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Abstract 
 
A new Universal rule for Covid 19 data is derived in this paper using the SIR model.  
It relates infection and removal rates and is validated by the global Covid 19 data.  Over 186,000 
data points, from 190 countries and the states of the US, for the period April 1 to December 12, 
2020 - fall on a single line, as the Universal rule predicts, transcending geography, ethnicity and 
race. 
 
The Universal rule requires that Herd immunity begin when just 25% of the population is 
vaccinated.  With the anticipated 100 million vaccinations in the first 100 days of the Biden 
administration, Herd immunity may be imminent in the US. 

 
The Universal rule promotes a temporary stasis with continuing infections and hospitalizations 
and becomes a barrier to runaway infections, making it practically impossible to reach Herd 
immunity, as Sweden discovered.  Reduced infected population seems to be a third option to 
stifle the epidemic - a little known accomplishment, first by North Dakota and subsequently by 
twelve other U.S. states, including South Dakota.  

  
Introduction:  Unusual challenges of the Covid 19 pandemic  
 
The flood of global Covid 19 data, distributed daily by Johns Hopkins University (1), WHO (2) and 
other organizations around the world, can be both informative and intimidating.  While the 
patient zero is not known, the biology of the Corona virus suggests that this is a single disease that 
has spread globally.  But at a population level, the picture is baffling and less unified, exhibiting 
diverse spread and recovery rates of the disease.  Studying patterns in global Covid 19 data 
seemed to be a good way to bring some clarity to this picture. 
 

In particular, are Covid 19 data subject to hidden rules?  Empirical rules in data, such as scaling or 
power and exponential laws, are hallmarks of “complex systems” (3 - 6).  And should such rules 
be found, the lessons learned from critical phenomena could be adapted to the dynamics of 
epidemics.  It is the time evolution of the pandemic that we seek to understand. 
  
Then there is the Herd immunity puzzle.  Because, infected people also become immune, some 
politicians and governments promoted mass infections as an alternate route to build immunity, 
so as to stop the spread without stalling the economy. But the disastrous experience in Sweden, 
where the pandemic spread, without Government restraint, was disconcerting.   Thousands more 
died than in neighboring Nordic countries, but infections remained stubbornly at 7% in Sweden, 
far below the level needed for herd immunity.  But the experience of others, like the passengers 
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in the closed environment of the cruise ship Diamond Princess and amongst devotees during the 
mass religious gatherings in Iran have been different.  What prevents runaway infections in this 
pandemic? 
 
With mass vaccinations beginning around the world, there is an expectation for an alternate and 
more legitimate path to real Herd immunity soon.  But the estimates of when that will happen 
are wildly different, ranging from 60% to over 80% of total population being vaccinated.  Worse, 
the estimates are provided in the spirit of the Delphic oracle, without any explanation and 
attribution.   
 
Since vast amounts of data are added daily, the search for rules by trial and error was not 
practical.  Models are powerful tools to explore the dynamics of pandemics.  True, the 
reputations of models have taken a hit during the Covid 19 pandemic but, as discussed later in 
this paper, modelers and the communities that use them must share blame, not the models.   
 
The epidemic model chosen was the SIR model, published in the Proceedings of the Royal 
Society almost 94 years ago by Kermack and McKendrick (7).  The Institute for Advanced Study 
at Princeton has a fascinating seal that memorializes “Truth and Beauty” in science, and the 
quote is from John Keats’ famous poem Ode on a Grecian Urn.  But for the SIR model, the 
paraphrase of a popular saying attributed to ancient Indian sages, “When there is Satyam and 
Sundaram, Shivam is sure to follow” is more apt.   
 
A Google search reveals that over 1.5 million papers have used the model, but, as we will find in 
this paper, there is much left to be discovered.   Almost all of the papers use numerical and 
approximate solutions because the equations are difficult to solve exactly.  In the process, the 
beauty and elegance of the model proves elusive.    Our prior success with a modified SIR model, 
in a forensic problem involving Medicaid programs, exposed a technical quirk in the model and 
showed that slight modifications could yield unexpected and new results that are easy to 
analyze and interpret.  It is ironic that we have come full circle, first, modifying the epidemic 
model to solve a forensic problem, and now, adapting the forensic model to understand a global 
pandemic.    
 
Methods 
 
This section includes three mathematical results that are crucial to the paper.  The first is the 
derivation of an exact solution to the 94-year-old SIR model.  Next, the exact solution is used to 
reveal a hidden Universal rule, applicable to global Covid 19 data.   The third is to derive the 
mathematical restrictions on the development of the epidemic placed by the Universal rule.  
While the derivations of these results are complete and mathematically rigorous, they are quite 
unnecessary to understand the validation and implication of the results.  Once the results are 
accepted, they shed light on the failed experience in Sweden, the little-known success in 
controlling the epidemic in North and South Dakota and several other states, and how the 100 
million vaccinations in the first hundred days is an implicit guarantee of Herd immunity for the 
entire nation.     
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a. Criteria to select the ideal model 
 

Physical systems, like the atmosphere and living organisms are far too complex to describe 
exactly using mathematics.  The goal is to create a simple solvable model that captures the 
essence of the complex system, so as to obtain a deeper understanding of the whole.  Often, 
they are only partially correct in replicating a process.  But they can still yield important insight. 
 
When it comes to epidemics, the SIR model (8 - 10) belongs to a class known as “compartmental 
models,” and is most popular.  But there is a hitch. The model is simple to describe, but the 
equations of the model are too difficult to solve exactly.  The central issue is a technical one.  
The equations of the model are nonlinear, and these are difficult to handle mathematically, 
even when they appear to be deceptively simple. Some of these challenges are described in 
Hirsch et al. (11) and Strogatz (12).   
 
Simple equations leading to complex science is not unique to epidemiology.  For example, the 
entire subject of “chaos” owes its origin to a set of nonlinear equations in an absurdly simple 
one-dimensional model (13) of the atmosphere.  Similarly, Robert May, R.M. Anderson and 
others (14-16), analyzed the simple nonlinear predator prey equations to discover chaos lurking 
in biological systems.   
 

b. Epidemics to Medicaid and back to epidemics 
 
Earlier, in dealing with chronic Medicaid populations, a modification to the SIR model made the 
equations solvable, making it possible to forecast prevalence, incidence and costs of treatment 
of chronic populations with great accuracy.  Simply put, the exact nonlinear equations that 
cannot be solved were replaced with approximate linear equations that can be solved exactly.   
  
This linearization yielded a disease and cost forecasting model for chronic and cancer patients. 
The cost forecasts showed a national pattern of Medicaid overpayments, estimated to be in 
excess of $100 billion.  Validation came in the form of recovery of funds.  Specifically, the 
forecasts detected $250 million in overpayments to health insurers in 2014, in one state.  The 
state initially disputed this finding because its annual audits missed the overpayments.  But in a 
report (17) to the legislature in 2019, the state affirms that the overpayment pattern discovered 
through the SIR analyses continued until 2017, and the state had recovered $660 million in total.  
 
Since it was the modification of the epidemic model that helped address the “endemic” 
Medicaid cost issue in one state, it made sense, in a perverse way, to try and modify the 
Medicaid solution to solve the Covid 19 puzzle.   Pursuing a similar analysis, it soon became 
obvious that linearization for Medicaid worked only because physical contact expressed through 
the nonlinear terms is unimportant in the spread of chronic diseases and cancer. For Covid 19, 
physical contact is critical, and nonlinear terms cannot be ignored.  But there was hope.  Hirsch 
et al., on page 295 of their book on dynamical systems (11) suggest “rescaling” as an alternate 
mathematical technique that in some cases convert unsolvable nonlinear equations to solvable 
linear ones.  Surprisingly, this worked, as described below.  
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c. The exact solution of the SIR model 
 

For those readers not mathematically inclined, we first provide a verbal description of the 
model, its technical challenges and the different approach we adopted to reach a solution.  We 
cannot ignore the mathematics, because it is the rules of mathematics that sunk Sweden’s 
“FrankenHerd” experiment and the same rules that promise Herd immunity for the nation in the 
first hundred days of the Biden administration.    
 
In the SIR model, population is segmented into three compartments – those who are 
Susceptible (S), those Infected (I) and the third called Removed (R), consisting of those who 
recovered or died.  As time passes, people in one compartment transition to another. There are 

two parameters in the model, 𝛽 to describe the “infection” rate and 𝛾 for the “removal” (a 
group that is essentially immunized) rate. One of the equations deals with the balance between 
infection and removals and, in effect, describes the progress of the epidemic.  Mathematically 
speaking, it is the “sign” of this equation — positive for increase and negative for dwindling of 
the infected population — that determines whether the epidemic is growing or waning.   
 
There are three distinct ways in which this can happen.  First, reducing the infected population; 
second, increasing the removed population and thus making more people immune to the 
disease, as Sweden tried; and the third, vaccination to reduce the number of susceptible people 
by immunizing many.  The second and third options are called Herd immunity but not the first 
option, even though it also results in damping the growth of the epidemic. 
 
There are product terms (I S) in the equations and those are the nonlinear terms that make it 
difficult to explicitly solve the equations of the SIR model.  We used a mathematical technique 
called “rescaling” to get rid of the nonlinear terms so as to obtain an exact solution.  Those 
uninterested in the mathematical derivation of the exact solution, the derivation of the 
Universal rule and why the Herd immunity conditions are mathematically dependent on the 
Universal rule, can skip to the “Results” section. 
 
The three equations describing the time evolution of the three population segments are: 
 
𝑑𝑆

𝑑𝑡
= −𝛽

𝐼

𝑁
𝑆          (1) 

 
𝑑𝐼

𝑑𝑡
=  𝛽

𝐼

𝑁
𝑆 –  𝛾𝐼     (2) 

                                                             
 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼                 (3) 

 

Both 𝛽 and 𝛾 are parameters of the model.  As defined above,  𝛽 𝐼 is the rate of infection while 

𝛾 is the rate of removal.       N is the total population, defined as  
 
𝑁 = 𝑆 + 𝐼 + 𝑅                                                                (4) 
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Since the infection and removal periods are short, the total number of people in the population 
is assumed to be a constant.  This constancy is built into the equations by ensuring that the sum 
of eqs. (1), (2) and (3) adds to zero. 
 
We also assume that at time zero, almost the entire population is Susceptible.  
              𝑆(𝑡 = 0) ≅ 𝑁                             (5) 
 
While the model is very simple to describe, the nonlinear product term (I S) in eqs. (1) and (2) 
make them difficult to solve. Almost always the only solutions available are numerical, and they 
do not lend themselves to analysis, or to the discovery of the new results derived in the paper.     
 
“Rescaling” refers to defining a new independent variable to rescale time ‘t’ to a pseudo time 
variable defined as  

𝑑𝜏 = 𝐼 𝑑𝑡 

And then the modified equations become linear. 
 
𝑑𝑆

𝑑𝜏
=  − 

𝛽

𝑁
𝑆                                  (1 a) 

 
𝑑𝐼

𝑑𝜏
=  

𝛽

𝑁
𝑆 –  𝛾                                (2 a) 

 
𝑑𝑅

𝑑𝜏
=  𝛾                                          (3 a) 

 

The new pseudo-time variable 𝜏 is defined as a definite integral 

𝜏 = ∫ 𝐼(𝑡′)𝑑𝑡′
𝑡

0

 

Since I(t) is included in the Johns Hopkins data on a daily basis, the integral can be calculated 

easily using a program like MATLAB or even using the trapezoidal rule. 

Because of the constraint equation (4), only two out of the three equations are independent.  

Most importantly, because the rescaled equations are linear, these equations can be integrated 

immediately, to obtain exact analytic solutions that are easy to differentiate and interpret.   

From (1 a) we get a simple exponential solution: 

𝑆 = 𝑁 exp (−
𝛽

𝑁
𝜏)                        (6) 

where we have used the boundary condition (5) to calculate the constant of integration. 
 
Similarly, from eq (3 a) we get 
 

𝑅 = 𝛾𝜏    (7) 
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And using (4) we have an expression for I. 

𝐼 = 𝑁 − 𝛾𝜏 − 𝑁 exp (−
𝛽

𝑁
𝜏)                      (8) 

Equations (6), (7) and (8) provide a complete, exact analytical solution for the SIR model. 

In particular, we can use the data to calculate the values of the parameters, 𝛽 and 𝛾.  

From eq. (6) we get  

𝛽 =  
𝑁

𝜏
 ln ( 

𝑁

𝑆
 )                                              (9) 

And from eq. (7)  

𝛾 =
𝑅

𝜏
                                                              (7 a) 

Using (7a) in (9) we get, after a slight rearrangement,  
𝛽

𝛾
 =  

𝑁

𝑅
ln (

𝑁

𝑆
)                           (9a) 

While the derivations are important, it is the exact and analytical results in the form of eqs. (6, 7, 

8, 9, 7a and 9a) that is crucial to appreciate the advances described in this paper.  

A side observation is that eq. (9a) can also be derived from the original equations, without 

rescaling.  Page 235 of Hirsch et al. (11), contains an expression for I(S) that, when integrated 

with the appropriate boundary condition leads to eq. (9a) without using the exact solution.   But, 

the analytic solution is required to derive eq (9).  

 
d. Universal rule revealed 

 
In physics, Emmy Noether’s elegant theorem (18) connects symmetries in data to constraint 
equations.  That prompted the analysis of our constraint equation, using our analytic solution.  
 
The constraint eq. (4) can be rewritten as   

𝐼 = 𝑁 − 𝑆 − 𝑅 

Substituting for S, using eq. (6), and expanding the exponential in a power series and retaining 

just the term linear in 𝜏, leads to a version of the universal rule 
𝛾𝜏

𝐼
 =  

𝛽𝜏

𝐼
 −  1 

 

and it describes a line, relating the quantities   
𝛾𝜏

𝐼
 and  

𝛽𝜏

𝐼
   with slope equal to 1 and Y-intercept 

equal to (-1).  It is very important to remember that this is an approximate result obtained by 
retaining only the first order terms in 𝜏.   
 
And we are using the analytic solution and the Universal rule in a crucial way to derive this 
expression.  In other words, numerical approximations will not reveal the Universal rule.  It 
needs the exact analytic solution. 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.05.21251577doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.05.21251577
http://creativecommons.org/licenses/by-nc/4.0/


It is possible to eliminate 𝜏  by using (7a), and rewriting the equation as 
𝛽

𝛾
 =  

𝐼

𝑅
 +  1     (10) 

 
Eq. (10) is the version of the Universal rule we will use.  It is a rule that is startling in its 

simplicity:   
𝛽

𝛾
  that measures ratio of infection and removal rates is linearly related to ratios of 

observables (or measurable quantities) I and R.   An alternate way of describing this equation is 

that 
𝛽

𝛾
 and 

𝐼

𝑅
 , when graphed will fall on a line, and they move in lock step, perfectly correlated.  

 
The conclusion is that, if the SIR model is a valid description of the Covid 19 pandemic, then the 
Universal rule must apply for the entire set of global Covid 19 data.  It is a very restrictive rule.  

The datapoints 
𝛽

𝛾
, I and R for any country or state, and for any date, must all fall on the same line 

with slope and Y intercept, both equal to 1.  If the data fail to match the rule, and bereft of an 
adequate explanation, it is time to consider a different model. 
 
 

e. Herd Immunity 
 
From a mathematical standpoint, Herd immunity begins when the epidemic begins to decay, 
when rate of change of infected population decreases with time.  In effect, the number removed 
(those recovered and dead) is greater than the number infected, and so, the size of the infected 
population shrinks as time passes.  The relevant equation is (2a) where the change in the 

infected (I), 
𝑑𝐼

𝑑𝜏
   becomes negative or    

 

  when,  
𝛽

𝑁
𝑆  <  𝛾  in eq. (2a) or equivalently  

  
𝛽

𝛾
 <  

𝑁

𝑆
                                                                  (11) 

 

But the Universal rule eq (10), which also involves  
𝛽

𝛾
    imposes restrictions on S in eq. (11). 

 
Rewriting eq. (10) and using constraint equation (4), 

𝛽

𝛾
 =  (

𝐼+𝑅

𝐼
) =  

𝑁−𝑆

𝑅
                                               (10 a) 

From the RHS of (10 a) and (11) we get the inequality   
𝑁−𝑆

𝑅
 <  

𝑁

𝑆
   and this can be expressed 

as a quadratic inequality  
   𝑆2 −  𝑆𝑁 + 𝑁𝑅 >  0                                          (12) 
 
In other words, for the epidemic to dissipate, S must satisfy this quadratic inequality.  The 
following analysis will yield three distinct paths to pause the growth of the epidemic, two of 
them are called Herd immunity. 
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Elementary algebra texts describe the derivation of solutions to a quadratic inequality.  Google 
search yields many options.   Finding the solution starts with solving a related equation where 
the RHS of eq (12) is set to zero.   

𝑆2 −  𝑆𝑁 + 𝑁𝑅 =  0                                                       (13) 
The first step is to find the roots of this modified quadratic “equation.”  The roots can be real or 
complex, and they have to be handled in slightly different ways.  The idea is to use the roots of 
the equation (13) to find the range of real values of S that satisfy the inequality eq. (12)   
 
 
The two roots  𝑆1 and   𝑆2 that satisfy eq. (13) are: 
 

 𝑆1 =  
𝑁

2
 +  

√𝑁2−4𝑁𝑅

2
       (14)     and  𝑆2  =  

𝑁

2
 −  

√𝑁2−4𝑁𝑅

2
      (15) 

 
Eq. (14) and eq. (15) will help find those values of S that satisfy the inequality eq. (12) 
 
There are two cases to consider and they will lead to three paths to damp the growth of the 
epidemic.  
 

Case (a): Real roots when  𝑁2  − 4𝑁𝑅  is not negative, or equivalently,  𝑅 <
𝑁

4
 

 
The roots  𝑆1 and   𝑆2 ,  are located where the curve defined by eq. (12) intersects the X-axis (S is 
along X axis).  Now it is possible to identify the regions where the S values satisfy the inequality 
and thus offer two paths to stifle the growth of the epidemic: 

𝑆 >  𝑆1 and 𝑆 <  𝑆2 , both while  𝑅 ≤ 𝑁

4
.  

Case (b): Complex roots, when  𝑁2  − 4𝑁𝑅  is negative, or when,  𝑅 >
𝑁
4

 

 
It is tempting to ignore complex roots since we are dealing with a problem with real numbers.  
But that would be a serious omission, as we discovered.   
 
It is important to remember that our interest is in finding the range of values of S that will satisfy 
the inequality eq. (12) and NOT the solution for eq. (13).  So, the lack of a valid real solution for 
eq. (13) is immaterial.    
 
In the case of complex roots, the S curve defined in eq. (12) does not intersect the X axis.  Now, 
as before, we have to find the values of S that can still satisfy eq. (12).  It turns out that every 
allowed value of S (positive and real numbers) satisfies the inequality in eq (12). Thus, the third 
path to stifling the epidemic is to increase R, at will, through vaccination.   
 

In summary, 𝑆 >  𝑆1 while 𝑅 ≤ 𝑁

4
  stops the growth of the epidemic by lowering infections but 

is not classified as Herd immunity.  𝑆 <  𝑆2 while  𝑅 ≤ 𝑁

4
 is the Herd immunity that Sweden 

failed to achieve. And  𝑅 >
𝑁
4

 is the Herd immunity reached through vaccination.     

 
From (9a) and (11) we can derive  
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𝑆

𝑅
ln (

𝑁

𝑆
) < 1                                (16) 

and it defines the Herd immunity condition for any population.   
 

f.   Source of data  
  
All the data used in this paper came from “COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University.” The GitHub repository (19) permits 
the download of the data in a CVS format.   
 

Since we are plotting ( 
𝐼

𝑅
 ) we cannot include data points where R in the denominator is zero.  All 

states, except for Wyoming, have R greater than zero, starting from April 1.  Wyoming has R 
greater than 0 after April 15 2020.  The period we chose ends on December 12, 2020 just before 
the vaccines were introduced to the US population.    For the international countries also we 
adopted April 1 as a starting date.  About 10 countries (mostly small islands) had R equal to zero 
and very low infection rates. 
 

g.   Calculation of best linear fits to data  
 
Excel and Tableau were used to plot the various graphs and also to calculate the relevant 
trendlines.  Tableau offers an unparalleled dynamic visual rendering of the Universal rule as a 
time series, and can be used to compare the data of states and countries easily.  Since R =0 at 

the start, 
𝐼

𝑅
 is usually large in the beginning and then moving to the origin as time progresses.  

Tableau captures this time series vividly.   
 
For a quantitative but numerical view of the data, we used Excel and its trendlines.  The first 
trendline is just the least squares fit using multiple linear regression.  Since the Universal rule as 
a constant Y-intercept of unity, it also made sense to have Excel generate a second trendline 
that has a Y-intercept of 1. 
 
All the states of the US and 50 of the countries with the most confirmed cases are listed in the 
Tables 1 and 2.    

 
h.  Supplemental files 

 
The Excel files with the entire set of global data used in the paper is included as supplemental 
files.   This includes the entire set of 190 international countries as well as the states of the US, 
plus DC and Puerto Rico.  The data are from Johns Hopkins.   
 
The scatter graphs for every state and country are also included in the Excel data files. 
 
Results  
In this section we will first check the validity of the Universal rule using global Covid 19 data.  
After confirmation of the Universal rule, we will examine its implications on the growth and 
dampening of the epidemic, as well as its impact on the two types of Herd immunity. 
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(i)   Validation of the Universal Rule using global Covid 19 data 
 
Until this point, all of this is just theory – based on mathematics.  In this section we will validate 

the Universal rule, using available data, to graphically prove the linear relationship between  
𝛽

𝛾
  

and 
𝐼

𝑅
 as in eq. (10)  

 
This analysis includes the data published by the Johns Hopkins University (19), for the period 
April 1 to December 12, 2020, for all the states in the US (as well as data from Puerto Rico and 

DC) and 190 countries of the world.  The plot is of  
𝛽

𝛾
  (on Y axis) and 

𝐼

𝑅
  (on X axis). There is a 

total of over 186,000 data points.  Remarkably, as the theory predicts, all the data fall on one 
line with slope 1 and Y intercept equal to 1.  (These line graphs are of a time series obtained 
using Tableau.) 
 

 
Fig. 1 

Global Covid 19 data conform to the universal rule 
The points are from data for the period April 1 to December 12, 2020 from all the states in the 

US, and the 190 countries of the world.  All data points fall on a single line, confirming the 
universal rule. (Screen shot from Tableau.) 

 
The graphs for other states and countries look exactly the same as Fig. 1, except that we have 

different ranges of values for 
𝛽

𝛾
  and 

𝐼

𝑅
 .  Fig. 2 and Fig. 3 are illustrative samples, one for the 

state of New Mexico and the other for Germany, and in both cases the data points fall on a line 
with slope 1 and Y-intercept 1, confirming the validity of the Universal rule. 
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Fig. 2 
Universal rule for New Mexico  

𝛽

𝛾
  and 

𝐼

𝑅
 are for the period April 1 to December 12, 2020. Slope of the universal 

line is 1 and the Y-intercept 1. (Screenshot from Tableau.) 
 

 
Fig. 3 

Universal rule for Germany 
𝛽

𝛾
  and 

𝐼

𝑅
 are for the period April 1 to December 12, 2020.  The slope of the 

universal line is 1 and the Y-intercept 1. (Screenshot from Tableau.) 
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Even though the data points fall on a line, as prescribed by the universal rule, they are not 
ordered on the line sequentially in time.  As time passes, the points can move up and down on 

the line irregularly, even while the values of 
𝛽

𝛾
  and  

𝐼
𝑅

 are perfectly correlated.  

 
The graphs are all similar and it is very difficult to discern differences in them.  Rather than 
provide over 200 similar looking graphs, we have created two tables, one for the nation’s states 
and the other for 50 international countries with the most confirmed cases.   
 
First, we used Excel to plot the scatter graphs and create trendlines for each state or country, 
and obtained the equation for the trendline in terms of the slopes. Y-intercept values of the 

lines and their R2 values that measure correlations between 
𝛽

𝛾
  and  

𝐼
𝑅

 .  This is nothing more 

than the standard multiple linear regression calculations to obtain the best (least squares) fit. 
These are provided in Tables 1 and 2 below.   
 
Excel also offers an option to fix the Y-intercept and then find the best fit of a trendline.  Since Y-
intercept has a special meaning in this analysis, as explained later, there is a second trendline 
calculated for each state and country and the slopes and the R2 values are displayed in the last 
three columns of Tables 1 and 2. 
 
The Universal rule has been checked for 190 countries.  For reasons of brevity, only 50 countries 
that have the most confirmed cases, as of Dec. 12, 2020, are listed in Table 2.  The complete list 
and the supporting Excel files are in the attached supplement. 
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Table 1 
US states and the Universal rule 

Line parameters Slope (m), intercept (c) and R2  (correlation coefficient) for least squares 
fit and for a set where Y-intercept is fixed as 1. 

 

No State
 State 

Population 

 Confirmed 

Cases as of 

12/12/2020 

m c R
2 m c = 1 R

2

1 Alabama 4,908,621             292,841              0.9996 1.0288 1 1.0007 1 1

2 Alaska 734,002                 40,497                 0.9999 1.0183 1 1.0006 1 1

3 Arizona 7,378,494             402,589              0.9986 1.069 1 1.0025 1 0.9999

4 Arkansas 3,038,999             184,252              1 1.0119 1 1.0002 1 1

5 California 39,937,489           1,549,176           1.0224 0.3778 0.9999 1.0094 1 0.9997

6 Colorado 5,845,526             285,634              1.0033 1.0346 0.9998 1.0057 1 0.9998

7 Connecticut 3,563,077             146,761              1.0007 1.0388 1 1.0039 1 0.9999

8 Delaware 982,895                 44,876                 0.9972 1.0192 0.9999 1.0051 1 0.9998

9 Florida 21,992,985           1,116,973           1.0196 0.6589 0.9995 1.0128 1 0.9995

10 Georgia 10,736,059           538,040              1.0298 0.3218 0.9997 1.0133 1 0.9994

11 Hawaii 1,412,687             19,511                 1.0001 1.0045 1 1.0002 1 1

12 Idaho 1,826,156             120,632              1 1.0215 1 1.0004 1 1

13 Illinois 12,659,682           841,688              1.0398 0.2007 0.9997 1.0164 1 0.9991

14 Indiana 6,745,354             419,536              1.0003 1.015 1 1.0011 1 1

15 Iowa 3,179,849             255,009              0.9998 1.0186 1 1.0003 1 1

16 Kansas 2,910,357             188,460              1.0273 0.6774 0.9992 1.0122 1 0.9989

17 Kentucky 4,499,692             220,659              1 1.0311 0.9999 1.0032 1 0.9999

18 Louisiana 4,645,184             264,191              1.0012 1.016 1 1.002 1 1

19 Maine 1,345,790             15,620                 1.0002 1.0022 1 1.0002 1 1

20 Maryland 6,083,116             232,009              0.9995 1.0971 0.9999 1.0045 1 0.9999

21 Massachusetts 6,976,597             285,725              1.0019 1.0263 1 1.0029 1 1

22 Michigan 10,045,029           465,159              1.0005 1.0115 1 1.0013 1 1

23 Minnesota 5,700,671             375,398              0.9998 1.0098 1 1.0002 1 1

24 Mississippi 2,989,260             177,947              1 1.0153 1 1.0005 1 1

25 Missouri 6,169,270             350,388              1.0239 0.4339 0.9997 1.0134 1 0.9996

26 Montana 1,086,759             72,644                 1 1.0103 1 1.0002 1 1

27 Nebraska 1,952,570             147,688              1.0019 1.0156 1 1.0021 1 1

28 Nevada 3,139,658             183,949              1.0296 0.6112 0.9999 1.0182 1 0.9997

29 New Hampshire 1,371,246             30,244                 1.0002 1.004 1 1.0002 1 1

30 New Jersey 8,936,574             396,496              1.0014 1.0477 1 1.0041 1 1

31 New Mexico 2,096,640             118,358              0.9999 1.017 1 1.0003 1 1

32 New York 19,440,469           764,966              1.0021 1.0437 1 1.0059 1 1

33 North Carolina 10,611,862           429,776              1 1.0099 1 1.0002 1 1

34 North Dakota 761,723                 87,590                 0.9999 1.017 1 1.0002 1 1

35 Ohio 11,747,694           553,461              1.0003 1.0118 1 1.0009 1 1

36 Oklahoma 3,954,821             233,336              0.9997 1.0101 1 1.0003 1 1

37 Oregon 4,301,089             92,839                 1.0003 1.0198 1 1.0014 1 1

38 Pennsylvania 12,820,878           485,330              1.0005 1.0111 1 1.0007 1 1

39 Puerto Rico 3,032,165             95,338                 1.0049 0.9573 1 1.0042 1 1

40 Rhode Island 1,056,161             70,818                 0.9996 1.1004 0.9999 1.006 1 0.9998

41 South Carolina 5,210,095             248,798              0.9998 1.0208 1 1.0004 1 1

42 South Dakota 903,027                 90,407                 1.0006 1.0151 1 1.0007 1 1

43 Tennessee 6,897,576             442,953              1.0001 1.0132 1 1.0003 1 1

44 Texas 29,472,295           1,400,728           0.9999 1.0119 1 1.0002 1 1

45 United States 331,002,651         16,062,299        0.9973 1.0288 1 1.0034 1 0.9999

46 Utah 3,282,115             231,821              1.0002 1.0141 1 1.0003 1 1

47 Vermont 628,061                 5,626                   1.0005 1.0018 1 1.0006 1 1

48 Virginia 8,626,207             278,615              0.9992 1.0526 1 1.002 1 1

49 Washington 7,797,095             199,735              1.0139 0.7219 1 1.0066 1 0.9999

50 Washington D.C 720,687                 24,643                 1.0006 1.0197 1 1.0013 1 1

51 West Virginia 1,778,070             62,151                 1.0001 1.0055 1 1.0001 1 1

52 Wisconsin 5,851,754             465,991              0.9998 1.0136 1 1.0003 1 1

53 Wyoming 567,025                 38,907                 1.0005 0.9604 1 1.0003 1 1
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Table 2: 
Top 50 Countries with most confirmed cases and the Universal rule:     

Line parameters Slope (m), intercept (c) and R2  (correlation coefficient) for least squares 
fit and for a set where Y-intercept is fixed as 1. 

 

Country
Country 

Population

Confirmed 

Cases as of 

12/12/2020

m c R
2 m c=1 R

2

US 331,002,651 16,062,299 0.9974 1.0285 1 1.0035 1 0.9999

India 1,380,004,385 9,857,029 0.9996 1.0019 1 1.0001 1 1

Brazil 211,049,527 6,880,127 0.9993 1.0091 1 1.0002 1 1

Russia 145,872,256 2,602,048 0.9996 1.0054 1 1.0003 1 1

France 65,273,511 2,405,255 1.0191 0.9755 1 1.0151 1 0.9999

United Kingdom 67,886,011 1,835,949 1.0143 0.9205 1 1.0089 1 0.9999

Italy 60,461,826 1,825,775 1.0058 1.0032 0.9999 1.0083 1 0.9999

Turkey 84,339,067 1,809,809 1.0001 1.0023 1 1.0003 1 1

Spain 46,754,778 1,730,575 1.0196 0.9884 1 1.0172 1 1

Argentina 44,780,677 1,494,602 0.9942 1.0128 1 1.0011 1 0.9999

Colombia 50,339,443 1,417,072 1.0049 1 0.9999 1.0049 1 0.9999

Germany 83,783,942 1,336,101 1.0013 1.0023 1 1.0037 1 0.9999

Mexico 127,575,529 1,241,436 0.9998 1.0022 1 1.0001 1 1

Poland 37,846,611 1,126,700 0.9998 1.00E+00 1 1.0003 1 1

Iran 83,992,949 1,100,818 0.9999 1.0027 0.9999 1.0058 1 0.9998

Peru 32,510,453 980,943 0.9934 1.0138 1 1.0033 1 0.9998

Ukraine 43,993,638 908,839 0.9997 1.0054 1 1.0002 1 1

South Africa 58,558,270 852,965 0.9996 1.0047 1 1.0001 1 1

Netherlands 17,134,872 613,630 1.019 0.8627 1 1.0116 1 0.9999

Indonesia 270,625,568 611,631 0.9998 1.0007 1 1.0001 1 1

Belgium 11,589,623 603,159 1.0271 0.9562 1 1.0252 1 1

Czechia 10,708,981 575,422 0.9999 1.0088 1 1.0004 1 1

Iraq 39,309,783 573,622 0.9947 1.0057 1 1.002 1 0.9999

Chile 18,952,038 569,781 0.9981 1.0103 1 1.0009 1 0.9999

Romania 19,237,691 551,900 0.9989 1.0055 1 1.001 1 1

Bangladesh 163,046,161 489,178 0.9999 1.0013 1 1 1 1

Canada 37,971,020 458,527 0.9994 1.0028 1 1.0009 1 1

Philippines 108,116,615 448,331 0.9998 1.0014 1 1.0001 1 1

Pakistan 216,565,318 438,425 0.9999 1.0008 1 1.0001 1 1

Morocco 36,471,769 397,597 0.9996 1.0019 1 1.0001 1 1

Switzerland 8,591,365 373,831 1.0073 1.0047 0.9997 1.0115 1 0.9997

Saudi Arabia 34,268,528 359,749 0.9993 1.0046 1 1.0004 1 1

Israel 8,519,377 355,786 0.9995 1.0104 1 1.0008 1 1

Portugal 10,196,709 344,700 1.0004 1.0071 1 1.0008 1 1

Sweden 10,099,265 320,098 1.0146 0.8893 1 1.0091 1 0.9999

Austria 8,955,102 319,822 1.0011 1.0042 0.9999 1.0037 1 0.9999

Hungary 9,660,351 276,247 1.0023 1.0029 0.9999 1.0032 1 0.9999

Serbia 8,772,235 261,437 1.0085 0.8533 1 1.0063 1 1

Jordan 10,101,694 257,275 1.0055 0.9987 1 1.0053 1 1

Nepal 28,608,710 247,593 0.9997 1.0022 1 1.0001 1 1

Ecuador 17,373,662 201,524 0.9999 1.0041 1 1.0005 1 1

Panama 4,246,439 190,585 0.9998 1.0131 1 1.0004 1 1

Georgia 3,996,765 187,006 0.9986 1.0046 1 1.0011 1 0.9999

Kazakhstan 18,551,427 185,513 0.9997 1.0028 1 1.0001 1 1

United Arab Emirates 9,770,529 183,755 0.9995 1.0052 1 1.0004 1 1

Bulgaria 6,948,445 178,952 0.9999 1.0051 1 1.0013 1 1

Japan 126,860,301 178,272 1 1.0003 1 1.0001 1 1

Croatia 4,105,267 172,523 0.9996 1.004 1 1.0005 1 1
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(ii)  Stopping the epidemic from growing 

 
The term “herd immunity”, as used in public health is intended as a benign expression, to use 
vaccines to make a person immune to the disease while maintaining their health, and thus 
reduce its spread (20, 21).  In many cases, people once infected, can develop immunity.  In a 
macabre twist, politicians, governments and members of think tanks have promoted immunity 
through runaway infections of the virus and continue to call this inhumane program herd 
immunity.  Of course, there is no way of knowing how long this immunity lasts nor if there are 
serious residual medical issues, such as coronary and pulmonary problems, for the recovered. 
 
In the Methods section we showed that when the epidemic stops growing, S satisfies the 
inequality 

𝑆2 −  𝑆𝑁 + 𝑁𝑅 >  0             (12) 

That is when 
𝑑𝐼

𝑑𝜏
  in eq. (2a) becomes negative, implying that removal rates are exceeding 

infection rates, and it is a signal for the start of the decay of the epidemic.  There are three 
distinct ways the epidemic can stop growing.   
 

(a) Controlling epidemic by lowering Infected population 
 

When 𝑆 >  𝑆1,  and 𝑅 ≤  
𝑁

4
, and if infections are low, then removals can exceed infections 

and the epidemic stops growing.  This is not called Herd immunity but has the same end result.  
 
Only one state, North Dakota, reached this stage as of December 12, 2020.   More recent 
analysis identified a few other states where the epidemic stopped growing on later dates. 
Wyoming and Minnesota (in December); South Dakota, Tennessee and Montana (in January 
2021); Iowa, Louisiana, Arkansas, Mississippi, Ohio, Oklahoma and Utah (in February, 2021). 
 

State Date State Date 

North Dakota December Iowa February 

Minnesota December Louisiana February 

  Arkansas February 

Wyoming January Mississippi February 

South Dakota January Ohio February 

Tennessee January Oklahoma February 

Montana January Utah February 

 
Table 3 

States and onset dates when the epidemic stopped growing 
 

 
(b) Controlling epidemic through runaway infections à la Sweden 

 

The period where 𝑆 <  𝑆2 is when the infections have grown to a substantial amount and 
there is reason to hope that Herd immunity can develop.   (Again, there is an additional 
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constraint  𝑅 <
𝑁

4
  so as to ensure that  𝑆2 is real.)  But the values of 𝑆2 in most cases is so 

small (maximum being less than 18% of total population), that the corresponding number of 
immunized becomes huge.  S is even smaller, meaning over 82% of the total population must 
have been confirmed to be infected previously, in order to reach this limit.   
 
The Swedish hope for Herd immunity belongs in this category.  Unfortunately, this is highly 
improbable and practically speaking, impossible, because of the massive collateral damage 
inflicted from runaway infections.  Sweden nor any other country ever reached these numbers 
of infections and Herd immunity remained beyond reach.    
 

(d)  Vaccinations and validations of Herd immunity  
 
The third route to controlling the epidemic is the classic one, through vaccinations.  Here, as 

deduced earlier,  𝑅 >  
𝑁

4
, and all values of S satisfy the inequality and meet the threshold 

condition for Herd immunity.   
 
In a typical compartmental model, it’s the infected (I) that moves to the removed (R) section, 
usually in about 30 days for Covid 19, and so one cannot increase without affecting the other.  
To permit increase in R without affecting the infected, we include transitions external to the 
model, in the form of vaccinations, and they allow susceptible populations S to transfer directly 
to the removed population R. 
 
Eq. (16) defines the condition for reaching the stage when the epidemic stops growing.   It is an 
inequality but all the quantities are observables, measured quantities supplied by Johns 
Hopkins, and so it is easy to verify if Herd immunity has been reached or if it is being sustained.   
 
Discussion 
 
Abuse of models in Covid 19 studies: Use of models has become a contentious issue during the 
Covid 19 pandemic.  Part of the confusion is that the word model usually refers to a simplified 
representation of a natural process or a system, but the term has been hijacked, irresponsibly.  
A popular offender fits hospital utilization data to curves and calls it a model.  That is just “curve 
fitting” which amounts to modeling a “result,” not a process.  In guessing the shape of the 
curves describing hospital usage, for example, there is as much science as there is in picking 
tomorrow’s price of a volatile stock. Not stopping there, they extend the method to predict 
infection rates and mortality in the pandemic.  Colorful phrases like “leveling the curve” emerge, 
but their predictions have been spectacularly wrong, sullying the reputation of real models.  
 
For those who study or use models, simple and solvable are the watchwords.  There is no 
advantage in representing a complex system with a complex model, nor is there in replacing one 
unsolvable system with another.  An important requirement for a model is that it be self-
consistent.   
 
It took a model like SIR to identify some of the important thresholds in an epidemic evident (22, 
23 ). Weiss (24) explains why both the threshold for infection and the herd immunity threshold 
are difficult to deduce from data.   
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Simple though the models are, the truth and beauty in them are compelling and emerge only 
from exact solutions.  It is prudent to extract as much information from models as possible 
before trying to modify the model and introduce new unknown parameters that can quickly turn 
it into a curve fitting experiment that does not illuminate the process.  
 
The number of unknown parameters is inversely proportional to the complexity of a model and 
so a desirable feature would be that the models have the least number of unknown parameters.  
If data do not match the results of a model, and that happens often, then it is an inappropriate 
use of the model, and it is time to move on to a new model.   The model is not “wrong.” 
 
Numerical solutions can be a trap: But models are not a panacea either.  In the case of the Covid 
19 SIR model, the equations of the model are nonlinear and the solutions are approximate. 
Hirsch et al. (11) and Strogatz (12) point out the familiar mathematical traps related to 
numerical solutions to nonlinear equations.  The Universal rule discovered here, for example, 
would most likely remain hidden, if only numerical solutions were available.  Exact solutions in 
the form of analytic functions makes analysis possible, and that helped reveal the Universal rule.  
 

Important prior work:  After this work was complete, we became aware of two other papers that 

produced analytic solutions earlier.  Harko et al. in 2014 performed multiple transformations 

(25) and magically deduced the analytical result, but in the process, the relationship to the true 

time variable became complicated.  Miller in 2012, also derives (26) the analytic solution in a 

more direct fashion, but his interest seems to be in connecting SIR to edge-based 

compartmental models.  For reasons that are not clear, these insightful papers of Miller and 

Harko et al. have not received the attention they merit, and further, no one seems to have 

advanced their analyses. 

 
Why is there a Universal rule?:  A heuristic explanation for the Universal rule would be to 

observe that this population is a “closed” system, where the only two events that happen are 

infection and removal and one affects the other.  We would expect them to be somehow 

related, not necessarily in a linear fashion, of course.  

A better but more technical explanation is as follows.  The model parameters are algebraically 
related in an ideal situation.  But exogenous factors, individual to each of the countries and 
states, mask the relationship by introducing a time dependence in them.  There is, however, a 
holonomic constraint (27) evident, for every time-step, in the form of the universal linear rule 
that relates the two parameters of the model to observables. 
 

It is worth noting that Changes in both  
𝛽

𝛾
  and  

𝐼
𝑅

   remain correlated but they are not 

monotonic.  As social distancing and mask wearing get enforced, both I and R change, and to see 
it as a time series in Tableau (28) is mesmerizing.  It is possible to use Tableau to correlate 

specific events, such as shutdowns in a state, with the changes in both 
𝛽

𝛾
  and  

𝐼
𝑅

. 

 
Complexity or simplicity:  As stated earlier, the initial attempts at finding an empirical rule were 

by trial and error.  For example, 
𝛽

𝐼
  and 

𝛾

𝐼
  when plotted on X and Y axis respectively, were linear 
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in some cases and piecewise linear in others.  What if the choice made first were 
𝛽

𝛾
  and  

𝐼
𝑅

 

leading to the accidental discovery of the Universal rule?  That would have been akin to the 
discovery of the Gutenberg Richter law (4) describing the frequency of earthquakes of different 
magnitudes, or any of the other patterns seen in studies of complex systems (3 - 6).  There 
would then be claims of self-organized criticality in the pandemic, and the universal rule 
embraced as another example of complexity in our lives.  But that’s not what happened.  
 
The success in fraud detection through linearization encouraged a different path for the 
analysis.  Deriving the exact analytic solution of a deterministic dynamical system, combined 
with an adaptation of Emmy Noether’s theorem, led to the universal rule.  So, which is it?  Is the 
universal rule of the Covid 19 pandemic an example of a self-organized criticality of a 
nonequilibrium system or just another example of truth and beauty in a simple deterministic 
model? It’s anyone’s guess. 
 
Universal rule should apply to other epidemics and models:  The universal rule is a consequence 
of the SIR model, and so, other short-lived epidemics where the SIR model was used with 
success, ought to exhibit the same linear law.  This ought to be verified but is beyond the scope 
of the paper.  That the Covid 19 global data comply with the universal rule only means that the 
SIR model is a reasonable approximate mathematical model to describe the pandemic.  But 
there is room for improvement. 
 
Limitations of the model:  The limitations of the SIR model are well documented and many of 
them inspired the formulation of other, more advanced and complex compartmental models.  
As pointed out earlier, adding more and more unknown parameters is not always prudent.  
Often the causal connections between the parameters are lost and then it becomes sheer curve 
fitting, not science.  Of course, exogenous factors are out of control but there are specific 
features, like modeling the change in transmission rates, when more recovered people mix with 
the susceptible population could prove useful.  These will challenge homogeneous mixing 
assumptions and perhaps help clarify the time dependence introduced, particularly in β.    
Clearly, for good forecasts there is a need for new and improved epidemic models that captures 
the time dependence of parameters, even while complying with the Universal rule.  
 
 Stopping the pandemic - Different options 
 
There are three distinct ways to stop the epidemic.    
 

(i) Lower infections to control the epidemic:  Social distancing, mask wearing, 
quarantining and contact tracing are all known methods to reduce infection.  Many 
states took these suggestions seriously while others did not.  Absent quantitative 
measurements it is difficult to argue for or against them.   
 
Coincidentally, Atul Gawande in an article in the New Yorker (29) called North 
Dakota the “worst hit state in the worst hit country in the world”.  Our analysis 
shows that North Dakota is also the best state in curbing infections and reversing 
the epidemic in the nation.  It is difficult to make any generalizations, since the 
states that have done well in keeping infected populations low are those that are 
not fans of CDC guidelines or mask mandates.  We have absolutely no explanation 
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as to why, for example, South Dakota, that hosted a 500,000 strong motor cycle 
rally at Sturgis, and openly flouted best practices of mask wearing and social 
distancing, found its infected population decreasing substantially and reversing the 
epidemic by January 2021.  It seems as if Covid 19 defies simple categorization. 
 

(ii) Promote runaway infections, as in Sweden:  As we found, that was not successful 
and the entire program was considered a failure at many levels.  But as before, 
Covid 19 fights stereotyping.  A counter example of sorts, is the case of the cruise 
ship Diamond Princess, with 2670 total passengers and 712 in the Removed 

category, they reached Herd immunity with 
𝑆

𝑅
ln (

𝑁

𝑆
) = 0.85293. This was a case of 

runaway infections leading to Herd immunity – as Sweden hoped.  So, it seems to 
work, but not in all cases.  Speculating for a moment, it could be that in the narrow 
confines of a cruise ship, the rate of spread was very fast and very quickly the 

condition  𝑅 >  
𝑁

4
  (that is used for vaccination programs) was met and so it was not 

subject to the condition 𝑆 <  𝑆2 (with 𝑅 ≤  
𝑁

4
) to reach Herd immunity.  

 
(iii) Herd immunity through vaccinations:   The Universal rule imposes a mathematical 

restriction that Herd immunity begins around the time when 25% of the total 
population has been vaccinated.  This is a mathematical conclusion that is startlingly 
different from the current consensus that 70% and more must be vaccinated to 
trigger Herd immunity.  This also means that President Biden’s promise of 100 
million people vaccinated in the first 100 days is actually a path to imminent Herd 
immunity in many states of the nation. 
 
It is not as if vaccination is the only way to reach the onset condition. As long as  

𝑅 >  
𝑁

4
, all values of S satisfy the inequality to reach Herd immunity, as discussed in 

the case of the Diamon Princess cruise ship.  The situation in Dharavi, the crowded 
slum in Mumbai, is perhaps another example of runaway infections building Herd 
immunity.  In Dharavi, Covid 19 cases have plummeted without vaccination.  One 
explanation offered is that it reached Herd immunity via infections, and the 
population being younger, the community escaped with minimal collateral damage 
of hospitalizations and death.  The measured seroprevalence in Dharavi was 57% 
which is quite higher than our 25% minimum, and we would also conclude that 
Dharavi reached Herd immunity.   
 
But why did Dharavi reach such a limit while Sweden struggled to go higher than 
7%?  Is it because Dharavi, with its super crowded community, accelerated the 

spread of the disease — not by choice, of course — and reached the 𝑅 >  
𝑁

4
  while 

Sweden adopted a passive route and was stuck at a low level far below Herd 
immunity levels? 

 
 Will onset of Herd immunity lead to the end of the pandemic?  Probably not.   Even though the 
pandemic is abating, it has not been eradicated.  The residual infected populations can continue 
to infect, albeit at a lower rate.   Continued mass vaccinations can off-set this reemergence of 
the epidemic and restore Herd immunity.  
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An interesting way of looking at this is as follows.  If we define “confirmed,” as (infected+ 
removed), the ratio of “infected” to “confirmed” is a useful metric for gauging potential residual 
damage to a population after onset of Herd immunity.  In the South East Asian countries that 
practiced mask wearing and quarantining, this ratio currently tends to be 30% or lower.  
Assuming the Johns Hopkins numbers are correct, the same ratio in about 19 US states is higher 
than 80%, with half including IL, KS, NV, FL, GA and MO even higher than 97%.  In other words, 
these US states have managed to lower the daily new cases, but there is a large pool of infected 
that is still present, and the virus is slowly working through the population.  Perhaps it is useful 
to define a “half life” for the residual infected populations, as a way to rate the efficiency of 
states in controlling further infections. 
   

The onset point 𝑅 >  
𝑁

4
  is then to be interpreted as a possible start point of the decay of the 

epidemic – but not as a confirmation of wiping out the disease.  Maintaining Herd immunity is 
critical to prevent super-spreader events that revive the epidemic.  
 
Summary and conclusions 
 
The rescaled SIR model equations led to an exact analytical solution which in turn revealed a 
new Universal rule for Covid 19 data.   This met the gold standard for a model because it 
predicted an unknown and new rule that was later confirmed through observations.  
 
There is an opportunity during the early stages of the epidemic to control the growth of the 
epidemic by lowering the Infected population, as North Dakota and several other states have 
demonstrated.    As to why these communities succeeded even while not following CDC 
guidelines is a mystery.   
 
As more get infected, the Universal rule reveals a negative feedback effect against runaway 
infections, slowing down the spread, making it mathematically improbable to develop herd 
immunity through mass infections, as Sweden learned recently.  But the inadvertent success on 
the Diamond Princess and Dharavi makes us pause before dismissing the runaway infections as a 
feasible path to Herd immunity.   
 
Most intriguing, the Universal rule makes a new prediction that vaccination of just about 25% of 
the total population can trigger onset of Herd immunity.  If President Biden’s promise of 100 
million vaccinations in the first 100 days holds true, then this prediction will also be tested soon. 
 
But maintaining the immunity, going forward, will require a serious effort from the states 
because at this point there is still a large pool of infected patients in many states, and there is a 
temporary stasis, a balance between infections and removals.   If the normal practices of mask 
wearing and social distancing are not continued for another few months, there can be super-
spreader events that revive the epidemic, requiring many more to be vaccinated.  And the 
emergence of variants and new strains of the virus can further complicate matters. 
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