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Abstract 

Background: Exposure to individual metals (and metalloids; hereafter ‘metals’) is associated 

with adverse cardiometabolic outcomes. Specifying analytic models to assess relationships 

among metal mixtures and cardiometabolic outcomes requires evidence-based models of the 

(assumed) causal structures; however, such models have not been previously published. 

Methods: We conducted a systematic literature review to develop an evidence-based directed 

acyclic graph (DAG) identifying relationships among metals, cardiometabolic health indicators, 

and potential confounders. To evaluate the consistency of the DAG with data from 1797 

participants in the San Luis Valley Diabetes Study (SLVDS; mean age=54 years, 53% women, 

48% Hispanic), we tested conditional independence statements suggested by the DAG and by 

100 DAGs with the same structure but randomly permuted nodes using linear (continuous 

outcomes), logistic (dichotomous outcomes), or Bayesian kernel machine regression (BKMR; 

statements with metal coexposures) models. Based on minimally sufficient adjustment sets 

identified by the DAG, we specified BKMR models assessing associations between urinary 

metal mixtures and cardiometabolic outcomes in the SLVDS population.  

Results: Twenty-nine articles met the inclusion criteria for the systematic review. From these 

articles, we developed an evidence-based DAG with 382 testable conditional independence 

statements (71% supported by SLVDS data). Only 3% of the DAGs with randomly permuted 

nodes indicated more agreement with the data than our evidence-based DAG. Applying the 

evidence-based DAG in a pilot analysis, we did not observe evidence for an association among 

metal mixtures and cardiometabolic outcomes.  

Conclusions: We developed, tested, and applied an evidence-based approach to analyze 

associations between metal mixtures and cardiometabolic health.  
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What this study adds: We conducted a systematic literature review to develop an evidence-

based directed acyclic graph (DAG) of the presumed causal relationship between exposure to 

metal mixtures and cardiometabolic outcomes. Using real data, we evaluated the testable 

conditional independence statements. The evidence-based DAG outperformed 97% of DAGs 

with randomly permuted nodes. We applied the evidence-based DAG to select covariates for a 

pilot analysis. Environmental Epidemiology readers can (1) plan future research based on our 

systematic literature review, (2) use our process to evaluate other evidence-based DAGs, and (3) 

apply the evidence-based covariates sets to further explore relationships between metal mixtures 

and cardiometabolic health. 
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Introduction 

Extensive epidemiologic and toxicologic evidence indicates that metals and metalloids 

[e.g., cadmium (Cd), inorganic arsenic (iAs), manganese (Mn), and tungsten (W); hereafter 

simplified as ‘metals’] are associated with cardiometabolic outcomes.1–11 Whereas most of the 

published studies considered exposure to only one metal, numerous calls exist to examine 

associations between metal mixtures and cardiometabolic outcomes.2,12–14 Examining the health 

outcomes associated with metal mixtures would more realistically reflect environmental 

exposure conditions.15,16 Yet even analyses that include multiple metals typically only adjust for 

concentrations of non-target metals (not accounting for interactions among metal mixtures) or 

use stratified analyses. These stratified analyses, often in the form of associations with low 

exposure to metal A/low exposure to metal B versus high exposure to metal A/high exposure to 

metal B, do not capture complex non-linear relationships.2,17–20 

 Development of predictive analytic models probing the complex relationships among 

metal mixtures and cardiometabolic outcomes requires an understanding of the putative 

underlying causal structure. An evidence-based directed acyclic graph (DAG) is one way to 

represent such a causal structure. DAGs clarify causal contrasts and explicitly show assumptions 

about common causes of exposures and outcomes (e.g., dietary sources of metal (co)exposure 

that also affect cardiometabolic health) that we need to account for in our study design and/or 

analysis.21–24 DAGs are also useful for identifying minimally sufficient adjustment sets of 

variables; when DAGs are used in this way, articles should report the assumed DAG.25 Few 

evidence-based DAGs exist in the environmental epidemiology context due to the need to 

conduct systematic literature reviews and to empirically test the applicability of the DAG for the 

study context (as one example, see Corlin et al.26). No evidence-based DAGs have been 
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previously published describing the structure underlying potential metal mixture-cardiometabolic 

outcome relationships. Such a DAG could help researchers assess how specific environmentally 

relevant metal mixtures mechanistically affect the development of cardiometabolic outcomes. 

Therefore, our primary objective was to conduct a systematic literature review to support the 

development of an evidence-based DAG diagraming the relationships among exposure to metal 

mixtures, the development of cardiometabolic outcomes, and potential common causes of 

exposures and outcomes. Our secondary objective was to evaluate this DAG and apply it to a 

real environmental health context using data from a cohort of adults residing in the rural San 

Luis Valley of Colorado.  

 

Methods 

Literature review and directed acyclic graph development 

 We conducted a systematic search using PubMed, ProQuest, and Embase. The search 

strategy is detailed in Figure 1. The searches for each database were as follows: 

1. PubMed search: (((((((((inorganic arsenic[MeSH Terms]) OR manganese[MeSH Terms]) 

OR cadmium[MeSH Terms]) OR uranium[MeSH Terms]) OR tungsten[MeSH Terms])) 

OR alloy[MeSH Terms])) AND ((cardiovascular disease[MeSH Terms]) OR type 2 

diabetes mellitus[MeSH Terms])) AND ((((("meta analysis"[Publication Type]) OR 

"review"[Publication Type]) OR "systematic review"[Publication Type]) OR "consensus 

development conference"[Publication Type]) OR "randomized controlled 

trial"[Publication Type])  

2. ProQuest search: (ti(cardiovascular disease) OR ti(type 2 diabetes)) AND (ti(inorganic 

arsenic) OR ti(manganese) OR ti(cadmium) OR ti(uranium) OR ti(tungsten)) 
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3. Embase search: ('cardiovascular disease'/exp OR 'non insulin dependent diabetes 

mellitus'/exp) AND ('cadmium'/exp OR 'inorganic arsenic'/exp OR 'manganese'/exp 

OR 'uranium'/exp OR 'tungsten'/exp OR 'alloy'/exp) AND ([systematic review]/lim OR 

[meta analysis]/lim) AND [2013-2019]/py 

In PubMed, we specified our search to only meta-analyses, reviews, systematic reviews, 

consensus development conferences, or randomized controlled trials. In ProQuest, we further 

narrowed the search to reviews, which encompassed literature reviews, systematic reviews, and 

meta-analyses. Finally, in Embase, we searched for systematic reviews and meta-analyses. All 

searches were restricted to articles published in English within the seven years prior to the 

review (after September 2013). Articles had to assess one of the five primary metals of interest 

(As, Cd, Mn, uranium (U), W) as the exposure and a cardiometabolic condition as the outcome. 

Articles were excluded if they were synthesized in a meta-analysis or review article included in 

our literature review. We also searched the reference sections of each included article for the 

terms “mixture” or “alloy,” and included articles that met the search criteria but did not appear in 

the database searches (n = 1).  

From each article included in the review, we collected the following information: authors, 

year, journal, study population, sample size, location, exposure characteristics (e.g., 

concentration), outcome, covariates, reported effect estimates, proposed causal 

pathway/biological mechanism, and reported limitations. Based on the extracted data, we created 

DAGs using the software DAGitty.27 Each arrow from an exposure to an outcome represented a 

relationship mentioned in at least one articles from the literature review (Figure 2).1,3,5,6,9,10,12–

14,28–47 Each arrow mapping a covariate to either the exposure or the outcome was verified from 

either an article in the literature review or an alternate source found searching in PubMed 
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(Appendix A). The primary DAG is shown in Figure 2, and the metal specific DAGs are 

presented in the supplement (Supplemental Figures 1-5). 

 

Evaluation and application data 

 To evaluate and apply the evidence-based DAG, we used data from the San Luis Valley 

Diabetes Study (SLVDS), a prospective cohort study assessing the risk factors for chronic 

disease among Hispanic and non-Hispanic white adults in rural Colorado. Data collection 

methods have been detailed elsewhere.48 Briefly, people with diabetes residing in Alamosa or 

Conejos counties, Colorado were recruited through medical records reviews and local 

advertisements. People without diabetes were recruited using a stratified random sampling 

scheme based on residential location in these counties. All participants (with or without diabetes) 

met three additional eligibility criteria: (1) aged 20-74 years old, (2) able to provide informed 

consent, and (3) proficient in English or Spanish. Baseline data collection occurred between 

1984 and 1988, and follow-up data collection occurred between 1988 and 1998.  

 Urinary metal exposures used in this analysis were assessed at baseline. Samples 

(approximately 120 ml) were stored in tubes in a freezer at -80°C until the laboratory analysis 

was conducted in 2008. An inductively coupled argon plasma instrument with a mass 

spectrometer was used to detect the metal concentrations with a detection limit of 1 part in 10. 

Values below limit of detection were defined as the square root of detection limit divided by 2. 

All laboratory methods met the standards of the Clinical Laboratory Improvement Amendment 

and Environmental Protection Agency.49 All analyses were adjusted for urinary creatinine 

concentrations (g/L). Urinary creatinine was quantified using a colorimetric assay by the Jaffe 

reaction. 
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Outcomes were assessed at baseline and follow-up study visits. We created a 

dichotomous variable for having an adverse cardiometabolic outcome. We included people who 

reported incident: (1) coronary bypass surgery, (2) peripheral vascular surgery, (3) myocardial 

infarction, (4) stroke, (5) low high-density lipoprotein cholesterol concentration (fasting values 

<40 mg/dL in men or <50 mg/dL in women), or (6) high triglyceride concentration (fasting 

values ≥150 mg/dL).50 

At baseline, participants self-reported age, sex, ethnicity (Hispanic/non-Hispanic), 

smoker status (never smoker [<100 lifetime cigarettes]/former smoker [≥100 lifetime cigarettes 

but not currently smoking]/current smoker [≥100 lifetime cigarettes and currently smoking]), 

annual gross household income (0-$7,499, $7,500-$19,999, $20,000-$34,999, ≥$35,000), 

educational attainment (<12 years/12 years/>12 years), marital status (living together or 

married/not in a current domestic partnership or married), employment status (in the labor force 

and working/not working, retired, or disabled), occupation (agriculture workforce/non-

agriculture), physical activity, and diet. Participants’ physical activity at work was classified as 

sedentary, moderate, or vigorous. Participants’ overall physical activity level accounting for 

activity during work and non-work time was categorized as sedentary, somewhat active, 

moderately active, very active, or most active.51 Participants completed a food frequency 

questionnaire.52,53 Food intake for each category (i.e. plant-based foods and proteins) was 

measured as g/day, and alcohol intake was measured as g/week. Drinking water intake was 

measured as the number of eight-ounce glasses consumed per day. Since the diet variables 

(kcals, vitamin C, zinc, selenium, vitamin A, beta carotene, folic acid, protein, total fats, 

saturated fats, monounsaturated fats, polyunsaturated fats, cholesterol, carbohydrates, total sugar, 

plant-based foods, insoluble, soluble, and total fiber, legumes, and omega-3) were highly 
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correlated, we summarized them by conducting a principal component analysis. We normalized 

the diet variables by centering and variance-standardizing them. Then, we used singular value 

decomposition implemented with the numpy linear algebra solver on the normalized dietary data 

to identify the top two eigenvectors, which together accounted for 53% of the variance. We 

transformed the participants dietary data by matrix multiplication with the top two eigenvectors 

to project the dietary data onto the first two principal components.  

Additionally, anthropometric and clinical measurements were taken at baseline. 

Researchers measured participants height and weight, and these measurements were used to 

calculate body mass index (BMI; obesity defined as BMI >30 kg/m2). Researchers also measured 

blood pressure three times. The average of the second and third diastolic blood pressure 

measurements was used in the analysis. We considered individuals to have high blood pressure if 

the participant self-reported hypertension, self-reported prior or current use of hypertension 

medication, or was clinically diagnosed with hypertension at the clinic visit. Participants who 

self-reported current hypertension medication use brought the medication to the clinic visit for 

confirmation. For consistency with cutoffs at the time of SLVDS data collection, diastolic blood 

pressure was categorized into four levels: (1) normal (<90 mmHg), (2) mild hypertension (90 - 

<105 mmHg), (3) moderate hypertension (105 - <155 mmHg), or (4) severe hypertension (≥115 

mmHg).54 

 

Statistical analysis 

 Our analysis was split into two parts: (1) evaluation of the DAG, and (2) application of 

the DAG in a pilot analysis. For both parts, we mapped each node in the evidence-based DAG to 

the corresponding variables in the SLVDS data. There were three exceptions: (1) ambient air 
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quality and soil exposure were unmeasured in the SLVDS; (2) we excluded kidney damage due 

to the potential for reverse causation;55,56 and (3) we excluded seafood consumption from 

analysis based on dietary patterns in this population. 

 In part one of our analysis, we first tested each conditional independence statement 

implied by the evidence-based DAG using linear (continuous outcomes), logistic (dichotomous 

outcomes), ordered factor response logistic (ordinal outcomes), or Bayesian kernel machine 

regression (BKMR; statements with metal mixtures as an exposure node) models. We considered 

the conditional independence statement to hold if the regression coefficient was not significant 

using the Wald test (for linear models, or equivalent statistic for other models). For the BKMR 

models, we examined the predicted mean and standard deviation for the outcome when the 

metals were held at their 25th versus 75th percentile values using a z-test. The metals included in 

this analysis were antimony (Sb), As, barium (Ba), cadmium (Cd), cesium (Cs), chromium (Cr),  

cobalt (Co), copper (Cu), lead (Pb), Mn, molybdenum (Mo), plutonium (Pt), selenium (Se), 

thallium (Tl), U, W, and zinc (Zn). If the resulting p value was ≥0.05, we did not reject the null 

hypothesis that the conditional independence statement held. We assessed the proportion of the 

total testable conditional independence statements that were supported by the data. We then 

repeated this same process 100 more times, using DAGs with the same structure but randomly 

permuted nodes. In theory, a lower proportion of the conditional independence statements 

generated by the DAGs with randomly permuted nodes should be supported by the data than the 

conditional independence statements generated by the evidence-based DAG. We assessed the 

fraction of the 100 DAGs with randomly permuted nodes for which this expectation held. 

 In part two of our analysis, we used DAGitty to identify the three minimally sufficient 

adjustment sets from the evidence-based DAG. The sets were: (1) age, ethnicity, income, 
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obesity, hypertension, alcohol, drinking water, meat intake, smoking, and plant-based food 

intake; (2) age, ethnicity, income, obesity, hypertension, alcohol, drinking water, meat intake, 

smoking, and diet; and (3) age, ethnicity, income, obesity, hypertension, alcohol, meat intake, 

smoking, diet, sex, and education. We estimated BKMR models for the associations between 

urinary metals concentrations (total As, Cd, Mn, U, and W; comparing the 75th to the 25th 

percentile) and the likelihood of having a cardiometabolic outcome (separate models adjusting 

for each minimally sufficient adjustment set plus urinary creatinine). We conducted sensitivity 

analyses with the same three sets of covariates: (1) stratifying the models by smoker status 

(never versus current/former); and (2) accounting for potential collinearity concerns identified by 

Spearman correlations by removing drinking water intake and plant-based food intake from the 

first two models. All analyses were conducted in R (R Core Team, Vienna, Austria) or Stata v16 

(StataCorp, College Station, Texas). In R, we used the package BKMR.19,57 Figures were 

developed using DAGitty and ggplot2 in R.27,58 

 

Results 

DAG development 

We identified 29 articles that met the criteria for inclusion in the systematic literature 

review (Figure 1). These articles included eight meta-analyses, 16 literature or systematic 

reviews, three multi-centric cross-sectional studies, one multi-centric cohort study, and one 

multi-centric case-cohort study. The most commonly included metals were As (n = 13) and Cd (n 

= 13; Table 1). The evidence-based DAG illustrating the putative causal structure relating metal 

mixture exposures to cardiometabolic outcomes is presented in Figure 2. Secondary DAGs 
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illustrating the putative causal structure relating individual metals and cardiometabolic outcomes 

are presented in Supplemental Figures 1-5.  

 

SLVDS sample description 

In the SLVDS, there were 1797 participants; however, the sample size for each analysis 

varied by the availability of data for the variables included in the specific model. Of all 

participants with metals measurements (n = 1609), 53% were female and 48% were Hispanic 

(Table 2). The mean age was 54 years (standard deviation = 12 years), and 67% had one of the 

six cardiometabolic outcomes at first follow-up. As shown in Table 3, the urinary metal 

concentrations in the SLVDS participants were higher than those reported in the 1988-1994 and 

2015-2016 National Health and Nutrition Examination Surveys (NHANES).  

 

DAG assessment 

 In total, the evidence-based DAG indicated 664 conditional independence statements. 

Based on data availability, there were 382 total testable conditional independence statements and 

71% of these were supported by the SLVDS data (p ≥ 0.05). The percentage of statements 

supported by the data depended on the presence of metal mixtures as a node: 67% of the 291 

statements without metal mixtures as a node and 85% of the 91 statements with metal mixtures 

as a node were supported. Of the 100 DAGs with randomly permutated nodes, only three had 

>71% conditional independence statements supported by the data (Supplemental Figure 6). 

 Several nodes were almost consistently conditionally dependent on other related nodes 

identified in the DAG. For example, only one conditional independence statement related to 

cardiometabolic outcomes was significant (i.e., cardiometabolic outcomes was conditionally 
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independent of employment status given age, education, income, physical activity, ethnicity, 

obesity, marriage status, sex, and diet). All other statements had a p ≥ 0.05 and were dependent. 

Similarly, when considering alcohol intake as a node, 20 of the 25 conditional independence 

statements had p ≥ 0.05, indicating the dependence statement was supported by the SLVDS data. 

Other nodes were less well represented by the data. Of the 18 conditional independence 

statements related to employment status, over half (56%) were significantly independent. A 

detailed list of all conditional independence statements and the corresponding p-values can be 

found in Appendix B. 

 

DAG application – pilot analysis 

Using any of the three minimally sufficient adjustments sets of covariates identified by 

the evidence-based DAG, we did not observe strong evidence of an association between metal 

mixture exposures and the likelihood of having an adverse cardiometabolic outcome (Figure 3a-

c). The strongest positive associations between any individual metal within the mixture and 

having a cardiometabolic outcome were observed for Cd in each of the three models. There was 

no indication of interaction among any metals within the mixture, and the results did not depend 

on the set of covariates (Supplemental Figure 7a-c). In sensitivity analyses stratified by smoker 

status, results remained relatively unchanged; however, the model using the first set of covariates 

for never smokers was less stable than all other models (Supplemental Figures 8a-c and 9a-c). 

In sensitivity analyses excluding drinking water intake and plant-based food intake from the 

relevant sets of covariates, results also remained largely unchanged (Supplemental Figure 10a-

b). 
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Discussion 

 We developed, tested, and applied an evidence-based DAG illustrating the putative 

causal structure underlying associations between exposure to metal mixtures and cardiometabolic 

health. Our approach to developing the DAG using a systematic literature review was consistent 

with many of the tenants of DAG development discussed elsewhere.26,59 Our quantitative 

assessment of the DAG structure suggested that the evidence-based DAG was a reasonable 

representation of relationships among variables in a real data set. Furthermore, as demonstrated 

through our pilot analysis, environmental epidemiologists can apply our evidence-based DAG to 

transparently, reproducibly, and efficiently investigate longitudinal associations between 

complex environmental exposures and cardiometabolic health outcomes adjusting for one of 

three identified sets of covariates. 

Through the systematic literature review process, we identified several critical gaps in the 

literature that could be more effectively and efficiently addressed using our evidence-based DAG 

and analytic approach (e.g., assessing metal mixtures in relation to incident cardiometabolic 

health outcomes). Evidence-based DAGs can guide the specification and interpretation of 

longitudinal models – even in complex metal mixture exposure scenarios.2,12,14,31 Insights into 

potential biological mechanisms can be derived from evidence-based DAGs, and these DAGs 

can be used to develop quantitative assessments of mechanistic hypotheses within observational 

studies.5,30,31,37,45,60 Additionally, future work could investigate dose-response relationships 

between metal mixtures and health outcomes using the BKMR analytic approach we applied.6,9,10  

Beyond these challenges of multipollutant epidemiology that can be partially addressed 

through the development and application of evidence-based DAGs, we also identified several 

issues through our literature review that are unlikely to be handled by DAGs. DAGs can inform 
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study design, exposure assessment priorities, and analytic model specification, but DAGs alone 

cannot fix fundamental problems with data collection (e.g., measurement error) or challenges of 

modeling environmental exposures over the life course. For example, several papers in our 

literature review discussed the use of urinary metal exposures as a limitation (notably one that is 

also present in our pilot analysis) because urinary exposures do not necessarily reflect total 

lifetime exposure, or even average exposure over an extended time period depending on the 

metal of interest and renal functioning.29,39,40  

Our systematic literature review suggested several mechanisms through which exposure 

to individual metals could potentially affect cardiometabolic health outcomes; however, future 

work is needed to understand how metals may interact physically and/or chemically to affect 

health. For individual metals, much of the literature focuses on how arsenic may be associated 

with cardiometabolic health through mechanisms mediated by epigenetic changes,29 and through 

associations with immune function, endothelial dysfunction, and oxidative stress.33,61 Similarly, 

there is extensive literature relating cadmium exposure to inflammatory biomarkers, kidney 

toxicity, endothelial dysfunction, and oxidative stress.38,42 These types of hypotheses could be 

further explored using the secondary DAGs we developed for the putative relationships between 

individual metals and cardiometabolic health outcomes (Supplemental Figures 1-5). 

 Applying the evidence-based DAG we developed to epidemiological analyses will give 

environmental epidemiologists a defensible, reproducible method to identify and adjust for 

confounding. To the extent that new research is published challenging or adding to the DAG we 

show here, we encourage researchers to incorporate the new knowledge and update their 

covariate sets; indeed, a prime advantage of using DAGs is that we can have a scientific 

conversation about explicit modeling assumptions.25 For example, others may wish to include 
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hypertension as a cardiometabolic outcome (rather than a node that could be a potential 

confounder). Nevertheless, given the remarkably similar results observed in our pilot analysis 

using each of the three minimally sufficient adjustment sets and given the DAG assessment 

results using the DAGs with randomly permutated nodes, we can suggest that our DAG 

development process was robust and that the DAG is compatible with real-world data.62  

The null results of the pilot analysis may be attributable to several factors. First, it is 

possible that the null trends overall reflect an averaging of positive and negative effects of 

components within the mixture. For example, As has been positively associated with 

hypertension, whereas Mn has been negatively associated with hypertension.63–65 Thus, the 

averaging of the positive and negative effects could lead to null results. Second, we used total 

arsenic rather than speciated arsenic. Certain species of inorganic arsenic have been found to be 

more toxic than forms of inorganic and organic arsenic.33 Third, we did not have data on several 

nodes for the DAG (i.e., soil and ambient air quality). However, soil is more of a risk to children 

due to higher absorption rates and smaller sizes,66,67 and exposure through ambient air is less 

common in rural areas with reduced industrial activity.68 Fourth, we may have over-adjusted or 

introduced co-exposure bias amplification when using BKMR; however, our sensitivity analyses 

suggest that the impact of these issues was minimal. Fifth, our decision to include several types 

of cardiometabolic health outcomes together (including sub-clinical and clinical outcomes) may 

have limited our ability to detect true associations with more specific outcomes. Additionally, 

there are several mechanisms through which individual metals can be associated with certain 

cardiometabolic outcomes, and these could not be assessed in this pilot analysis. In addition to 

these potential issues, we note limitations of our pilot analysis such as high urinary metal 

concentrations in the study population compared to the U.S. population, the lack of diversity in 
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our cohort beyond non-Hispanic and Hispanic White individuals, and the limited transportability 

of our results to non-rural populations. However, although the pilot analysis results are not 

transportable outside of populations similar to our target population, the results from our 

extensive literature review and evidence-based DAG could be applicable to any cohort.  

Through our systematic literature review incorporating evidence from multiple search 

engines, we were able to construct an evidence-based DAG to inform covariate selection and/or 

study design for future longitudinal analyses of the cardiometabolic health effects of exposure to 

metal mixtures. We also demonstrated an approach to explicitly state and test assumptions 

through our application of the evidence-based DAG to the rich SLVDS data set. We encourage 

other environmental epidemiologists to develop and use such tools to increase the scientific 

rigor, transparency, and reproducibility of their work.   
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Figure 1. Literature review and analysis strategy  
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Table 1. Literature review summary  

 Author and year Publication Type Study Population Outcome(s) Results 

As Afsar et al. (2019) Literature review N/A Kidney disease As exposure was associated with hypertension 

and kidney disease 

Balakrishnan et 

al. (2018) 

Multi-centric cohort 

study 

264 participants from the 

Multi-Ethnic Study of 

Atherosclerosis (MESA) 

Atherosclerosis As III methylatransferase with urinary As 

metabolites was linearly associated with the 

SNP rs12768205 

Chowdhury et al. 

(2018) 

Systematic review 

and meta-analysis 

45 articles (39 in the 

meta-analysis) 

Cardiovascular 

disease (CVD), 

coronary heart 

disease (CHD), 

stroke 

As exposure was significantly associated with 

CVD and CHD 

Tsinovoi et al. 

(2018) 

Multi-centric case 

cohort 

2666 participants in the 

sub-cohort and 3316 in 

the case-cohort from the 

REGARDS study 

Ischemic stroke MMA (a metabolite of iAs), but not As, was 

positively associated with ischemic stroke 
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Beck et al. (2017) Literature review N/A Type 2 diabetes 

mellitus 

(T2DM) 

Irregular insulin secretion could be a result of 

abnormal microRNAs and their expression 

Khan et al. (2017) Literature review 113 studies T2DM Low to moderate As exposure was associated 

with epigenetic effects 

Moon et al. 

(2017) 

Systematic review 

and meta-analysis 

12 studies (11 in meta-

analysis) 

Cardiovascular 

outcomes 

As exposure associated with CVD and CHD in 

the dose-response meta-analysis 

Nong et al. (2016) Multi-centric cross-

sectional study 

1570 adults with 

hypertension in the 2003-

2012 National Health and 

Nutrition Examination 

Survey (NHANES) 

Atherosclerotic 

cardiovascular 

(ASCVD) risk 

As exposure in men with hypertension was 

associated with ASCVD risk 

Ellinsworth 

(2015) 

Literature review N/A NADPH 

oxidase, reactive 

oxygen species, 

and endothelial 

The review summarized the mechanisms of how 

As influences these three outcomes 
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dysfunction 

Tsuji et al. (2014) Systematic review 21 studies CVD Low exposure to iAs was not associated with 

cardiovascular disease 

Solenkova et al. 

(2014) 

Literature review N/A CVD, peripheral 

artery disease 

(PAD), 

hypertension 

Long term low to moderate exposure of As was 

associated with CVD. High water As exposure 

associated with PAD. There was a suggested 

relationship between As and hypertension 

Wang et al. 

(2014) 

Meta-analysis 17 studies T2DM Long term iAs exposure was associated with 

T2DM 

Kuo et al. (2013) Systematic review 29 articles T2DM There was a suggestive relationship between As 

and T2DM 

Cd Asfar et al. (2019) Literature review N/A Kidney disease Cd exposure was associated with kidney disease 

Bochud et al. 

(2018) 

Multi-centric cross-

sectional study 

473 men and 527 women 

from the Swiss Kidney 

Corticosteroid 

and sex steroids  

Cd was associated with testosterone excretions 

in men, but not women. Cd was positively 
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Project on Genes in 

Hypertension  

associated with cortisol excretion in both sexes 

Chowdhury et al. 

(2018) 

Systematic review 

and meta-analysis 

45 articles (39 in the 

meta-analysis) 

CVD, CHD, 

stroke 

Cd exposure was significantly associated with 

CVD and stroke 

Tinkov et al. 

(2018) 

Meta-analysis 18 studies Atherosclerosis Cd exposure associated with death from CHD, 

CVD, stroke, and PAD 

Franceschini et al. 

(2017) 

Multi-centric cross-

sectional study 

3714 middle-aged 

American Indians in the 

Strong Heart Study  

Hypertension Cd was associated with hypertension in 

American Indians, which is a population already 

at increased risk for cardiovascular disease 

Satarug et al. 

(2017) 

Literature review N/A T2DM and 

hypertension 

Cd was associated with kidney disease, 

hypertension, coronary artery disease (CAD), 

PAD, and diabetes. The review proposed 

biological mechanisms 

Edwards and 

Ackerman (2016) 

Literature review N/A T2DM There are multiple biological mechanisms 

involved in the association between Cd and 

T2DM 

 . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

arch 8, 2021. 
; 

https://doi.org/10.1101/2021.03.05.21252993
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.05.21252993
http://creativecommons.org/licenses/by-nd/4.0/


Kukongviriyapan 

et al. (2016) 

Literature review N/A CVD The relationship between Cd and various 

cardiometabolic outcomes could be attributable 

to endothelial cell and smooth muscle cell 

dysfunction. The review proposed curcumin and 

tetrahydrocurcumin to reduce the risk of these 

outcomes 

Larsson and Wolk 

(2016) 

Meta-analysis 9 articles CVD Cd was associated with CVD mortality 

Solenkova et al. 

(2014) 

Literature review N/A CVD, CAD, 

PAD, stroke, 

hypertension 

Cd associated with cardiovascular disease and 

mortality, CAD, PAD, and stroke. Blood Cd 

was associated with hypertension 

Hecht et al. 

(2013) 

Meta-analysis 10 studies CVD There was a correlation between Cd intake and 

smoking, which could partially explain the 

association between smoking and CVD 

Kuo et al. (2013) Systematic review 29 articles T2DM Cd was not associated with T2DM 
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Tellez-Plaza et al. 

(2013) 

Systematic review 

and meta-analysis 

12 studies CVD, CHD, 

stroke, PAD 

Cd was significantly associated with CVD, 

CHD, and PAD. The pooled relative risk for 

CVD was significant in men but not women or 

never smokers 

Mn Li and Yang 

(2018) 

Literature review N/A Metabolic 

syndrome, 

T2DM, 

atherosclerosis 

A U-shaped association observed between Mn 

and oxidative stress, which could impact 

metabolic disease 

Sanjeevi et al. 

(2018) 

Meta-analysis 52 studies T2DM A non-significant trend whereby lower Mn was 

associated with T2DM 

Kaur and Henry 

(2014) 

Literature review N/A T2DM Mn helps regulate glucose metabolism 

Siddiqui et al. 

(2014) 

Literature review N/A T2DM Mn aids with metabolism of carbohydrates, 

amino acids, cholesterol, and glucose 

U Asfar et al. (2019) Literature review N/A Kidney disease U exposure may be associated with kidney 

damage 
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Corlin et al. 

(2016) 

Literature review N/A Cardiovascular 

outcomes 

There is low likelihood of an association 

between U and cardiovascular outcomes 

Nigra et al. (2016) Systematic review 10 studies Cardiovascular 

outcomes 

There was a non-significant association between 

U and increased CVD risk 

Zhivin et al. 

(2014) 

Systematic review 27 studies Cardiovascular 

outcomes 

There is inconclusive evidence on the 

association between U and cardiovascular 

outcomes 

W Nigra et al. (2016) Systematic review 10 studies Cardiovascular 

outcomes 

Tungsten was associated with CVD, PAD, and 

stroke 
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Figure 2. Directed acyclic graph representing the putative causal structure for the association 

between metal mixtures and cardiometabolic outcomes.  

 

Legend: Pink nodes are ancestors of both the exposure (metal mixtures) and the outcome 

(cardiometabolic outcomes). Blue nodes are ancestors of the outcome only. Pink lines are biasing

pathways, and green lines are pathways from the exposure to the outcome or an ancestor of the 

outcome. Drinking water represents metal concentrations in drinking water sources. Ambient air 

represents inhalation of metals in the air. Figure created in DAGitty. 
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Table 2. Characteristics of participants at baseline  

 n (%) or mean (standard deviation) 

Total 1609 (100) 

Female 855 (53) 

Age (years; mean, standard deviation) 54.3 (12.2) 

Ethnicity  

  Hispanic 773 (52) 

  Non-Hispanic 836 (48) 

Educational attainment  

  <12 years 526 (33) 

  12 years 540 (34) 

  >12 years 539 (34) 

Married  1265 (79) 

Smoking status  

  Never (<100 cigarettes in lifetime) 721 (45) 

  Former (≥100 cigarettes and currently does not smoke) 499 (31) 

  Current (≥100 cigarettes and currently smokes) 387 (24) 

Work vigor  

  Sedentary 556 (35) 

  Moderate 502 (31) 

  Vigorous 549 (34) 

Employed 832 (52) 

Annual income  
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  <$15,000 664 (45) 

  $15,000-<$50,000 537 (36) 

  ≥$50,000 287 (19) 

Physical activity  

  Sedentary 186 (10) 

  Somewhat active 376 (21) 

  Moderately active 502 (28) 

  Very active 601 (34) 

  Most active 122 (6.8) 

Diet (mean, standard deviation)  

  Carbohydrates (g/day) 178.1 (75.9) 

  Fruits and vegetables (g/day) 4.1 (2.0) 

  Protein (g/day) 59.4 (23.2) 

  Alcohol (g/week) 41.0 (104) 

High blood pressure 586 (36) 

Cardiometabolic outcomes 1050 (67) 

  Coronary bypass surgery 42 (2.7) 

  Peripheral vascular surgery 14 (0.9) 

  Myocardial infarction 92 (6.2) 

  Stroke 66 (4.4) 

  Low high-density lipoprotein cholesterol (<40 mg/dL 

for males, <50 mg/dL for females) 

702 (44) 

  High triglycerides (≥150 mg/dL) 777 (48) 
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Table 3. Baseline geometric mean metal concentration (µg/L) among SLVDS participants 

compared with NHANES 2015-2016 and NHANES 1988-1994 participants 

 SLVDS 

(1984-1986) 

NHANES 

(2015-2016) a 

NHANES III  

(1988-1994) b 

Total Arsenic c 16.27 5.96 - 

  Male 18.87 6.54 - 

  Female 14.28 5.46 - 

  Non-Hispanic 17.84 5.17 - 

  Hispanic 14.73 6.38 - 

Cadmium  0.69 0.13 - 

  Male 0.71 0.12 - 

  Female 0.67 0.14 - 

  Non-Hispanic 0.61 0.12 - 

  Hispanic 0.78 0.11 - 

Manganese  0.67 - 0.53 

  Male 0.71 - - 

  Female 0.65 - - 

  Non-Hispanic 0.65 - - 

  Hispanic 0.70 - - 

Tungsten  0.33 0.07 0.70 

  Male 0.36 0.08 - 

  Female 0.30 0.06 - 

  Non-Hispanic 0.41 0.06 - 
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  Hispanic 0.26 0.08 - 

Uranium  0.01 0.01 - 

  Male 0.02 0.01 - 

  Female 0.01 0.01 - 

  Non-Hispanic 0.01 0.01 - 

  Hispanic 0.01 0.01 - 

a Data from Fourth National Report on Human Exposure to Environmental Chemicals Update 

2019 

b Data from Paschal et al. 1998 

c All metal measurements were conducted in urine. NHANES 2015-2016 did not report urinary 

measurements of manganese. NHANES III only reported urinary metal measurements of 

manganese and tungsten for the overall population. 
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Figure 3a. Exposure-response functions relating urinary metal concentrations to the hazard ratio 

(interpreted as an odds ratio) of cardiometabolic outcomes. Models adjusted for urinary 

creatinine (g/L), age, ethnicity (Hispanic/non-Hispanic), income, obesity, hypertension, alcohol 

(g/week), meat (g/week), smoking (never/former/current), drinking water (eight-ounce 

glasses/day), and plant-based foods (g/week). 
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Figure 3b. Exposure-response functions relating urinary metal concentrations to the hazard ratio 

(interpreted as an odds ratio) of cardiometabolic outcomes. Models adjusted for urinary 

creatinine (g/L), age, ethnicity (Hispanic/non-Hispanic), income, obesity, hypertension, alcohol 

(g/week), meat (g/week), smoking (never/former/current), drinking water (eight-ounce 

glasses/day), and diet. 
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Figure 3c. Exposure-response functions relating urinary metal concentrations to the hazard ratio 

(interpreted as an odds ratio) of cardiometabolic outcomes. Models adjusted for urinary 

creatinine (g/L), age, ethnicity (Hispanic/non-Hispanic), income, obesity, hypertension, alcohol 

(g/week), meat (g/day), smoking (never/former/current), diet, sex, and education (<12 years/12 

years/>12 years). 
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