) or challenges of 

modeling environmental exposures over the life course. For example, several papers in our 

literature review discussed the use of urinary metal exposures as a limitation (notably one that is 

also present in our pilot analysis) because urinary exposures do not necessarily reflect total 

lifetime exposure, or even average exposure over an extended time period depending on the 

metal of interest and renal functioning (Balakrishnan et al. 2018; Larsson and Wolk 2016; Nong 

et al. 2016). 
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Our literature search suggested several mechanisms through which exposure to individual 

metals could potentially affect cardiometabolic health outcomes; however, future work is needed 

to understand how metals may interact physically and/or chemically to affect health. For 

individual metals, much of the literature focuses on how arsenic may be associated with 

cardiometabolic health through associations with modified gene expression, epigenetic changes, 

immune function, endothelial dysfunction, and oxidative stress (Andrew et al. 2008; Ellinsworth 

2015; Khan et al. 2017). Similarly, there is extensive literature relating cadmium exposure to 

inflammatory biomarkers, kidney toxicity, endothelial dysfunction, and oxidative stress 

(Kukongviriyapan, Apaijit, and Kukongviriyapan 2016; Satarug, Vesey, and Gobe 2017). These 

types of hypotheses could be further explored using the evidence-based DAG we developed. 

 Applying the DAG we developed to epidemiological analyses will give environmental 

epidemiologists a defensible, reproducible method to identify and adjust for confounding. To the 

extent that new research is published challenging or adding to the DAG we show here, we 

encourage researchers to incorporate the new knowledge and update their adjustment sets; 

indeed, a prime advantage of using DAGs is that we can have a scientific conversation about 

explicit modeling assumptions (Tennant et al. 2020). For example, others may wish to include 

obesity as a cardiometabolic outcome (rather than a node that could be a potential confounder). 

Additionally, others may disagree with our inclusion (or exclusion) of certain studies supporting 

the presence or absence of specific arrows within the DAG (notably, we used evidence from 

meta-analyses, systematic reviews, and reviews rather than the primary literature). Nevertheless, 

given the similar results observed in our SLVDS analysis using each of the adjustment sets and 

given the DAG assessment results using the DAGs with randomly permutated nodes, we can 

suggest that our DAG development process was robust and that the DAG is compatible with 
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real-world data. That said, we understand that a lack of evidence for an association does not 

guarantee a lack of true association (especially if the analyses were underpowered) – and this 

could have affected our assessment of the validity of the DAG. Other assumptions that we made 

while evaluating the DAG include that the shuffled DAGs (with randomly permuted nodes) were 

biologically plausible and that the conditional independence statements represent true 

relationships. The final DAG was highly complex due to the comprehensive search among 

exposures, outcomes, and other nodes. Future studies may consider assessing whether there is a 

simpler version of the DAG documenting relationships between metal mixtures and 

cardiometabolic outcomes, perhaps by determining how removing an edge or node affects other 

associations in the resulting structure. The aim of this study was to develop a DAG based on 

evidence from the literature and evaluate it using data; however, one could use data to develop a 

simpler DAG, although the results from data-driven methods must be evaluated within the 

context of current evidence. 

The null results of the pilot BKMR analyses relating metal mixtures to cardiometabolic 

outcomes may be attributable to several factors. First, it is possible that the null trends overall 

reflect an averaging of positive and negative associations of components within the mixture. For 

example, As and Cd have been positively associated with diabetes, whereas Mn has been shown 

to aid in glucose metabolism and insulin secretion (Little et al. 2020; Siddiqui, Bawazeer, and 

Scaria Joy 2014; Wang et al. 2014). Similarly, results among studies in the literature review were 

conflicting for some metals; for example, the association between As and measures of 

cardiovascular disease was inconsistent across studies, particularly for lower exposure levels (K. 

A. Moon et al. 2017; Solenkova et al. 2014; Stea et al. 2014; Tsuji et al. 2014). We opted to 

include an arrow between a metal and outcome if at least one study from the review suggested an 
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association; however, inconsistencies in previous literature highlight the need for additional 

research and can potentially explain the observed overall null association. Second, we used total 

arsenic rather than speciated arsenic. Certain species of inorganic arsenic have been found to be 

more toxic than forms of inorganic and organic arsenic (Ellinsworth 2015). Third, we did not 

have data on several nodes for the DAG (i.e., drinking water, soil, and ambient air quality). 

Exposure through ambient air is less common in rural areas with reduced industrial activity, such 

as the San Luis Valley where our participants resided (Briffa, Sinagra, and Blundell 2020). 

However, drinking water and soil are still potential sources of exposure in this population and 

should be investigated further. Fourth, the DAG assessment relied on the significance cutoff of 

0.05 and did not consider effect sizes. Due to the varying sample sizes within the tests of 

conditional independence, we relied exclusively on p values rather than examining the 

magnitudes of effects. Fifth, the DAG assessment, while affirming that many relationships in the 

theoretical DAG were supported by the data, also revealed some conditionally dependent 

relationships that were not supported by the literature search. These associations (indicated by a 

p value less than 0.05) may warrant future examination; however, it is important to first identify 

mechanistic or theoretical support based in the literature before statistical investigation, as was 

done in the present study. Additionally, there are several mechanisms through which individual 

metals can be associated with certain cardiometabolic outcomes, and these could not be assessed 

in this pilot analysis. Furthermore, we note limitations of our pilot analysis such as high urinary 

metal concentrations in the study population compared to the U.S. population, the lack of 

diversity in our cohort beyond non-Hispanic and Hispanic white individuals, and the limited 

transportability of our results to non-rural populations. Although the pilot analysis results may 
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not be transportable outside of populations like our target population, the results from our 

extensive literature review and evidence-based DAG could be applicable to any cohort.  

Through our systematic literature search, we were able to construct an evidence-based 

DAG to inform adjustment set selection and/or study design for future longitudinal analyses of 

metal mixtures and cardiometabolic outcomes. We also demonstrated an approach to explicitly 

state and test assumptions through our application of the evidence-based DAG to the rich 

SLVDS data set. We encourage other environmental epidemiologists to develop and use such 

tools to increase the scientific rigor, transparency, and reproducibility of their work.  
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Table 1. Literature review summary  

  Author and year Publication Type Outcome(s) Results 

As Xu et al., 2020 Systematic 
review and meta-
analysis 

Cardiovascular 
disease (CVD) 

Drinking water arsenic (As) was significantly 
associated with increased hypertension risk, 
CVD mortality risk, and risk of other 
cardiovascular-related outcomes in the dose-
response meta-analysis. 

 Leng et al., 2019 Review CVD and 
hypertension 

As exposure was associated with coronary artery 
disease (CAD), peripheral artery disease (PAD), 
markers of CVD (interleukin-6 and interleukin-
8), and mortality from hypertension. 

 da Cunha 
Martins et al., 
2018 

Review Hypertension Epidemiological evidence is inconsistent for an 
association between As and hypertension. 

 Chowdhury et 
al., 2018 

Systematic 
review and meta-
analysis 

Cardiovascular 
disease (CVD), 
coronary heart 
disease (CHD), stroke 

As exposure was significantly associated with 
CVD and CHD. 

 Kuo et al., 2017 Systematic 
review 

Diabetes, CVD, and 
hypertension 

Higher As exposure was associated with higher 
percentage of inorganic As (iAs) and lower 
percentage of dimethylarsinic acid (metabolite of 
iAs). As exposure was not associated with 
methylarsonic acid (metabolite of iAs) 
percentage, although this metabolite was 
associated with increased risk of CVD and 
decreased risk of diabetes. A pattern of higher 
dimethylarsinic acid and lower methylarsonic 
acid percentages was associated with increased 
risk of diabetes.  

 Beck et al., 2017 Review Type 2 diabetes 
mellitus (T2DM) 

Irregular insulin secretion could be a result of 
abnormal microRNAs and their expression. 
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 Khan et al., 2017 Review T2DM Low to moderate As exposure was associated 
with epigenetic effects. 

 Phung et al., 
2017 

Systematic 
review and meta-
analysis (meta-
regression) 

CVD As was associated with CVD at lower levels 
than previously reported. 

 Moon et al., 
2017 

Systematic 
review and meta-
analysis 

Cardiovascular 
outcomes 

As exposure associated with CVD and CHD 
incidence and mortality in the dose-response 
meta-analysis. 

 Alamolhodaei et 
al., 2015 

Review Cardiovascular 
outcomes 

As has been associated with cardiovascular 
outcomes. This study describes the mechanisms 
by which this could occur. 

 Abdul et al., 
2015 

Review CVD, diabetes, 
hypertension 

As has been associated with CVD, diabetes, and 
hypertension. This study describes the 
mechanisms of these associations. 

 Ellinsworth, 
2015 

Review NADPH oxidase, 
reactive oxygen 
species, and 
endothelial 
dysfunction 

The review summarized the mechanisms of how 
As influences these three outcomes. 

 Tsuji et al., 2014 Systematic 
review 

CVD Low exposure to iAs was not associated with 
CVD. 

 Solenkova et al., 
2014 

Review CVD, PAD, 
hypertension 

Long term low to moderate exposure of As was 
associated with CVD. High water As exposure 
associated with PAD. There was a suggested 
relationship between As and hypertension. 

 Wang et al., 
2014 

Meta-analysis T2DM Long term iAs exposure was associated with 
T2DM. 
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 Stea et al., 2014 Review CVD and 
cardiovascular 
outcomes 

Higher levels of As are associated with PAD and 
CHD. At lower levels, results are more 
inconsistent. As has a dose-response relationship 
with blood pressure. As is suggested to be 
associated with markers of T2DM. 

 Moon et al., 
2012 

Systematic 
review 

Cardiovascular 
outcomes 

As was significantly associated with CVD, 
CHD, and PAD at high levels. Results were 
inconclusive at lower levels of As. 

 Kuo et al., 2013 Systematic 
review 

T2DM There was a suggestive relationship between As 
and T2DM. 

 Andra et al., 
2013 

Systematic 
review 

T2DM As was associated with several markers of 
T2DM. 

 Boekelheide et 
al., 2012 

Review CVD As was associated with CVD mortality in dose-
response relationships. 

 Abhyankar et al., 
2012 

Systematic 
review 

Hypertension As was associated with hypertension prevalence 
when comparing high to low exposure. There 
was some evidence of a dose-response 
relationship. 

 Jomova et al., 
2011 

Review Cardiovascular 
outcomes, 
hypertension 

As has been shown to be associated with several 
markers of cardiovascular outcomes. As is also 
associated with hypertension and diabetes. 
Mechanisms behind these associations are 
suggested. 

Cd Diaz et al., 2021 Review Cardiovascular 
outcomes 

Cd exposure associated with several 
cardiovascular outcomes (PAD, myocardial 
infarction, stroke, CVD mortality). There is 
evidence of effect modification by sex. 

 Martins et al., 
2021 

Systematic 
review 

Hypertension There is a positive association between blood Cd 
and blood pressure/hypertension. 

 Little et al., 2020 Meta-analysis T2DM Cd exposure was associated with a moderately 
increased risk of T2DM. 

 . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted A

ugust 29, 2022. 
; 

https://doi.org/10.1101/2021.03.05.21252993
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.05.21252993
http://creativecommons.org/licenses/by-nd/4.0/


 da Cunha 
Martins et al., 
2018 

Review Hypertension Epidemiological evidence is inconsistent for an 
association between Cd and hypertension. 

 Chowdhury et 
al., 2018 

Systematic 
review and meta-
analysis 

CVD, CHD, stroke Cd exposure was significantly associated with 
CVD and stroke. 

 Tinkov et al., 
2018 

Meta-analysis Atherosclerosis Cd exposure associated with death from CHD, 
CVD, stroke, and PAD. 

 Satarug et al., 
2017 

Review Diabetes and 
hypertension 

Cd was associated with kidney disease, 
hypertension, CAD, PAD, and diabetes. The 
review proposed biological mechanisms. 

 Edwards & 
Ackerman, 2016 

Review T2DM There are multiple biological mechanisms 
involved in the association between Cd and 
T2DM. 

 Kukongviriyapan 
et al., 2016 

Review CVD The relationship between Cd and various 
cardiometabolic outcomes could be attributable 
to endothelial cell and smooth muscle cell 
dysfunction.  

 Larsson & Wolk, 
2016 

Meta-analysis CVD Cd was associated with CVD mortality. 

 Solenkova et al., 
2014 

Review CVD, CAD, PAD, 
stroke, hypertension 

Cd associated with cardiovascular disease and 
mortality, CAD, PAD, and stroke. Blood Cd was 
associated with hypertension. 

 Hecht et al., 
2013 

Meta-analysis CVD There was a correlation between Cd intake and 
smoking, which could partially explain the 
association between smoking and CVD. 

 Kuo et al., 2013 Systematic 
review 

T2DM Cd was not associated with T2DM. 
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 Tellez-Plaza et 
al., 2013 

Systematic 
review and meta-
analysis 

CVD, CHD, stroke, 
PAD 

Cd was significantly associated with CVD, 
CHD, and PAD. The pooled relative risk for 
CVD was significant in males but not females or 
never smokers. 

 Caciari et al., 
2013 

Systematic 
review and meta-
analysis 

Hypertension Cd associated with all markers of hypertension 
(prevalence and mean, systolic, and diastolic 
blood pressures) in occupationally exposed 
individuals. 

 Thévenod & 
Lee, 2013 

Review Hypertension, CVD, 
T2DM 

Results from epidemiological studies were 
inconsistent, but Cd has been associated with 
blood pressure, CVD, PAD, and T2DM. 

 Satarug & 
Moore, 2012 

Review T2DM and 
hypertension 

Human epidemiological data is limited, but it 
has been suggested that Cd is associated with 
T2DM, hypertension, and CVD. 

Mn Li & Yang, 2018 Review Metabolic syndrome, 
T2DM, 
atherosclerosis 

A U-shaped association observed between Mn 
and reactive oxygen species creation and 
oxidative stress, which could impact metabolic 
disease (which incorporates T2DM). 

 Sanjeevi et al., 
2018 

Meta-analysis T2DM A non-significant trend was found whereby 
lower Mn was associated with T2DM. 

 Kaur & Henry, 
2014 

Review T2DM Results are inconsistent on whether Mn levels 
are lower or higher in diabetics. Mn helps 
regulate glucose metabolism. 

 Siddiqui et al., 
2014 

Review T2DM Mn aids with metabolism of carbohydrates, 
amino acids, cholesterol, and glucose. 

U Corlin et al., 
2016 

Review Cardiovascular 
outcomes 

There is low likelihood of an association 
between U and cardiovascular outcomes. 

 Nigra et al., 2016 Systematic 
review 

Cardiovascular 
outcomes 

There was a suggested association between U 
and increased CVD risk. 

 Zhivin et al., 
2014 

Systematic 
review 

Cardiovascular 
outcomes 

There is inconclusive evidence on the 
association between U and cardiovascular 
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outcomes. 

W Nigra et al., 2016 Systematic 
review 

Cardiovascular 
outcomes 

Tungsten was associated with CVD, PAD, and 
stroke. 

 
Footnotes: As = arsenic, Cd = cadmium, Mn = manganese, U = uranium, W = tungsten, CAD = coronary artery disease, iAs = 
inorganic arsenic, CHD = coronary heart disease, CVD = cardiovascular disease, T2DM = Type 2 diabetes mellitus PAD = peripheral 
artery disease, 
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Figure 2. Directed acyclic graph representing the putative causal structure for the association 

between metal mixtures and cardiometabolic outcomes.  

 

Legend: Light green nodes represent exposures (i.e., metals), dark green nodes represent sources 

of exposure, blue nodes represent outcomes, red nodes represent risk factors for the outcomes, 

yellow nodes represent measurement-related nodes, and the purple node represents selection into 
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the study. Figure created in DAGitty. CVD = cardiovascular disease; As = arsenic; Cd = 

cadmium; Mn = manganese; W = tungsten; U = uranium. 
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Table 2. Characteristics of participants with metal exposure measurements at baseline  

  n (%) or mean 
(standard 
deviation) 

Total 1609 (100) 

Sex  

  Female 855 (53.1) 

  Male 754 (46.9) 

Age (years) 54.3 (12.2) 

Body mass index (kg/m2) 26.7 (4.8) 

Educational attainment  

  <12 years 526 (32.7) 

  12 years 540 (33.6) 

  >12 years 539 (33.5) 

Ethnicity  

  Hispanic 773 (48.0) 

  Non-Hispanic 836 (52.0) 

Income ($)  

  <15,000 664 (41.3) 

  15,000 - <35,000 537 (33.4) 

  ≥35,000 287 (17.8) 

Smoking status  

  Never 721 (44.8) 

  Current 387 (24.1) 

  Former 499 (31.0) 

Physical activity  

  Sedentary 167 (10.4) 

  Somewhat active 338 (21.0) 

  Moderately active 457 (28.4) 

  Most active 643 (40.0) 

Alcohol intake (g/week) 40.98 (104.1) 

Caloric intake (kcal/day) 1510.41 (577.9) 

Outcome prevalence  

  Cardiovascular disease 111 (6.9) 

  Diabetes 409 (25.4) 

  Hypertension 797 (49.5) 
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Table 3. Baseline geometric mean metal concentration (µg/L) among SLVDS participants 
compared with National Health and Nutrition Examination Survey (NHANES) 1988-1994 and 
NHANES 2015-2016 participants 
 SLVDS 

(1984-1986) 
NHANES III  
(1988-1994) a 

NHANES 
(2015-2016) b 

Total Arsenic c 16.27 - 5.96 

  Male 18.87 - 6.54 

  Female 14.28 - 5.46 

  Non-Hispanic 17.84 - 5.17 

  Hispanic 14.73 - 6.38 

Cadmium  0.69 - 0.13 

  Male 0.71 - 0.12 

  Female 0.67 - 0.14 

  Non-Hispanic 0.61 - 0.12 

  Hispanic 0.78 - 0.11 

Manganese  0.67 0.53 - 

  Male 0.71 - - 

  Female 0.65 - - 

  Non-Hispanic 0.65 - - 

  Hispanic 0.70 - - 

Tungsten  0.33 0.70 0.07 

  Male 0.36 - 0.08 

  Female 0.30 - 0.06 

  Non-Hispanic 0.41 - 0.06 

  Hispanic 0.26 - 0.08 

Uranium  0.01 - 0.01 

  Male 0.02 - 0.01 

  Female 0.01 - 0.01 

  Non-Hispanic 0.01 - 0.01 

  Hispanic 0.01 - 0.01 
a Data from Paschal et al. 1998 

b Data from Fourth National Report on Human Exposure to Environmental Chemicals Update 

2019 
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c All metal measurements were conducted in urine. NHANES 2015-2016 did not report urinary 

measurements of manganese. NHANES III only reported urinary metal measurements of 

manganese and tungsten for the overall population.  
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Figure 3A. Exposure-response functions relating urinary metal concentrations to the log hazard 

estimate (interpreted as a log odds estimate) of prevalent cardiovascular disease (CVD). Model 

adjusted for ethnicity (Hispanic/non-Hispanic), income, smoking (never/former/current), and 

diet. 
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Figure 3B. Exposure-response functions relating urinary metal concentrations to the log hazard 

estimate (interpreted as a log odds estimate) of prevalent diabetes. Model adjusted for ethnicity 

(Hispanic/non-Hispanic), income, smoking (never/former/current), and diet. 
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Figure 3C. Exposure-response functions relating urinary metal concentrations to the log hazard 

estimate (interpreted as a log odds estimate) of prevalent hypertension. Model adjusted for 

ethnicity (Hispanic/non-Hispanic), income, smoking (never/former/current), and diet. 
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